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Many aerospace attitude control systems utilize phase plane control schemes that include 
nonlinear elements such as dead zone and ideal relay.  To evaluate phase plane control 
robustness, stability margin prediction methods must be developed.  Absolute stability is 
extended to predict stability margins and to define an abort condition.  A constrained 
optimization approach is also used to design flex filters for roll control.  The design goal is to 
optimize vehicle tracking performance while maintaining adequate stability margins. 
Absolute stability is shown to provide satisfactory stability constraints for the optimization.  

Nomenclature 
α = Lower Sector Bound 
BRCS = Thrust Direction Mapping Matrix   
βmin = Required Upper Sector Limit 
δ = Dead Zone Width 
η = Flex Displacement 
fRk = Force Vector from Roll Thrust k 

 = Open Loop Transfer Function 
Gtr(s) = Siljak Transformed Open Loop Transfer Function 
GxR = Roll Torque about Centerline Due to All Thrusters 
Ixx =  Inertia 
kδ = Siljak Transformation Gain  
kD = Derivative Gain 
kP =  Proportional Gain 
μRKi =  Displacement Vector of the ith Mode at Thrust k 
σmax = Limit to Finite Domain of Absolute Stability 
Ω = Diagonal Matrix of Flex Frequencies 
ωc = Crossover Frequency 
ωRL =   Rate Limit 
ωINU = Sensed Rate at the INU 
Φβ = Mode Shapes at Jet Locations 
Φγ = Mode Shapes in Roll at Output Node 

 =  Roll Attitude 
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 = Nonlinear Element Output 

 = Siljak Transformed Nonlinear Element Output 
PD = Proportional-Derivative Control 

 = Rotation of the ith Mode at the Rate Gyro 
σ = Nonlinear Element Input 
Tjets = Jet Select Mapping Matrix 
uR = Roll Command (0,1,-1) 
Z = Diagonal Matrix of Modal Damping Ratios 
    

I. Introduction 
he nonlinear phase plane controller, “an idealized method of treating performance optimization for classes of 
minimum time and/or minimum fuel problems,” has been used in aerospace systems such as the Space Shuttle 

and the ISS for years1, 2, 3. Few techniques are currently available to evaluate stability margins for nonlinear control 
systems such as the phase plane controller.  Absolute stability was utilized in a concept for stabilizing the Saturn V 
pitch control system4.  Similar to describing functions, absolute stability has not been applied to a phase plane 
controlled system for the purpose of determining stability margins. The objective of this paper is to apply absolute 
stability for evaluating nonlinear controller stability and performance in phase plane controlled spacecraft.  Absolute 
stability techniques including the circle criterion and the Popov criterion are examined and stability margin are 
developed.  A constrained minimization approach is applied to design optimized flex filters.  The design goal is to 
maximize bandwidth in order to optimize system performance while ensuring robust system stability margins. 

II. Spacecraft Attitude Dynamics and Control 
           It is advantageous to limit the number of simplifications and assumptions; on the other hand, in order to 
concisely compare these analytical techniques, it is necessary to implement several simplifications and assumptions 
that limit the scope of this thesis.  Frozen time analysis has proven to be effective in spacecraft with slowly varying 
parameters such as the Saturn V5.  Because of this fact, only frozen time models will be considered in this paper.  
Aerospace attitude control systems often consist of both gimbal control and fixed jet control where the former is 
used for pitch and yaw control while the latter is utilized for roll control.  Pitch and yaw axes have both been 
thoroughly explored in previous work, so this thesis will only examine the roll axis6.  This paper operates under the 
assumption that there will be no aerodynamic forces exerted on the system structure in the roll axis; thereby, 
simplifying the rigid and flex dynamics without losing much fidelity for most aerospace systems.  The dynamics 
equations can be split into two subsets: rigid and flex.  The equation for rigid dynamics can be seen in Equation 17: 
 

       xRxx GI =Φ&&                                (1) 

          In Equation 1, GxR is the torque about the centerline due to all thrusters while Ixx is the inertia.  In order to use 
this equation for analysis, it is desirable to convert the equation into state-space form as in Equation 2:  
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           Because only rate is desired in the output, the output equation is defined as such:  
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          The flex dynamics equation for the can be derived from the following dynamics equations7: 
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          In Equation 4, iβξ  is the damping ratio of the ith mode, iβω  is the flex frequency of the ith mode, iβη  is the 

flex diplacement of the ith mode, Ru  is the roll command (0,1,-1), T
Rkf  is the force vector from roll thrust k, and   

Rkiμ  is the displacement vector of the ith mode at thrust k7.  The state-space representation for the flex system can be 
seen in Equations 5 and 67: 
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In Equation 5 and 6, Ωβ is a diagonal matrix of flex frequencies, Zβ is a diagonal matrix of damping ratios, 
T
βΦ  is the mode shapes at jet locations, RCSB is the thrust direction mapping matrix, jetsT  is the jet select mapping 

matrix, and γΦ is the mode shape at the output node.  The final governing equation that will be discussed in this 
section is the sensor output equation which reflects how the flex dynamics affect the readings to which the controller 
responds7.   
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In Equation 7, RGAω is the sensed rate at the inertial navigation unit and iφρ  is the rotation of the ith mode 
at the rate gyro.  Because the high-frequency flex dynamics possess the ability to make the system unstable, it is 
critical that a low pass filter be employed to attenuate high-frequency flex modes. The rigid and bending plant 
dynamics are integrated with the flex filter and phase plane controller to create the roll dynamics and control system.  
The block diagram in Figure 1 outlines the dynamics and control components: 

 
Figure 1: Dynamics and Control Block Diagram 

The flex filter block includes a low-pass filter to attenuate high-frequency noise while at the same time 
allowing low-frequency dynamics to feedback into the controller.  A phase plane control system regulates attitude 
tracking and performance.  The phase plane controller is an inherently nonlinear system which necessitates the 
requirement for nonlinear techniques in order to predict the system’s behavior.  The phase plane controller is “an 
idealized method of treating performance optimization for classes of minimum time and/or minimum fuel 
problems”1.  The phase plane controller offers a unique method for attitude control while responding to the vehicle 
dynamics in the plane defined by state errors and state rate errors.  The trajectories in the phase plane can be 
described through Equations 8 and 98.  

  
tΔ+= ωφφ 22                                                                     (8) 

tΔ+= αφφ 22
&&                                                                   (9) 

In the expressions above ω is angular velocity, α is angular acceleration, and Δt is the thruster firing time 
for the phase plane controller.  Figure 2 demonstrates how trajectories in the phase plane operate.  For example, 
consider the starting point in Figure 2.  The system applies a continuous torque until it enters the drift channel.  At 
this point, the thrusters discontinue their firing and the system’s attitude continues to increase because the system is 
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in the upper half of the phase plane which means it has a positive rate.  The rate is constant as long as there is no 
firing because the system cannot accelerate.  Once the system crosses the negative switch line into the negative 
firing region, the system undergoes a negative acceleration which places the system back into the non-firing region; 
however, the system’s attitude will continue to move towards the negative firing region until the system has been 
driven into the lower half of the phase plane.  Once there, the system’s attitude will decrease in the non-firing region 
until it crosses the positive switch line at which point a positive firing will occur8. 

   

 
Figure 2: The Phase Plane Controller 

           The system will continue to oscillate around the origin of the phase plane in what is called a limit cycle.  A 
common definition of a limit cycle is an oscillation of “fixed amplitude and fixed period without external 
excitation”9.  In order to evaluate a nonlinear system such as a phase plane controlled system, it is necessary to 
transform the phase plane controller into a form where control techniques can be applied.  This will be accomplished 
in a two step process.  First, only the attitude hold region will be evaluated, and second, the phase plane controller 
will be transformed into an equivalent system consisting of a PD controller and a nonlinear element consisting of a 
dead zone and an ideal relay.  This development can be seen in Figure 3: 

 

 
Figure 3: PD-Equivalent Phase Plane Development 

In Figure 3, step one ignores the drift channels of the phase plane controller because this thesis will focus on 
the sloped portion of the phase plane.  The two switching curves, which define the dead zone between the positive 
and negative firing regions, can be defined by the inequality: 

 

 RLRLRLRL ωφδωφωφδω +−<<−− )/()/( &                                              (10) 
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               In order to progress from step two to step three in Figure 3, it is necessary to implement a PD controller.  It 
is first necessary to rewrite Equation 10: 

1//1 <+<− RLωφδφ &                                                                    (11) 

               Multiplying Equation 11 by the dead zone, δ, leads to Equation 12: 

   δφωδφδ <+<− &)/( RL                                                              (12) 

This inequality provides the following values for kP and kD which are the proportional and derivative gains 
respectively8. 

 1=Pk                                                                              (13) 

 RLDk ωδ /=                                                                          (14) 

The kp and kd values calculated above are instrumental in creating a practical phase plane controller that can 
be used with control analysis techniques.  Substituting these values into Equation 12 yields the result for the dead 
zone8. 

δφφδ <+<− &
DP kk                                                                    (15) 

The phase plane controller utilizes thruster firings.  To model these firings, it is necessary to switch the 
signs from Equation 15 which models the dead zone.  The thrusters are activated whenever either of the two 
inequalities becomes true8. 

δφφ −<+ &
DP kk  [Positive Firing]                                                     (16) 

δφφ >+ &
DP kk  [Negative Firing]                                                      (17) 

The nonlinear controller portion in step three of Figure 3 can be evaluated by nonlinear control analysis 
techniques such as absolute stability. 

III. Absolute Stability 
The phase plane controller is a nonlinear control scheme which means it is necessary to take these 

nonlinearities into account when determining system stability.  Absolute stability provides a method for 
guaranteeing asymptotic stability for a nonlinear system primarily through two techniques called the circle criterion 
and the Popov criterion.  Both the circle criterion and the Popov criterion were developed in the 1960’s by theorists 
such as Zames and Popov who applied Lyapunov’s second method to the frequency domain10, 11.  For systems with 
nonlinearities such as dead zone and ideal relay, standard linear control methodologies such as Bode and Nichols 
cannot be applied.  These nonlinear aspects must be taken into account.  The Lur’e Problem accomplishes this task 
by separating the linear and nonlinear elements as in the Figure 512: 

 

 
Figure 5: Lur'e Problem System Model 

 
Figure 5 corresponds to the following system of equations12: 

)(σψBAxx +=&                                                                                      (18) 
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Cx=σ                                                                                                                                (19) 

Using this model, it is possible to evaluate the sector bounds for the nonlinear element.  A nonlinearity 
belongs to a sector [α, β], where β and α are the upper and lower sector bounds respectively, if the inequality holds 
true12: 

22 )( βσσσψασ <<                                                                      (20) 

Sector bounds define the regions where a nonlinearity can dwell when plotting the input, σ(t), versus the 
output, ψ(σ) as in Figure 612:  

 
Figure 6: Input/Output Sector Bounds  

            These sector bounds allow for nonlinear stability to be ascertained by way of frequency-based methods such 
as the circle criterion and Popov criterion.  A system with nonlinearities enclosed within the sector bound is 
guaranteed to be asymptotically stable provided the system is a minimal realization of G(s).  This means that the A 
and C matrices must be observable while the A and B matrices must be controllable when the system is in state 
space form12.  Determining β and α can be accomplished through one of three cases, collectively known as the Circle 
Criterion.  In this paper only the second case will be considered.  The linear system, G(s), must be strictly Hurwitz 
which means all poles are in the open left hand side of the s-plane.  The Nyquist plot of G(s) must lie to the “right of 
the vertical line defined by Re[s] = -1/β”13.  The Popov criterion is an additional method for determining whether or 
not a nonlinear system possesses absolute stability. As in the circle criterion, it is necessary to begin with the Lur’e 
problem system setup in Figure 5.  There are limitations to the particular type of system that can use the Popov 
criterion to ensure absolute stability.  Vidyasagar notes “unlike the circle criterion, the Popov criterion is applicable 
only to autonomous systems”12.  An autonomous system is defined as autonomous if f in the following expression 
“does not depend explicitly on time”14.  That is: 

 
)(xfx =&                                                                              (21) 

           A system that is non-autonomous would have behavior that could be described by Equation 2214: 
 

),( txfx =&                                                                           (22) 

            As in the circle criterion, it is necessary that the A and B matrices are controllable and the A and C matrices 
are observable, therefore, ensuring the open loop transfer function for the system is a minimal realization of the 
system12.  Similar to conditions two and three of the circle criterion, it is necessary for the system to be strictly 
Hurwitz to satisfy the Popov criterion14.  Popov’s criterion is similar to condition two of the circle criterion in that 
the lower sector bound, α, is set equal to zero while the upper sector bound, β, is determined through a graphical-
frequency based technique.  From here it is necessary to examine the following inequality.  The inequality must be 
satisfied in order for absolute stability to exist12: 
 

01)]()1Re[( ≥∀≥++ ωε
β

ωω jGrj                                                        (23) 

            In Equation 23, the value є should be an arbitrarily small value while r is required to be non-negative12.  
Applying constrained minimization to minimize 1/β in the above expression results in a solution for β for a 
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particular transfer function.  The Popov plot only considers positive frequencies (unlike circle criterion plots) and is 
similar to the s-plane except that the Popov plot graphs Re[G(jω)] vs. ωIm[G(jω)] as opposed to Re[G(jω)] vs. 
Im[G(jω)] as in the circle criterion12.  It is important to note that sector bounds generated for a given transfer 
function using the Popov criterion will be less conservative than those generated utilizing the circle criterion.  
Another significant difference between the two absolute stability criterions is that the circle criterion proves global 
exponential stability while the Popov criterion only guarantees global asymptotic stability14.  To effectively compare 
nonlinear stability techniques, it is necessary to develop a method for determining stability margins.  With absolute 
stability it is possible to predict gain margins through the following process.  This method will be valid for absolute 
stability techniques such as circle criterion (case 2) or the Popov criterion.  It is necessary to determine from the 
nonlinear element the required upper sector limit, βmin, as is demonstrated in Figure 9: 

 
Figure 9: Determining the Required Upper Sector Limit, κ 

            The difference between β and βmin results in a gain margin region, in which the system is absolutely stable.  
As long as β ≥ βmin, the system is considered to be stable.  This region is depicted for circle criterion in Figure 10: 

 
Figure 10: Gain Margin Region for Circle Criterion  

            The same region is illustrated for the Popov criterion in Figure 11: 
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Figure 11: Gain Margin Region for Popov Criterion  

            Taking advantage of this gain margin region, Equation 24 is developed to determine the gain margin for a 
particular system. 

                                                                                                                                                                                 )/(MarginGain minββdB=                                                                        (24) 
             

IV. Finite Domain of Absolute Stability 
As stated earlier, the circle criterion (case 2) and the Popov criterion require the state-space A matrix to be 

strictly Hurwitz.  Siljak’s transformation method circumvents this requirement by introducing a feedback gain which 
creates a transformed Hurwitz system4.  Starting with the Lur’e system shown in Figure 4.1, the linear time-invariant 
(LTI) system’s minimal realization transfer function leads to the following loop transformation model when Siljak’s 
method is applied4: 

 
Figure 9: Loop Transformation 

The above loop transformation results in the following expression for the transformed system4: 

)(1
)()(

sGk
sGsGtr

δ+
=                                                                    (25) 

             Using Equation 25, kδ should be varied until Gtr(s) is strictly Hurwitz.  The transformed A matrix can be 
seen in Equation 264: 

BCkAAtr δ+=                                                                    (26) 

             The transformed nonlinearity can be seen in the expression4: 

                                                σσψσψ δktr −= )()(                                                       (27) 
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Because of the feed-forward element to the nonlinear output, there will be a limit on σ(t), denoted as σmax, 
where any input greater than that limit will lead to a sector violation.  This means a system with an input greater than 
σmax will not be guaranteed absolute stability.  The new transformed state space system is seen in the form4:  

 
)(σψ trtr BxAx +=&                                                         (28) 

Cx=σ                                                                      (29) 

The sector limits (α = 0, β) are still determined by applying case two of the circle criterion or the Popov 
criterion to the non-transformed system.  These sectors can be shown in the following inequality4: 

 
0)0(andwhere)(0 max

2 =<≤≤ trtr ψσσβσσσψ                               (30) 

The Siljak transformation’s main benefit is it allows the control designer to establish absolute stability over 
a finite domain.  Whether or not a region possesses asymptotic stability depends on the type of nonlinearity which 
needs to be accounted for through absolute stability.  Because of the negative portion in the nonlinear function 
equation, dead zone regions do not possess guaranteed absolute stability over a finite domain even using the Siljak 
transformation.  This is because the sector bounds would be immediately violated as soon a σ(t) was greater than 
zero, but ideal relay nonlinearities do not suffer from the same handicap.  Ideal relays result in asymptotic stability 
because the nonlinearity has a positive slope at the origin; therefore, σmax > 0 for ideal relay nonlinearities and a 
finite domain of absolute stability exists.  Figure 10 demonstrates the concept that dead zone regions do not posses 
absolute stability while ideal relay regions possess absolute stability over a finite domain.  In the figure below the 
transformed system is not guaranteed to be absolutely stable when the transformed nonlinearity enters the second or 
fourth quadrant. 

 
Figure 10: Siljak Transformed Input/Output 

The results of the Siljak transformation with respect to dead zone and ideal relay match how the phase plane 
controller is designed to operate.  When the system is in the dead zone region there is no firing only drifting 
compared to when the system is in the ideal relay portion it is firing and asymptotically stable. 

V. Constrained Flex Filter Optimization 
           The purpose of flex filter optimization is to maximize the performance of the system while ensuring that all 
constraints imposed by stability and flex margin requirements are still met.  An approach similar to that followed by 
Jang, Hall and Bedrossian will be taken in this paper15.  A numerical optimization code is developed utilizing 
MATLAB’s ‘fmincon’ function to perform a constrained minimization. Before optimization is performed, it is 
necessary to design initial conditions to implement as an initial filter.  Ideally, any values could be selected and the 
optimization code would still work, but experience has shown that providing a good initial estimate improves the 
optimization’s performance.  The optimization is performed with the goal being to maximize the bandwidth of the 
system.  This is accomplished by minimizing to following expression. 
 

)(Gbandwidthf −=                                                                   (31) 
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           This minimization is constrained by the need for the system to be Hurwitz, the frequencies and 
damping ratios must be positive, the flex filter must achieve 30 dB of attenuation at frequencies within the stopband, 
and the open loop system must have 6 dB of rigid gain margin.  For the filter designed using absolute stability, gain 
margin can be guaranteed through the constraint. 

1)
)(1

)(Re(min))(Re(min ≥
+

=
sGk

sGsGtr
δ

                                                   (32) 

 The circle criterion is used for this calculation instead of the Popov criterion for several reasons.  The first 
reason is that the circle criterion requires less computational resources than the Popov criterion due to the Popov 
criterion’s use of ‘fmincon’.  An additional motive for using the circle criterion is that using a ‘fmincon’ function 
within another ‘fmincon’ function appears to create inaccuracies in the numerical optimization code and output.  The 
requirements and design criteria are condensed in Figure 11: 

 
 
 
 
 
 
 
 
 
 
 
 

minimize -bandwidth[F(s)]   

subject 

to 

   

 1))(Re(min ≥sGtr ω∀ Absolute Stability 

 dBsF 0))( < cωω <∀ Rigid Gain Stability 

 dBsF 30))( −< cωω <∀ Flex Gain Stability 

 ωi > 0 i = 1, 2, 3, … Filter Stability 

 ζi > 0 i = 1, 2, 3, …  

where    

 F(s) = Flex Filter 

 G(s) = Linear System Transfer Function 
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δk  = Siljak Gain 

 
cω  =  Crossover Frequency (rad/sec) 

Figure 11: Optimization Criteria  

A 6th order flex filter was obtained through constrained minimization and the resulting figure can be seen 
below in Figure 12: 
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Figure 12: Absolute Stability Optimized Flex Filter 

The absolute stability filter has a bandwidth of 5.17 Hz; furthermore, Figure 12 demonstrates that the filter 
successfully achieves 30 dB of stopband attenuation.  Because the Siljak transformation is used in the absolute 
stability analysis, it is necessary to determine the finite domain of absolute stability.  The first step is to perform a 
linear analysis to find the minimum kδ value necessary to transform the phase plane control system into a Hurwitz 
system. 

 
Figure 13: Linear kδ Analysis 

            For this particular case, the kδ required is so small that is can be considered to be zero.  Now that kδ has been 
determined, it is now necessary to plot the transformed nonlinearity to find the σmax which defines the maximum 
input amplitude the nonlinear element can sustain before it becomes unstable. 
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Figure 14: Input/Output Plot for Finite Domain Determination 

            From Figure 14 it can be noted that σmax = ∞ which means that there will be no practical finite domain of 
absolute stability for the nominal case.  Using time domain simulation, it should be noted the system maintains 
stability an extremely large input, σ = 287.2, in the nominal case. 

 
Figure 15: Time Domain Test for Finite Domain of Absolute Stability 

            This result indicates σmax ≈ ∞ for the spacecraft dynamics examined in this paper; therefore, the finite domain 
of absolute stability does not need to be utilized as an abort condition for the system in this case.  Now that it has 
been confirmed no abort condition is necessary for the system, absolute stability for the new system with the 
optimized filter must be verified.  Figure 16 displays the Popov plot showing the results for the optimized filter. 
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Popov Criterion: Upper Sector Bound = 1.1543

 
Figure 16: Popov Criterion  

            The Popov plot in Figure 16 shows the worst case scenario for Popov stability, and it can be seen using 
Equation 24 the worst case upper sector limit, β = 1.15 which corresponds to 7.6 dB of gain margin.   
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VI. Closure 
           The phase plane controller offers an idealized method for optimizing time and fuel performance while 
ensuring stability and attitude tracking.  The circle criterion and the Popov criterion offer methods for determining 
not only the stability of a system but also how much gain robustness the system contains.  The Popov criterion 
combined with Siljak’s loop transformation accounts for both the dead zone and ideal relay nonlinearities.  Tests             
indicated σmax ≈ ∞ for spacecraft dynamics examined in the paper; therefore, the finite domain of absolute stability 
does not need to be utilized as an abort condition in this system.  The nonlinear analysis techniques discussed above 
can also be used to design optimized filters with improved performance over the current filter.  A 6th order filter was 
designed to maximize bandwidth while ensuring adequate stability.  The primary constraints for the filter design 
were 30 dB attenuation in the stopband, 0 dB gain in the passband, 6 dB gain margin for the rigid dynamics, and 10 
dB attenuation of high-frequency flex dynamics.  The technique created a filter that utilized nonlinear control gain 
margins while ensuring maximized performance. 
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