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Introduction

I N HIS seminal paper, Edelbaum developed analytical solutions
for transfers between inclined circular Earth orbits [1], and these

results serve as an excellent preliminary design tool for estimating
the velocity increment�V and transfer time for low-thrust missions
with continuous thrust. Real solar electric propulsion (SEP) space-
craft, however, experience periods of zero thrust during passage
through the Earth’s shadow, and this major effect is not accom-
modated in Edelbaum’s analysis. Colasurdo and Casalino [2] have
extended Edelbaum’s analysis [1] and developed an approximate
analytic technique for computing optimal quasi-circular transfers
with the inclusion of the Earth’s shadow. Only coplanar transfers are
considered, and the thrust steering is constrained so that the orbit
remains circular in the presence of the Earth’s shadow. Kechichian
[3] also developed an analytical method for obtaining coplanar orbit-
raising maneuvers in the presence of Earth shadow, where eccen-
tricity is constrained to remain zero. Both [2,3] develop suboptimal
solutions for the coplanar circle-to-circle transfer problem with
Earth-shadow arcs, since steering the thrust vector to maintain zero
eccentricity ultimately leads to steering losses compared with the
minimum-time transfer.

Low-thrust trajectory optimization programs [4–6] have been
developed to obtain optimal transfers in the presence of Earth-
shadow eclipses, but these techniques can suffer from the usual
pitfalls associated with numerical search algorithms (uncertain
convergence, high computational loads, slow run times, etc.).
Edelbaum’s continuous-thrust solution [1] is attractive because it is
analytic and requires no numerical integration of the system
differential equations. A low-thrust trajectory program based on
analytic methods that can accurately accommodate Earth-shadow
arcs would be a useful mission design tool.

This Note presents a new low-thrust trajectory program that is
based on Edelbaum’s analytic solution [1]. This new algorithm can
accurately compute the transfer time for low-thrust maneuvers in the
presence of Earth-shadow arcs without relying on numerical
integration of the equations of motion. Several cases comparing the
performance of the new algorithm with numerically integrated
optimal trajectories are presented in order to demonstrate its
effectiveness.

Kechichian’s Algorithm for Edelbaum’s
Analytic Solution

Edelbaum’s original analysis involved a low-thrust transfer
between two circular orbits with a prescribed plane change [1]. The
major assumptions of Edelbaum’s work are 1) propulsive thrust is
continuous during the transfer, 2) thrust acceleration is constant
during the transfer, 3) the transfer is quasi circular (eccentricity
remains zero), and 4) the magnitude of the out-of-plane (yaw)
steering angle is held constant during an orbital revolution.
Edelbaum derived analytic expressions for the total�V and transfer
time tf. Kechichian [7] reformulated Edelbaum’s problem [1] by
applying optimal control theory to the minimum-time transfer
problem and, consequently, derived analytic expressions for the time
histories of semimajor axis, inclination, yaw angle, and �V. The
proposed technique for computing low-thrust transfers in the
presence of Earth-shadow eclipses is based on Kechichian’s
algorithm, which is summarized as follows (see [7] for details).

The three-dimensional circle-to-circle orbit-transfer problem is
defined by the initial semimajor axis a0, the final semimajor axis af ,
the desired inclination change�i� jif � i0j, and the constant thrust
acceleration f� T=m0, where T is the thrust and m0 is the initial
spacecraft mass. Initial and final circular velocities, V0 and Vf, are
computed easily from the respective radii (or semimajor axes).
Kechichian’s algorithm [7] begins by calculating the magnitude of
the initial yaw-steering angle �0:

tan�0 �
sin���=2��i�

�V0=Vf� � cos���=2��i� (1)

Next, the total �V is computed using

�Vtotal � V0 cos�0 �
V0 sin�0

tan���=2��i� �0�
(2)

which yields the same result as Edelbaum’s analytic expression [1]
for total �V:

�Vtotal �
�����������������������������������������������������������������
V2
0 � V2

f � 2V0Vf cos���=2��i�
q

(3)

Finally, the transfer time using continuous thrust is computed simply
from the total velocity increment and constant thrust acceleration:

tf �
�Vtotal

f
(4)

Kechichian’s algorithm [7] determines the time histories of the
important state and control variables for the time interval 0 � t � tf .
The velocity increment is a linear function of time:

�V�t� � ft (5)

The semimajor axis during the transfer is computed from the circular
orbital velocity:

a�t� � �

V2
0 � f2t2 � 2V0ft cos�0

(6)

where � is the Earth’s gravitational parameter. Inclination is
calculated using

i�t�� i0� sgn�if � i0�
2

�

�
tan�1

�
ft�V0 cos�0

V0 sin�0

�
��

2
� �0

�
(7)

The signum function is required, because the desired inclination
change can be either positive or negative, and Kechichian’s
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formulation [7] sets the yawanglemagnitude�0 as positive. The time
history of the yaw angle ��t� can also be computed using
Kechichian’s method, but it is not needed. In summary, analytic
expressions for semimajor axis a�t�, inclination i�t�, and velocity
increment �V�t� are determined easily from Kechichian’s
reformulation of Edelbaum’s [1] three-dimensional quasi-circular
low-thrust transfer problem.

Low-Thrust Transfers with Earth-Shadow Eclipses

The primary goal is to use the analytic Edelbaum [1] (via
Kechichian [7]) solution and incorporate the effects of discontinuous
thrust caused by Earth-shadow eclipses. Clearly, a given orbital
transfer with interrupted thrust will require more time when
comparedwith the continuous-thrust case; therefore, the continuous-
and discontinuous-thrust state trajectories will exhibit different time
scales. However, the state trajectories with energy (semimajor axis)
as the independent variable exhibit similar profiles for both the
continuous- and discontinuous-thrust cases, as demonstrated by the
following example.

Velocity Increment Versus Semimajor Axis

Figure 1 shows�V vs semimajor axis for an orbit transfer between
circular low Earth orbit (LEO) and geostationary equatorial orbit
(GEO). The initial LEO has a0 � 6928 km and inclination i0�
28:5 deg, while the target GEO has af � 42; 164 km and if � 0.
The solid (top) curve is the Edelbaum [1]�V vs a, computed using
Eqs. (5) and (6) for constant thrust acceleration f� 0:3348 mm=s2.
However, the Edelbaum�V vs a curve, shown in Fig. 1, is valid for
any value of f; the Edelbaum �V�a� history solely depends on the
initial and target orbits.

Three minimum-time LEO–GEO transfers that include Earth-
shadow eclipse effects are obtained using a direct optimization
method and sequential quadratic programming [6,8]. This method
propagates the trajectory through numerical integration of the
Gaussian form of Lagrange’s planetary equations. Orbital-averaging
techniques are employed in order to allow relatively large integration
steps (on the order of days), and the optimal pitch and yaw thrust-
steering profiles are determined by direct optimization of the costate
multipliers from optimal control theory. Earth-shadow and
oblateness (J2) effects are included in the trajectory propagation.
Shadow exit and entrance angles are computed from the intersection
of the instantaneous orbital plane and a cylindrical shadowmodel [9].
Three values of initial thrust acceleration were used (f0 � 0:3348,
0.1674, and 0:9206 mm=s2) with corresponding mass-flow rates of
0.0124, 0.0062, and 0:0939 g=s. This wide range in thrust
acceleration and mass-flow rate resulted in minimum transfer times
ranging from 68 to 404 days. However, despite the inclusion of
Earth-shadow effects and the wide range in f and mass-flow rate,
Fig. 1 shows that the optimal �V�a� profiles nearly match the
Edelbaum solution [1]. It is interesting to note that total�V from the
optimal trajectories is slightly less than Edelbaum’s total �V
(average optimal �V � 5:6839 km=s, Edelbaum �V�
5:8200 km=s). The optimized trajectories exhibit lower �V
comparedwith theEdelbaum solution, because yawanglemagnitude
is allowed to modulate over an orbital revolution (� is held constant
for each revolution in Edelbaum’s solution, switching signs at the
antinode crossings). For the optimal transfers, the out-of-plane thrust
component is not wasted near the antinode crossings where
di=dt� 0, regardless of the yaw angle. Furthermore, the optimal
transfers exhibit a slight delay in the inclination change when
compared with the Edelbaum inclination profile; hence, a greater
portion of the plane change is performed at higher altitudes, which
improves the �V performance. The numerically integrated optimal
transfer does incur some steering losses due to pitch-steering
maneuvers required to reduce the inevitable buildup of eccentricity
caused by the Earth-shadow effect (Edelbaum’s solution assumes
tangent steering for the in-plane thrust component to maximize the
rate of energy gain). However, these losses are small and less than the

performance gain achieved by optimal modulation of the yaw
steering angle over an orbital revolution.

Figure 1 shows that �V�a� is determined by the orbit-transfer
parameters a0, af , and �i and exhibits very little dependence on
vehicle parameters (such as thrust, mass, and mass-flow rate) or the
inclusion of Earth eclipses. Therefore, it appears that Edelbaum’s
analytic �V�a� profile [1] can be used to estimate the transfer time
when Earth-shadow eclipses are present.

Transfer Time with Discontinuous Thrust

To begin the analysis of transfer time, rewrite Eq. (5) as a
difference equation for propagating the velocity increment ahead in
time:

�Vk�1 ��Vk � f�t; k� 0; 1; 2; . . . ; N (8)

where �t� tk�1 � tk. For the discontinuous-thrust case, it is
assumed that �V�a� essentially matches the Edelbaum solution [1]
for the desired orbit maneuver (as shown in Fig. 1); therefore,�Vk is
determined by evaluating the Edelbaum solution at discrete intervals.
Therefore, Eq. (8) can be used to obtain the time step required for a
known increase in �V:

tk�1 � tk �
��Vk�1 ��Vk�

f
; k� 0; 1; 2; . . . ; N (9)

However, Eq. (9) must be modified, since thrust acceleration f�
T=m is not constant for two reasons: 1) spacecraft massm decreases
during the transfer and 2) thrust T is discontinuous due to the Earth’s
shadow. A modified version of Eq. (9) is

tk�1 � tk �
��Vk�1 ��Vk�

�fkwk
(10)

The transfer time required to go from step k to step k� 1 is the
corresponding increment in Edelbaum�V [1] divided by the product

of the average thrust acceleration �fk and a weighting function wk.
The average thrust acceleration �fk is computed by dividing the thrust
magnitude (T, assumed to be constant) by the average mass between
discrete steps k and k� 1. Spacecraftmass can be computed from the
rocket equation and specific impulse Isp, since �V is known. The
weighting function wk represents the percentage of time the
spacecraft is thrusting during one revolution. For example, wk � 1
represents the continuous-thrust case where the spacecraft is entirely
in sunlight during one revolution (no Earth shadow); if wk � 0:75,
then the spacecraft is in sunlight for three quarters of an orbital
revolution. The weighting function is computed from the Earth-
shadow angle, ��SH:

Fig. 1 Velocity increment vs semimajor axis for LEO–GEO transfers.
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w� 1 ���SH
2�

(11)

The shadow arc ��SH is computed by using Neta and Vallado’s
algorithm [9], which requires the osculating orbit’s size, shape, and
orientation, and the current date in order to establish the Earth–sun
vector in the geocentric-equatorial frame. Because Edelbaum’s
solution is used to determine osculating elements a and i, it is
assumed that the orbit transfer is quasi circular; therefore, eccen-
tricity remains zero, and argument of perigee is arbitrarily set to zero.
For a real SEP transfer, interrupted thrust will tend to initially
increase eccentricity (the apogee will lie in the Earth’s shadow);
however, numerically integrated optimal transfers show that the peak
eccentricity never exceeds 0.15 and is often no more than 0.1. It
should be emphasized that using Edelbaum’s quasi-circular solution
[1], while it does not accurately predict the eccentricity history,
provides a simple, analytic method for computing the osculating
orbital elements that are required for shadow-arc calculations. The
variation in eccentricity that occurs in a numerically integrated SEP
trajectory will have a small effect on shadow-arc computations when
compared with the quasi-circular case (that is, accurate prediction of
a, i, and ascending node angle � have the greatest effect on
computing the Earth-shadow entrance and exit angles when eccen-
tricity variation is small). Finally, it should be noted that the proposed
method does not rely on numerical integration of the differential
equations governing elements a, i, or e (nor does it modulate the
thrust-steering direction); hence, there is no mechanism for control-
ling eccentricity.

Ascending node angle and inclination are required to establish
orbital-plane orientation for the Earth-shadow algorithm. Out-of-
plane (yaw) thrust does not contribute to d�=dt, since yaw steering
amplitude switches sign at antinode crossings. Earth’s oblateness J2
has the greatest effect on the line of nodes, and the averaged rate for
ascending node due to J2 is

_���3
2
J2n

�
RE
a

�
2

cos i (12)

where RE is the Earth’s equatorial radius, J2 � 1:0826269�10�3�,
and n�

�����������
�=a3

p
is the mean orbital motion. The ascending node

angle is propagated ahead in time by using the simple first-order
equation,

�k�1 ��k � _�k�t (13)

The transfer-time calculation for quasi-circular transfers in the
presence of Earth shadow can now be summarized: given the initial
and target circular orbit radii, inclination change, and initial thrust
acceleration f0, compute the total �V and transfer time tf for
Edelbaum’s solution [1] for the continuous-thrust case using Eqs. (2)
and (4). Divide the continuous-transfer time tf into N segments,
where the discrete histories for �Vk, ak, and ik are computed using
Eqs. (5–7). Next, compute the Earth-shadow arc ��SH with
knowledge of the departure date and the initial orbital elements
(including �0) and compute the weighting function wk using
Eq. (11). Use Eq. (10) to compute the increment in transfer time that
accounts for the Earth-shadow effect by employing the average thrust

acceleration �fk and theweighting functionwk. Finally, propagate the
ascending node angle ahead in time using Eqs. (12) and (13). The
recursive equations are repeated until all N segments of Edelbaum’s
solution have been processed.

One additional note is required. Figure 1 shows that all three
numerically integrated, optimized LEO–GEO transfers exhibit
slightly lower total �V when compared with Edelbaum’s analytic
result (2) [1], for reasons previously explained. Therefore, in order to
accurately predict the optimal transfer time in the presence of Earth
shadow, the Edelbaum �V in Eq. (10) is scaled by an optimization
factor c, where c 2 �0; 1�. Several numerically optimized SEP
transfers were obtained for a range of circular orbits, thrust
accelerations, and initial ascending node angles, and the average ratio

between the optimized �V and Edelbaum’s �V was found to be
0.98; therefore, the optimization factor was fixed at c� 0:98.

Numerical Results

The utility of the proposed algorithm is demonstrated by two orbit-
transfer scenarios: 1) LEO–GEO transfer and 2) LEO to mid-Earth
orbit (MEO) transfer. In both cases, initial circular LEO has a0 �
6928 kmwith inclination i0 � 28:5 deg. GEO boundary conditions
are af � 42; 164 km and if � 0 deg. The MEO target represents a
12 h Global Positioning System (GPS) orbit with af � 26; 578 km
and an inclination of if � 55 deg.

Several LEO–GEO transfers are obtained using the Edelbaum-
based method for a near-term ion-propulsion spacecraft with
initial mass m0 � 1; 200 kg, Isp � 3; 300 s, input power P�
10 kW, and thruster efficiency �� 65%. The Edelbaum solution is
divided into 100 segments (N � 100 in the recursive computations),
and the real-time run time of the proposed method on a Pentium M
laptop is less than 0.1 s for a single-trajectory solution. The LEO
departure date is fixed at 21 March 2000 for shadow calculations.
Figure 2 shows the LEO–GEO transfer time as predicted by the
Edelbaum-based algorithm for an initial ascending node angle
0 � �0 � 360 deg. Several minimum-time LEO–GEO transfers
are obtained using the direct optimization method [6,8] for a variety
of initial ascending node angles, and the corresponding transfer times
are shown in Fig. 2 by the discrete symbols. Varying the initial
ascending node angle causes different Earth-shadowhistories that, in
turn, effect the total transfer times. Figure 2 shows that theEdelbaum-
based solutions exhibit a goodmatch with the numerically optimized
transfers, and the Edelbaum-based solutions accurately predict the
trend in transfer time as �0 varies. The best (shortest) LEO–GEO
transfer times are 201.86 days (optimal) and 201.94 days (Edelbaum
based); the worst (longest) transfer times are 213.93 days (optimal)
and 213.71 days (Edelbaum based). The average of the transfer-time
errors between the Edelbaum-based and optimal solutions is 0.81%
(or about 1.7 days).

Several LEO–MEO (GPS orbit) transfers are obtained using the
Edelbaum-based method for a spacecraft equipped with near-term
Hall-effect thrusters with Isp � 1; 600 s, input power P� 10 kW,
and thruster efficiency �� 45%. Initial spacecraft mass in LEO is
1200 kg, and the LEO departure date is fixed at 21 March 2000.
Figure 2 also shows that the LEO–GPS transfer times as predicted by
the Edelbaum-based method exhibit a very good match with the
numerically optimized transfer times. The best (shortest) LEO–GPS
transfer times are 118.52 days (optimal) and 119.30 days (Edelbaum
based); the worst (longest) transfer times are 132.50 days (optimal)
and 131.69 days (Edelbaum based). The average of the transfer-time
errors between the Edelbaum-based and optimal solutions is 0.68%
(or about 0.9 days).

Fig. 2 Transfer time vs initial ascending node angle.
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Figure 3 shows the thrust acceleration weighting function w
plotted against semimajor axis a for LEO–GPS transfers with four
different initial ascending node angles. All four orbit transfers begin
with the spacecraft in sunlight roughly 63–65% of the time in LEO,
but the case with �0 � 0 deg reaches an orbit-sun geometry at
a� 1:61 Re, such that the spacecraft is always in sunlight for the
remainder of the transfer. Consequently, the transfer time for this case
is the shortest of the four, as verified by Fig. 2. The weighting
function for the case with �0 � 170 deg never reaches unity;
therefore, the spacecraft always experiences an eclipse during every
revolution and, hence, takes the longest time to reach its target, as
shown in Fig. 2.

Conclusions

A new semianalytic algorithm has been developed for computing
low-thrust orbit transfers in the presence of Earth-shadow eclipses.
The newmethod uses Kechichian’s reformulation [7] of Edelbaum’s
analytic trajectory solution [1]. Edelbaum’s method is used to
analytically compute the histories for �V, semimajor axis, and

inclination. The key feature is using the Edelbaum-based orbital
elements to compute the history of the Earth-shadow arc during the
orbit transfer that, in turn, is used in a weighting function applied to
the thrust acceleration. Transfer time in the presence of Earth shadow
is ultimately computed from the Edelbaum�V and weighted thrust
acceleration. The resulting algorithm is extremely fast and does not
require numerical integration of equations of motion or numerical
iteration for convergence. Many solutions are obtained for two orbit-
transfer cases between inclined circular orbits, and the transfer times
predicted by the Edelbaum-based method show an excellent match
with the numerically optimized trajectories. These results indicate
that the new algorithm would serve as a valuable preliminary design
tool for solar electric propulsion spacecraft missions.
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