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Optimum Interplanetary Rendezvous With Power-Limited
Vehicles

W. G. MELBOURNE1 AND C. G. SAUER JR.2

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Calif.

The optimum thrust programs for power-limited propulsion systems are used to generate
rendezvous trajectories from Earth to Mars for various flight times and launch dates during the
years 1968 to 1971. The manner in which the propulsion requirements vary with flight time
and launch date is considered, and a comparison of vehicle performance using the variable
and constant thrust programs is presented. The existence of optimum launch dates is in-
terpreted in terms of certain transversality conditions derivable from the calculus of varia-
tions. A brief comparison of the advanced propulsion vehicle and the ballistic vehicle pro-
pulsion requirements is made for Earth-Mars rendezvous trajectories.

THE emergence of advanced propulsion for interplanetary
flights has generated great interest in the application of

optimization theory to advanced propulsion vehicle systems
and to trajectory design. It becomes necessary to obtain
fairly accurate estimates of the payload capabilities of ad-
vanced propulsion vehicles for various interplanetary mis-
sions. In Ref. 1, there appeared the results from a series of
trajectories to the planets Venus and Mars. An optimum
variable thrust program was used to generate these trajec-
tories. Moreover, certain terminal conditions, such as the
orientation of the terminal orbit and the terminal position
on the orbit, were left unspecified, and corresponding trans-
versality conditions derived from the calculus of variations
were satisfied instead.

This paper is concerned with the problem in which all end
conditions, as determined by the planetary ephemerides, are
specified, and the main purpose is to show the manner in
which the propulsion requirements vary both with flight time
and with launch date. This procedure is analogous to the
problem in ballistic trajectories in which the velocity incre-
ments required for interplanetary missions are determined
(2,3).3 In advanced propulsion trajectories, however, the
propulsion intervals constitute a significant portion of the
trajectory, and, therefore, the thrust program employed be-
comes quite important in payload studies, and optimization
theory as applied to the trajectory analysis is of considerable
use. A comparison of vehicle performance will be made be-
tween the use of an optimum variable thrust program and
the use of an optimum constant thrust program.

Optimum Thrust Equations

In order to develop an optimum thrust program that ex-
tremizes some terminal quantity indicative of vehicle per-
formance, it is necessary to include the constraints of the
system. For the power-limited propulsion system, the con-
straints are the equations of motion of the vehicle and an
equation describing the fact that the amount of kinetic power
contained in the exhaust propellant is constrained. Gener-
ally, the kinetic power depends on the efficiency of power
conversion from the nuclear powerplant of the vehicle, and
the efficiency, in turn, is dependent on the exhaust velocity
employed. In this treatment, the kinetic power is constant,
which is the case for the constant thrust program since the
exhaust velocity is constant. The variable thrust program
possesses a variable exhaust velocity, and thus performance
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figures obtained from this program are optimistic for two rea-
sons: 1) the thrust program is unconstrained; and 2) the
variation of efficiency is neglected. On the other hand, per-
formance figures from the constant thrust program tend to
be conservative but are more realistic.

The constraining equations of motion are

r + V7 - a = 0
and the power-limited constraint is

V. + (/3/cVp = 0

[1]

[2]
where r is the position vector of the vehicle, V the potential
of the force field, and a the thrust acceleration with the mag-
nitude

The quantity /* is the normalized mass of the vehicle [fj,(to) =
1]; /3 is twice the kinetic power in the rocket exhaust per
unit initial mass of the vehicle and is, therefore, a constant
dependent on the specific mass and size of the powerplant.
The quantity c is the exhaust velocity, and ap is a switching
parameter with the value 1 during propulsion periods and 0
during coasting periods.

A Mayer formulation (4) of the calculus of variations has
been applied to both the constant and variable thrust cases
to obtain the optimum thrust equations. The optimum
thrust equations have been derived in Ref. 5 and are sum-
marized here. The thrust program is determined by

^constant 3.
a = < constant .̂

- 0

(variable thrust)

(constant thrust)

[4]

[5]

where i is the Lagrange multiplier vector, and the constant
in Eq. [5] is determined from boundary conditions. It may
be shown that no coasting periods occur in the variable thrust
program (5-7). In the constant thrust program the switch-
ing function L(t) generated by the equation

L = X/AI [6]

determines the periods of propulsion and coast by the condi-
tions

L > 0
L <0

ap = 1
av = 0

In the case where V is explicitly independent of time, it
may be shown that the equations of motion (Eq. [1]) and
the Euler equations (Eq. [4]) possess a first integral in the form
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•f + Oi-VF - JaX = K2 (variable thrust)
-f + ^,-VF — a^L = K2 (constant thrust)

Propulsion System Optimization

[8]

By eliminating c from Eqs. [2] and [3] and integrating, one
obtains

i = i+ r~
fJLl fJLQ Jto ft

dt [9]

which is the so-called rocket equation for power-limited
propulsion systems. The quantity

[10]

appearing in Eq. [9] is analogous to the concept of character-
istic velocity in chemical rocket trajectories and is a con-
venient index of rocket performance. Since in this treat-
ment /? remains constant, any thrust program maximizing
Hi also minimizes /. In the variable thrust program, the
exhaust velocity is determined through Eqs. [2, 3, and 5].
In the constant thrust program, for a particular mission, any
exhaust velocity below some maximum value yields an opti-
mum trajectory. These trajectories possess different lengths
of coasting and different values of /. There exists, in gen-
eral, an optimum exhaust velocity yielding a minimum /.
It is shown in Ref. 5 that the condition

guarantees an extremal in / with respect to the exhaust ve-
locity for the constant thrust program.

Missions and Terminal Conditions

The position and velocity coordinates must satisfy specified
values or functions at both end points of the rendezvous
trajectory. In planetary-rendezvous missions, six terminal
quantities must be specified at each end point. In Ref. 1,
it was described how these quantities were grouped into five
orbital quantities that determine the shape and orientation
of the terminal ellipse and are essentially time-invariant, and
one time-varying quantity indicating the rendezvous position
on the terminal ellipse. The reader is referred to Ref. 1
for a description of these quantities.

It was also shown in Refs. 1, 5, and 8 (see Appendix) that
for each terminal condition left unspecified there results a
corresponding transversality condition to be satisfied at the
end point instead. Satisfying these transversality conditions
yields extremals in the quantity being optimized with respect
to the unspecified terminal conditions. In particular, it was
shown that if the rendezvous position (say, true anomaly) on
the terminal ellipse is left unspecified at either end point, the
transversality condition

0 [12]

should be satisfied at the corresponding end point(s). If, in
addition, the transfer angle between the initial and final point
of the trajectory_is unspecified, then the z component of the
constant vector K\, given by

jj£ _ j. \x QI _ r X O i flSl

must be zero (1,5,8). The z direction is perpendicular to
the plane containing the transfer angle (the angle 6 as de-
fined in Ref. 1). Eq. [13] holds in any central force field,
and the z component of K\ is the same constant K\ appear-
ing in Ref. 1 in the spherical coordinate formulation of the
Euler-Lagrange equations. These two transversality condi-
tions will be used to interpret the behavior of the performance

PERIHELION

I0~2 m/sec2

Fig. 1 Mars rendezvous trajectories, 184 days flight time,
variable thrust program, ecliptic projection

requirements with launch date. One further transversality
condition will be used in the sequel. Suppose the initial
and final conditions are determined by ephemerides and are,
therefore, functions of only the launch and arrival dates,
respectively. It is shown in Ref. 8 that, if the launch date
t0 is unspecified for a fixed flight time, satisfying the trans-
versality condition

+ a,.VF]£ = o [14]

yields an extremal in the quantity being optimized with
respect to launch date.

Interplanetary Trajectories

The optimum thrust equations, the constraining equations,
and various ancillary equations have been programmed in
three dimensions for numerical solution on an IBM 7090.
Eq. [8] is used to check the accuracy of the numerical integra-
tions. A Newton-Raphson (9) search method has been used
to obtain converged trajectories with specified boundary
conditions. By the use of this method in conjunction with
certain prediction schemes (9), it has been possible to generate
wholesale amounts of trajectories with only a moderate con-
sumption of machine time. By this technique, the indirect
method of the calculus of variation has been eminently suc-
cessful when applied to interplanetary trajectories, even in
three dimensions where six and sometimes seven quantities
are specified at the final point.

The results from a series of three-dimensional rendezvous
trajectories from Earth to Mars are presented. These tra-
jectories use the actual positions and velocities of these
planets during the era 1968 to 1971 as initial and final condi-
tions. Only the gravitational field of the sun was included
in these calculations. As an example of the nature of these
trajectories, Fig. 1 shows three trajectories of the same flight
time launched at different dates during the synodic era 1970
to 1971. The variable thrust program was used to generate
these trajectories, and the arrows on the trajectories indicate
the direction and magnitude of the thrust acceleration. This
figure is an ecliptic projection; the effect of the third dimen-
sion is small and has been discussed in Ref. 1. Fig. 2 shows
the same trajectories generated by the constant thrust pro-
gram, and the similarities should be noted. These trajec-
tories possess an optimum coast period in the sense that Eq.
[11] is satisfied for a fixed value of /5 of 100.0 m2/sec3; the
periods of coast have been indicated. The September 15,
1970 and October 12, 1971 trajectories are probably not
feasible missions; the thrust acceleration vector at the final
point of these two trajectories in Fig. 2 has increased to more
than twice the size of the initial value, indicating that less
than half the vehicle mass remains. The maximum mass loss
that can be sustained by an advanced propulsion vehicle if
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ASCENDING NODE

ASCENDING NODE

ICT2 m/sec2

Fig. 2 Mars rendezvous trajectories, 184 days flight time,
constant thrust program with optimum coast, ecliptic projection

it is to deliver a significant payload is about half the initial
mass.

A series of trajectories with different launch dates and
flight times has been obtained. Fig. 3 shows the variation
of / with heliocentric launch date for many flight times using
the variable thrust program. With this figure, it is possible
to determine the "launch period77 that is available for given
maximum value of / and a specified range of flight times.
At the launch date where minimum / occurs for a given
flight time, the transversality condition in Eq. [14] is satis-
fied. The May 13, 1971 trajectory shown in Figs. 1 and 2
has nearly the optimum launch date for a 184-day flight time
and for this synodic era.

The curves in Fig. 3 are not unique because there exist
classes of trajectories yielding extremals in / which, for a given
launch date and flight time, rendezvous with Mars after

PERIHELION

I0~2 m/sec2

Fig. 4 Mars optimum rendezvous trajectories with equal
fti
\ a?dt, flight time, and launch date, 184 days flight time, vari-

J to
able thrust program

executing an arbitrary number of circuits around the sun in
either the forward or retrograde direction. Of particular
interest are those classes of trajectories which make one less
and one more circuit around the sun and which correspond
to the optimum sets in the neighboring synodic eras. As an
example, the class of trajectories which is optimum in the
1971 synodic era is generally characterized by an additional
circuit around the sun when flown in the 1969 era. For a
given flight time there clearly exists a launch date that is a
trade-off point and for which, for earlier dates, the optimum
path is obtained by subtracting 27r from the transit angle
required to rendezvous Mars. Fig. 4 shows an example
from each of these two classes of trajectories using a variable
thrust program. Both of these trajectories have the same

100.0 -

10.0 -

21 22 25 26 28 29 31 I 3 4 6 7 8 1 2 13 15 16 18 19 20 22 23 25 26 27 31 2 3 5- 6 7 9 10 12 13 14 18 19 21 22 24 25 26 28 29 31 DAY
I 2 3 4 5 6 7 9 10 1 1 1 2 I 2 3 4 5 6 7 8 9 10 I I 12 I 2 3 5 6 7 8 9 10 I I 12 I 2 3 4 5 6 7 8 9 10 I I I2MONTH
68 69 70 71 YEAR

LAUNCH DATE
fh

Fig. 3 Earth-Mars rendezvous trajectories, variable thrust program, I a^dt vs launch date for constant flight time (days), 1968 to 1972
J to
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21 22 25 26 28 29 31 I 3 4 6 7 8 12 13 15 16 18 19 20 22 23 25 26 27 31 2 3 5 6 7 9 10 12 13 14 18 19 21 22 24 25 26 28 29 31 DAY
1 2 3 4 5 6 7 9 10 I I 12 I 2 3 4 5 6 7 8 9 10 I I 12 I 2 3 5 6 7 8 9 10 I I 12 I 2 3 4 5 6 7 8 9 10 I I 12 MONTH

68 69 70 71 YEAR

Fig. 5 Earth-Mars rendezvous trajectories, variable thrust program, flight time vs launch date for constant I a*dt (m2/sec3)
J to

launch date and flight time and possess the same value of J
but use radically different thrust programs in carrying out
the mission. The two classes of trajectories which are opti-
mum for the 1969 and 1971 synodic eras are shown on Fig. 3,
and the trade-off points in launch date are clearly seen. The
trajectories of the left-hand wing of the 1971 class appearing
in 1969 to 1970 are probably only of academic interest, since
the values of / for these curves are so high. For the pres-

ently estimated state of the art of advanced propulsion
technology, missions with values of J greater than around
50 m3/sec2 are probably not feasible. The local extremals in
/ with launch date which appear in the wings also fulfill the
condition in Eq. [14].

The increased steepness on the ascending branches of these
curves may be explained in terms of the decreasing transit
angle of the trajectory with increasing launch date as shown

NOTE: NUMBERS NEAR THE
CURVES ARE FLIGHT
TIME IN DAYS

I 12
AUG

LAUNCH DATE 1971

Fig. 6 Type I Mars 1971 ballistic trajectories, sum of geocentric and areocentric hyperbolic excess speeds vs launch date for constant
flight time
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Table 1 Three-dimensional trajectories, 184-day flight Table 2 Two-dimensional trajectories, 184-day flight

Launch
date

(1971)

Feb. 14
March 2
March 18
April 3
April 19
May 5
May 13
May 21
June 6
June 22
July 8
July 24
Aug. 9
Aug. 17

Constant thrust
fatdt

j8 = 00

45.477
33.980
24.608
17.298
11.949
8.516
7.596
7.340
8.966

13.180
20.150
30.417
44.691
53.583

fatdt
0 = 100.0 ,

43.131
32.406
23.640
16.757
11.678
8.404
7.546
7.351
9.110

13.565
21.070
32.479
49.038
59.766

MI
8 = 100.0

0.699
0.755
0.809
0.856
0.895
0.922
0.930
0.932
0.917
0.881
0.826
0.755
0.671
0.626

Variable
thrust
fa*dt

37.373
27.733
19.931
13.938
9.703
7.187
6.576
6.406
7.459

10.558
16.046
24.395
36.217
43.648

Launch
date
(1971)

Feb. 14
March 2
March 18
April 3
April 19
May 5
May 13
May 21
June 6
June 22
July 8
July 24
Aug. 9
Aug. 17

Constant thrust
fatdt

0 = 00

45.165
33.714
24.379
17.096
11.762
8.334
7.414
7.161
8.801

13.023
20.003
30.289
44.588
53.492

fatdt
j8 = 100.0

42.864
32.171
23.431
16.567
11.498
8.225
7.364
7.171
8.942

13.401
20.914
32.339
48.920
59.659

MI
0 = 100.0

0.700
0.757
0.810
0.858
0.897
0.924
0.931
0.933
0.918
0.882
0.827
0.756
0.672
0.626

Variable
thrust
fa*dt

37.230
27.597
19.796
13.798
9.555
7.032
6.418
6.247
7.303

10.413
15.918
24.292
36.139
43.584

in Figs. 1 and 2. For launch dates past the optimum point,
the percentage change in transit angle is greater than for
equally distant launch dates preceding the optimum point.
As the positions of Earth at launch and Mars at arrival ap-
proach opposition, a thrust program more radical (as indi-
cated in the October 12, 1971 trajectory) than the program
for optimal transfer is required. This same effect occurs in
ballistic trajectories.

The year 1971 is a "vintage year" for advanced propulsion
trajectories (and also for ballistic trajectories) in the sense
that the minima of these curves possess smaller values for this
year than they do for immediately preceding or succeeding
synodic eras. Notice in Fig. 3 that the minima in 1969 lie
at a value of / higher than do the corresponding minima in
1971. This phenomenon can be interpreted in terms of the
fact that, for 1971, the transversality condition in Eq. [12]
is nearly satisfied for all flight times at both the initial and
final points of the trajectory at the optimum launch dates.
Searching for the optimum synodic era is tantamount to re-
moving the coupling supplied by the ephemerides between
planetary positions and launch and arrival dates. In this
case, the positions on the initial and final ellipses become
unspecified and Eq. [14] decomposes into Eq. [12], which
must be satisfied at both terminal points (see Appendix).
In 1971, the Earth-Mars distance at opposition is smaller
than in neighboring synodic eras; this phenomenon repeats
approximately every 15 years or every seven synodic periods.
It is known, however, that the optimum point of rendezvous
at Mars is not at perihelion but rather at some point past
perihelion where the radial velocity is, in general, outward
(10).

Fig. 5 exhibits contours of equal J with flight time vs helio-
centric launch date. The minima of these curves correspond
to minimum time trajectories for a given value of J", and
the transversality condition in Eq. [15] is also satisfied at
this point. The locus of minimum flight for a given J will
pass, for zero flight time, near the date of Earth-Mars opposi-
tion.

In order to isolate the range of variation of minimum /
with synodic era, a series of trajectories was run in which the
transversality condition in Eq. [12] was satisfied at both
terminal points. Since the orbit of Earth is nearly circular,
this approximation was made in these computations. In this
case, it can be shown (see Appendix) that Eq. [12] implies
that the z component of K\ is zero, simplifying the analysis
somewhat. Fig. 14 of Ref. 1 shows the variation in / with
flight time for Mars rendezvous trajectories in which Eq. [12]
is satisfied at the final point of the trajectory and the con-
stant KIZ is zero. Both local minima and local maxima occur
when these conditions are satisfied. The lower curve of this
figure corresponds to rendezvous at the optimum orbital

point, and the upper curve corresponds to rendezvous at the
least optimum point, which is generally approximately 180°
away from the optimum point. The optimum rendezvous
points are functions of flight time (1,10). These two curves
bound the range of variation of minimum J with synodic
period using a variable thrust program. It should be ob-
served that the minima of the 1971 curves lie almost exactly
along the lower curve. At three or four synodic periods
before or after 1971, the Earth-Mars configuration at opti-
mum launch date is such that trajectories rendezvous near
the least optimum point, and the minima therefore lie near
the upper curve.

The estimates of propellant requirement for heliocentric
transfer as given in Fig. 3 tend to be slightly conservative
because of the neglect of the masses of the departure and
arrival planets. In spiralling away from Earth, for example,
the geocentric velocity at escape is, typically, around 1 km/
sec. It may be shown (10) that the velocity at escape is
proportional to the fourth root of the thrust acceleration and
the gravitational constant of the central planet, and so the
velocity at escape changes little with the thrust acceleration
employed. In any case, this velocity, although small com-
pared to the 30-km/sec orbital velocity of Earth, can be
used, if properly directed, to obtain a reduction in the / re-
quired for the heliocentric portion of the flight. Preliminary
studies suggest that approximately 15% reduction in J for
the heliocentric flight can be obtained by taking into account
the masses of the departure and arrival planets.

Finally, it is interesting to compare the propulsion require-
ments for an advanced propulsion vehicle with those for a
ballistic vehicle. Fig. 6 shows the sum of the geocentric and
Mars-centered hyperbolic-excess speeds vs launch date for
various flight times. This figure is obtained from results
appearing in Ref. 3, in which heliocentric conies were fitted
through Earth and Mars as explained in Refs. 2 and 3.
The similarities between Figs. 3 and 6 should be noted. For
a given flight time, the optimum launch dates are about the
same for these two types of trajectories; however, the "firing
period" for the advanced propulsion vehicle is somewhat
wider than that for the ballistic vehicle.

Comparison of Variable and Constant Thrust
Programs

The degradation in vehicle performance resulting from
using a less optimum thrust program is of interest. In Ref.
5 a comparison was made between the variable thrust pro-
gram and the constant thrust program with both an optimum
coast period and no coast. It was shown (consult Fig. 7 of
Ref. 5) that for optimum launch dates the increase in J" in the
constant thrust program with optimum coast is about 15%
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over the variable thrust program and about 30% in the case
of no coast. A 15% increase in J corresponds, typically,
to about a 3% decrease in AC, as may be verified from Eq.
[9]; that is, for small variations

For trajectories launched at dates other than the optimum
launch date, the percentage difference in J between the two
thrust programs varies somewhat. Tables 1 and 2 illustrate
the difference between these two programs for various launch
dates for a 184-day flight. The transversality condition in
Eq. [11] is satisfied in the constant thrust program using
values for /3 of 100 m2/sec3 and infinity (constant thrust
acceleration). In addition, the results from a corresponding
set of two-dimensional trajectories are presented to show the
difference between two- and three-dimensional analysis for
interplanetary trajectories. The differences are small, as
already pointed out in Ref. 1. The largest relative effect
occurs near the optimal launch date, which reflects the fact
that the additional propulsion requirement for the out-of-
ecliptic dimension is relatively insensitive to the launch date.

The variable thrust program has been used in the majority
of the numerical computations for several reasons. The per-
formance results constitute a unique upper bound independent
of the propulsion system design; the computation tune is
generally less than with the constant thrust program because
1) the dimension of the iteration matrix is smaller since no
propulsion system optimization is required, and 2) the variable
thrust equations seem somewhat more stable, computation-
ally, and converge more rapidly. The use of a constant
thrust acceleration program (infinite ft) with optimum coast
also has the advantages of being independent of the propul-
sion system design and yields more conservative performance
results. Experience has shown that this program is nearly
as stable and economical as the variable thrust program and
requires only one additional dimension in the iteration matrix:
namely, the fulfillment of Eq. [11] at the final point of the
trajectory. The present policy in parametric mission feasi-
bility studies is to employ both of these programs to obtain
performance figures that bracket the performance capabilities
of an actual advanced propulsion vehicle.

Appendix: Terminal Conditions and Optimum
Launch Dates

If certain terminal quantities are undetermined by the
boundary conditions and the condition for an extremal in J,
there results from the calculus of variations (4,5,8) a corre-
sponding transversality expression for each undetermined
terminal quantity. Satisfying a transversality expression
yields an extremal in J with respect to the corresponding
undetermined terminal quantity and, in addition, the opti-
mal value for this quantity.

Consider the case in which the kinematic state variables
are specified at both ends of the trajectory by explicit func-
tions of time which, in the case of planetary rendezvous, are
simply the ephemerides of the departure and arrival planets.
The positions and velocities r, v at the terminal points may
be expressed in the form

(r(fo) - = 0
= 0

= 0
= 0 [Al]

The superscripts 0 and 1 denote the functions corresponding
to the ephemerides of the departure and arrival planets,
respectively. Furthermore, suppose that the flight time
ti — to is held fixed but that the launch date to is not specified.
For three dimensions, 14 boundary conditions have been
specified. (These are Eq. [Al], fixed flight time, and initial
mass of unity.) The launch date is unspecified, and, conse-
quently, there is one transversality condition available which
holds at the optimum launch date extremizing J. Upon

applying the calculus of variations (8), one obtains for this
expression

(* v<« - i-v) U - (a,-v<°> - i-v) U = 0 [A2]
Since the planets travel in the same potential field as the
vehicle, it follows that the condition

£ = 0 [A3]

is the transversality condition for optimum launch date.
For the variable thrust program, it is easily seen from Eq.
[8] that this condition is satisfied when the thrust accelera-
tion is equal at the initial and final points of the trajectory.

In Ref. 1 a spherical coordinate system has been employed,
and the kinematic boundary conditions have been expressed
in terms of the orbital elements E, li, i, co, ft, and S£ (see Fig.
2 and Eqs. [17-22] of Ref. 1). It was stated that, if the posi-
tion on the terminal orbit SP" is left unspecified but with fixed
flight time (and no dependence on launch date), the trans-
versality condition that should be satisfied for optimum ren-
dezvous point (and least optimum; also) was given by

M + N + cos$ = 0 [A4]

where these symbols are defined in Ref. 1. Using Eq. [17]
of Ref. 1 and Eq. [8] of this text, it follows that this condition
is equivalent to

(i-r+ *,>VV)\tv = 0 ? = 0, 1 [A5]
Using orbital elements and including a launch date depend-
ency, only the quantity ^ is a function of the launch and
arrival dates through the ephemerides, and it may be ex-
pressed in the form

*(to) - ¥<c>(Jo) = 0 ¥&) - W»(ti) = 0 [A6]

It is clear that Eq. [A3] must still hold for optimum launch
date. However, if one passes through synodic eras seeking
the optimum synodic era, this is tantamount to removing
the coupling between orbital positions and launch and arrival
dates in Eq. [A6]; the terminal values of SF are, in effect,
unspecified, and it follows that Eq. [A3] decomposes into
the two conditions in Eq. [A5], which holds in the optimum
synodic era at the optimum launch date in that synodic era.
In actuality, Eq. [A5] is never exactly satisfied at both the
initial and final point, but in the year 1971 these conditions
will be nearly met.

If either the initial or the final orbit is circular and the
launch date dependency is removed, it is unnecessary to
specify the transit angle 6(ti) — 6(tQ). In the spherical
coordinate formulation of Ref. 1, it was shown that a constant
KI results from the cyclic nature of the variable 6. If 6 does
not explicitly appear in the boundary conditions nor in the
expression to be extremized, it is easily shown (8) that KI
is zero. Consequently, if the terminal orbital position and
the transit angle (or alternately, the longitude of the line of
nodes ft) are unspecified, it follows from Eq. [A4] that both
Eq. [A5] and a zero value for KI are implied.

It should be obvious that there are any number of trans-
versality conditions for this problem which may be developed
for each unspecified variable. As a final example, consider
the problem of finding the optimum launch date for any flight
time when the transit angle is held fixed. One may draw
curves of constant transit angle on Fig. 5. These curves
depart slightly from straight lines because of the planetary
eccentricities but are sloped upward and to the right, that is,
increasing flight time with increasing launch date. As one
travels along one of these curves, there is an optimum launch
date and flight time corresponding to a minimum J. Using
the sole constraint that 0(ti) — 0(fo) is a constant, it may be
verified that the condition

[A7]

yields the optimum launch date.
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Effect of Finite Thrusting Time in Orbital Maneuvers
CnONG-HlJNG ZEE1

Curtiss-Wright Corporation, Wood-Ridge, N. J.

The effect of finite thrusting time in orbital maneuvers is investigated for Hohmann-type
transfers. A closed form solution of the trajectory during thrusting is obtained by assuming
that a constant thrust is applied normal to the focal radius and that the change of the radial
position of the rocket is small. A numerical example is presented to show the thrusting time,
thrust level, propellant consumption, and the conic trajectories following the powered flight
paths, etc., in comparison with the ordinary impulsive thrust case. Finally, calculations of the
lead angle and the lead time are introduced based on the analysis presented in this paper.

Nomenclature
A — mc/Mogo, dimensionless
B = (m/Mo) (ro/#o)1/2, dimensionless
C = Fe/(poro)1/2, dimensionless
c = effective average exhaust velocity of the jet, fps
D = Vr/(goro)112, dimensionless
E = energy per unit mass of rocket, ft-lb/slug
e = eccentricity of the elliptical transfer orbit, dimension-

less or base of natural logarithms
F = me = total thrust, Ib
0o = acceleration due to gravity at distance r0 from the center

of attraction, ft/sec2

ge = acceleration due to gravity at earth surface, say, 32.2
fps

/ = semilatus rectum of the transfer elliptical orbit, ft
ra = constant flow rate of propellant mass, slug/sec
MO = mass of rocket at the beginning of thrusting, slug
Mp = propellant mass consumed, slug
AMP = additional propellant mass consumed due to finite

thrusting time, slug
n = number denoting initial acceleration or thrust level,

dimensionless
r = distance from the center of attraction to the rocket at

any time during thrusting, ft
ri = radius of final circular orbit, ft
rf = distance from the center of attraction to the rocket at

the end of thrusting, ft
TO = distance from the center of attraction to the rocket at

the beginning of thrusting, ft
t = time measured from the beginning of thrusting, sec
tf = finite thrusting time, sec
ti = lead time (time required to travel the lead angle), sec

Received by ARS February 28, 1962; revised July 19, 1962.
1 Project Engineer, Engineering Department, Wright Aero-

nautical Division.

Vc — (goro)112 = circumferential velocity of a circular orbit
with radius TO, fps

Vf = velocity of the rocket after the impulsive thrust or at
the end of thrusting, fps

Vr = (dr/dt)o = radial velocity of the rocket at the beginning
of thrusting, fps

Ve = rQ(d6/dt)o = transverse velocity of the rocket at the
beginning of thrusting, fps

0 = polar angle, measured from the initial line coincided
with the radius vector r0, rad

0f = angular displacement of the rocket at the end of thrust-
ing, rad

\l/ = lead angle, angle between the radius vector r0 and the
apsides line of transfer orbit, rad

P = r/ro, dimensionless
Pf = rf/ro, dimensionless
T = (go/ro)lt2t, dimensionless
fj, = gravitational constant, ft3/sec2

( )o = denotes the quantity in the parentheses at t = 0

Subscript
I = impulsive thrust case

IT is generally assumed that the thrusting time is zero for
all impulsive thrusts in orbital maneuvers. However,

for practical reasons, this case does not exist, and nonzero
thrusting times must be considered. Transfer orbits then
consist of powered flight paths, which are the trajectories of a
rocket during the finite thrusting time intervals, and non-
powered flight or conic paths.

If, at a certain point in an orbit, a constant thrust is ap-
plied to a rocket, different thrust levels will result in different
powered flight paths, even though the total propellant con-
sumption (or the total impulse that is the product of the
thrust and the thrusting time) remains the same. The
conic paths following the powered flight paths will also change
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