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The three-dimensional equations for o p t i m u m variable thrust with power l imited propulsion 
systems are presented. An iterative routine for solving the two-point boundary value problem has 
been coupled wi th these equations to obtain numerical solutions for specified end condit ions. A 
set of interplanetary rendezvous trajectories to Venus and Mars is presented, and the effects of 
orbital incl ination and eccentricity are assessed. 

FOR THE past few years mission feasibility studies and 
trajectory analyses have been conducted to assess the 

payload capabilities of power limited advanced propulsion 
vehicles for various interplanetary missions. This paper 
describes one type of optimum thrust program for power 
limited propulsion systems which is currently being used in 
these studies. 

The power limited propulsion system is constrained in the 
amount of kinetic power contained in the exhaust propellant. 
By a consideration of the energy and momentum equations, 
a rocket equation suitable for such a system is obtained This 
is given by 

m T m o + J o 2Pdt [ 1 ] 

where m0 and mi are the vehicle masses at the beginning and 
end, respectively, of the flight, a is the thrust acceleration, 
and P the power expended in the rocket exhaust. The ex
haust power is determined by the power rating of the power 
plant carried by the vehicle and by the efficiency of conver
sion by the propulsion system, which is generally dependent 
on the exhaust velocity. The final vehicle mass depends on 
the value of this integral, which in turn depends on the flight 
time, the mission involved (namely, the specification of the 
kinematic conditions of the vehicle initially and terminally), 
the force field in which the vehicle travels, the nature of the 
thrust -program used to accomplish this mission, and finally, 
the engineering design of the propulsion system. This 
integral is analogous to the concept of incremental velocity 
in a chemical rocket and is useful in payload optimization 
studies. 

For the preliminary mission feasibility studies, it is de
sirable to employ optimum thrust programs which exclude 
the complexity imposed by the engineering design but which 
bracket or isolate that class of trajectories and vehicle per
formances which an actual vehicle would be capable of 
achieving. 

One such thrust program, which partially fulfills this need, 
is obtained by satisfying the criterion that the quantity 

I a2dt is a minimum using an unconstrained thrust magni
tude and direction. The justification of this program is 
based on the fact that over a wide range of specific impulse, 
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but excluding lower values, the power conversion efficiency 
of the propulsion system is nearly constant, thus allowing the 
removal of P from the integral. Since the thrust is un
constrained, this program yields the absolute minimum that 

I a2dt may have for a given mission and therefore leads to a 

somewhat optimistic estimate of vehicle payload.2 

The equations of motion of a vehicle in a conservative force 
field may be written in vectorial form as 

r + VV - a = 0 [2] 

where r is the position vector and V the potential in this 
force field. The minimization of I a2dt may be accom
plished by calculus of variations methods in which this integral 
is minimized subject to certain constraints, namely, the 
equations of motion and the initial and terminal kinematic 
conditions specified by the mission. 

For the variable thrust program, it may be shown (1-3)3 

that the thrust acceleration equations that must be satisfied 

as necessary conditions for minimum I a2dt are the Euler-

Lagrange equations 

a + (a-V)VF = 0 [3] 

Since V is not an explicit function of time, these equations 
admit a first integral in scalar form which may be expressed as 

a f - (l/2)a2 + a - v F = const [4] 

The present studies employ an inverse-square central force 
field model in three dimensions. Because of the spherical 
symmetry of this problem, it is advantageous to express 
these equations in spherical coordinates. This coordinate 
system and the direction of the basis vectors are illustrated 
in Fig. 1. The state variables for this formulation are r, 
d, <j), u, he, and h^, where u is radial velocity, and he and h<f> 
are the components of angular momentum per unit mass. 
The control variables are ar, ae, and a^. After some manipu
lation it may be shown that Eqs. 2 and 3 may be expressed 
as 

u - (h2/r3) + (fi/r2) - ar = 0 [5] 

2 For a comparison of this program with a constant thrust 
program, consult Ref. 3. 

3 Numbers in parentheses indicate References at end of paper. 
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Fig. 1 Spherical coordinate system 

u — r = 0 

lie — (h $ tan (fr/r2) + ra^ = 0 

h<t> + (W&« tan <£/r2) — r o» = 0 

Ao + r2<£ = 0 

h$ — rW cos <$> = 0 

/i2 = V + V 

[6] 

[7] 

[8] 

[9] 

[10] 

[11] 

.. 3a J 2/*r1 1 r 2 i 21 2h<t> t a n * /t, \ 

- W + V *—* (h-a) 
r r4 Kxh heF{t) 

r3 r° cos 

F(t) + 2r2 [?] 
4hear 

+ 
tan 

^ _ _ % _ ( h . a ) _ ^ ^ = 0 
r3 cos2 0 

»" | T r l + T (2* - H tan *) [?] 

r2 cos2 4> 

tan $ 

1 * = 0 [12] 

= 0 [13] 

[14] 

(h-a) 

0 [15] 

where h is the angular momentum per unit mass of the vehicle 
and At the gravitational constant of the central body. The 
quantity F(t) is an auxiliary variable, essentially one of the 
Lagrange multipliers that could not easily be eliminated. 
The constant Ki is a constant of integration resulting from 
the cyclic nature of the variable 6. Eq. 4 becomes 

a ' - ^ + ^ - H - ^ - ^ " 

tan <f> (h-a) = K2 [16] 
i" 

The quantities K\ and K2 are the only constants of motion 
which have been found. Eq. 16 is not used in numerical 
integrations because of the drr term, but it is useful in check
ing the accuracy of the numerical integrations of Eqs. 5-15. 
It may be easily verified that these equations reduce to those 
contained in (1) upon reduction to two dimensions. 

Missions and Terminal Conditions 

The kinematic variables in most missions are specified at 
the initial point of a trajectory, and in a final trajectory de
sign the terminal values are usually specified. In a pre
liminary study, however, it is advantageous to let certain 
terminal variables be free in order to optimize the trajectory 
with respect to certain criteria such as payload capability, 
communication distance, and error sensitivity. 

In planetary rendezvous missions, six terminal quantities 
must be specified. It is convenient to group these into five 
quantities that determine the shape and orientation of the 
terminal orbit and one quantity indicating the rendezvous 
position on the orbit. These quantities are the energy per 
unit mass E, the angular momentum per unit mass h, the 
orbital inclination i, the argument of perigee co, the longitude 

Fig. 2 Orbital elements 

Table 1 Useful combinations of rendezvous terminal conditions and corresponding transversality relations" 

1 
2 
3 
4 
5 

6 

I 
E = E> 
h = h8 

l = Is 
CO = (A)s 

f = tf< 

II 
E = Es 

h = ht 

i = n 
CO = C08 

n = ns 

M + N + Kih^ 
r2 cos 0 

= 0 

I I I 
E = Es 

h = hs 

l = Is 

CO = COs 

Kx = 0 

M + N = 0 

E 
h 
i 

Q 

M 

IV 
= 
= 
= 
= 
= 

N + 

E8 

hs 

Is 

n, 
0 
K\h<t> 

r2 c o s <j> 
= 0 

a The subscript s denotes a specified terminal value. The functions M and N are given by 

M(t) = 2drf + (2ar/r
s)(fxr - h2) 

N{t) = [2/^(a-h)/r3] tan <f> + (h9F(t)/r2) 

and will be recognized as components of Eq. 16. 

V 
E = Es 

h = hs 

i = is 
# 1 = 0 
M = 0 

VI 
E = Et 

h = hs 
Ki = 0 
M = 0 

a-h = 0 

N = 0 F = 0 
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\ ASCENDING 
\NODE 

Fig. 3 Venus three-dimensional optimum rendezvous trajectory, 
ecliptic projection 

of the ascending node 12, and the angle from the line of nodes 
to the rendezvous point \p. The angular quantities are ex
hibited in Fig. 2. These quantities are expressed in terms of 
the six kinematic variables through the relations 

E 

h2 

cos i 

CO 

CO 

= (1/2) [ f ' + (h2/r2)] - fx/r 

= V + V 
= h^ cos 4>/h 

= \f/ — sin - 1 {hi/ ixe) 

= \p — cos -1 "1 h2 

_e fir 

[17] 

[18] 

0 < i < -K [19] 

0 < co < 2TT [20a] 

0 < co < 2TT [20b] 

sin 12 

cos 12 

—he sin 6 — h^ sin 0 cos 6 
h sin i 

—he cos 9 + hf sin 0 sin # 
/& sin i 

0 < Q < 2TT [21a] 

sin ^ = sin 0/sin i 

cos ^ = —he cos <£//& sin i 

0 < O < 2 T T [21b] 

0 < i/ < 2TT [22a] 

0 < \fr < 2TT [22b] 

where e is the eccentricity of the ellipse. These six expressions 
may serve as boundary conditions at the terminal point of 
the trajectory. For each one of these conditions that is left 
unspecified, there is, from the calculus of variations, a corre
sponding transversality expression to be satisfied at the ter
minal point. Satisfying these transversality expressions 
yields extremals in the quantity to be optimized with respect 
to the unspecified boundary conditions. Both relative maxi
ma and minima result from satisfying these conditions. 
The general formulation of transversality conditions may be 
found in treatises on calculus of variations; in (3) a formula
tion that is directly applicable to this problem is presented. 

Table 1 lists several useful combinations of rendezvous 
terminal conditions and corresponding transversality rela
tions obtained from an application of this formulation for a 
fixed final time. Combination I is, of course, the case where 
all six terminal conditions are specified. In combination II 
the position on the terminal orbit x// is left unspecified, and the 
corresponding transversality condition appears. In combina
tion III both \p and 12 are unspecified, and two transversality 
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Fig. 4 Venus three-dimensional optimum rendezvous trajectory, 
celestial latitude 
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Fig. 5 Venus three-dimensional optimum rendezvous trajectory, 
thrust program 
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Fig. 6 Venus three-dimensional rendezvous trajectories, 120-
day flight time 

conditions result. This combination is most useful when the 
trajectory commences from a circular orbit, thus relaxing the 
necessity of specifying 12 (k). Combinations IV and V apply to 
circular terminal orbits and to the case of orbital inclination 
changes. Combination VI also applies to the two-dimensional 
case where a h and F(f) are zero over the trajectory. This 
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Fig. 8 Venus three-dimensional rendezvous trajectories, the 
effect of orbital inclination 

Fig. 7 Venus two-dimensional rendezvous trajectories 

particular case has, in effect, been noted by Blum (1). The 
quantity Kx is zero when neither 6 nor any quantity ex
plicitly dependent on 6, e.g., 12, is specified. 

Interplanetary Trajectories 

In three dimensions, the set of equations to be solved re
quires the specification of 12 constants of integration. The 
specification of the six state variables initially and the six 
terminal and transversality conditions define the system. 

D. E. Richardson of Jet Propulsion Laboratory has pro
grammed these equations in an inverse-square force field for 
numerical solution on an IBM 7090 digital computer. To 
overcome the two-point boundary value problem associated 
with this type of equations, an iterative routine designed 
to efficiently conduct parametric analyses has been developed. 
Eqs. 5-15 are used to obtain a search matrix by a direct per
turbation procedure. From this matrix a set of corrections 
to the initial conditions is obtained yielding a trajectory 
whose terminal conditions converge toward the specified 
values. The validity of this procedure is predicated on the 
assumption of a near-linear behavior of the variables in the 
small. Several devices are used to minimize computer time. 
If successive iterations are required, the original matrix is 
used as long as the process converges and the number of 
iterations is less than some specified value. To use this 
computer efficiently, a family of converged trajectories (for 
different terminal conditions and/or flight times, for example), 
is obtained in one machine run. This allows the accumu
lation of information about previously converged trajectories, 
which is used to predict initial conditions and search matrix 
elements for the succeeding case. This routine has been re
markably successful in the large-scale production of inter
planetary rendezvous and flyby trajectories to nearly all 
the planets, with flight times ranging from 30 days to 3 years 
(2,3). 

The numerical examples presented consist of sets of inter
planetary rendezvous trajectories commencing from Earth's 
heliocentric position and terminating at Venus and at Mars. 
The orbits of Earth and Venus were assumed circular with 
the latter possessing an inclination of 3.°394 to the ecliptic 
plane. The orbit of Mars possesses an eccentricity of 0.09337 
and an inclination of l.°850; the argument of perigee is 

200 

100 

360-0 

300 

200 
100 200 

TIME, days 

300 

Fig. 9 Venus three-dimensional rendezvous trajectories, varia
tion of positions of extremal points with flight time 
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PERIHELION 

Fig. 10 Mars three-dimensional optimum rendezvous trajectory, 
ecliptic projection 

—73.°93. The planets themselves were assumed massless, 
and only the mass of the sun was used in the calculations. 

Fig. 3 illustrates an ecliptic projection of an interplanetary 
trajectory which will rendezvous Venus in 120 days. The 
terminal conditions in combination V were used. The 
arrows represent the ecliptic projection of a at various points 
along the trajectory. Fig. 4 shows the variation of celestial 
latitude of the vehicle along this trajectory; the thrust pro
gram is presented in Fig. 5. The rendezvous of this par
ticular trajectory is at the optimum point on Venus's orbit, 
which for this flight time is <j> = —3.° 189 on the ascending 
branch. Because of symmetry, the point 0 = +3.° 189 on 
the descending branch is also optimum. Fig. 6 exhibits the 

variation in the value of I a2dt and the transversality 

quantity N(U), with rendezvous at different points along the 
orbit of Venus. M(ti) is zero at all rendezvous points in the 
case of Venus because of the circular terminal orbit. For 
this case the terminal conditions are given by combination 
V with condition 6 replaced by \p8. It is observed that the 
zero crossings of N mark the minimum and maximum 

values of I a2dt with respect to \f/. The amplitude of the 

variation is only a small percentage of the average value. 
The iterative routine mentioned above was used to generate 

a series of two- and three-dimensional Venus trajectories for a 
wide range of flight times. Fig. 7 shows the variation in 

/
a2dt for a two-dimensional model. The effect of the 

third dimension due to the inclination of Venus's orbit is ex

hibited by Fig. 8, in which the increment in J a2dt over 

the two-dimensional value has been plotted. Both the upper 
and lower bounds of this increment are included. The varia
tion in \p for both of these cases is shown in Fig. 9. 

In ballistic interplanetary trajectories where velocity im
pulses are made at the terminal points, it is known that the 
effects of planetary inclinations on the required velocity 
increment to perform a mission can be quite severe. It will 
be observed, however, that this is not the case for advanced 
propulsion trajectories in which thrust is applied over an ex
tended range. The reason for the comparatively slight ef
fects of inclination is partly due to the small planetary in
clinations involved and the relative efficiency with which the 
advanced system is capable of generating these required in
clinations at the terminal point. 

Orbital eccentricity has a considerably more prominent 
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Fig. 11 Mars three-dimensional optimum rendezvous trajectory, 
celestial latitude 
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Fig. 12 Mars three-dimensional optimum rendezvous trajectory, 
thrust program 
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effect on I a2dt, particularly for nearby planets such as 

Mercury and Mars. As a second example, a similar series of 
Fig. 13 Mars three-dimensional rendezvous trajectories, 90-day 

flight time 
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Fig. 14 Mars three-dimensional trajectories, rendezvous at ex
tremal points 

Fig. 15 Mars three-dimensional rendezvous trajectories, varia
tions of positions of extremal points with flight time 

results for rendezvous trajectories to Mars is presented. 
Figs. 10, 11, and 12 exhibit the characteristics of a 160-day 
trajectory which, for this flight time, will rendezvous at the 
optimum point on the orbit of Mars. The terminal condi
tions in combination III were used. Fig. 13 shows the effect 
of orbital eccentricity for a set of 90-day rendezvous trajec
tories to Mars. The magnitude of the variation of f a2dt 

with \f/ is about 50% of the average value. The transversality 
expression M(ti) + N(ti) is included, and its zero crossings 
coincide with the maximum and the minimum values of 

I a2dt with respect to \f/. 

Fig. 14 shows the variation of J a2dt with flight time for 

both extremal points. The variation of these extremal 
points with flight time is shown in Fig. 15. As in the case 
of Venus, the effect of the inclination of the orbit of Mars 
is quite small. The contribution of inclination to the varia
tion, I a2dt in Fig. 13, is less than 1% of the mean value. 

This was confirmed by a comparison with an analogous set of 
two-dimensional trajectories. 

For interplanetary mission studies with advanced pro
pulsion systems, it appears that planetary inclinations are 
negligible in pajdoad capability studies. Even for the 
planet Mercury, with its 7° inclination, the effect is small. 

On the other hand, the effect of orbital eccentricities warrants 
the use of the appropriate eccentric orbits for Mercury and 
Mars. In (2) a comparison of results obtained from using 
both circular and eccentric terminal orbits will be found. 
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