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Lucy is NASA’s next Discovery-class mission and will explore the Trojan aster-
oids in the Sun-Jupiter L4 and L5 regions. This paper details the design of Lucy’s
interplanetary trajectory using a two-point direct shooting transcription, nonlinear
programming, and monotonic basin hopping. These techniques are implemented in
the Evolutionary Mission Trajectory Generator (EMTG), a trajectory optimization
tool developed at NASA Goddard Space Flight Center. We present applications
to the baseline trajectory design, Monte Carlo analysis, and operations.

INTRODUCTION

Lucy is NASA’s next Discovery-class planetary science mission. Lucy will launch in 2021 and will
explore the bodies known as “Trojans” that orbit the Sun at the stable L4 and L5 points ahead and
behind Jupiter. According to the Nice model of solar system formation, the Trojans may be remnants
of the early solar system that were transported inward as the gas giants migrated outward [1]. When
observed by telescope, the Trojans spectrally resemble Kuiper Belt object (KBO)s. Unlike KBOs,
the Trojans are readily accessible and are therefore our best window back in time to see what the
solar system originally looked like. Lucy will visit five of these objects: four at L4 and one, the
binary pair Patroclus-Menoetius, at L5.

This paper describes the optimization of the Lucy trajectory using a two-point direct shooting
method in the Evolutionary Mission Trajectory Generator (EMTG) version 9, a modular, scalable-
fidelity trajectory optimization tool. EMTG can perform global search and trade studies in low
fidelity and also optimize point solutions in sufficiently high fidelity that the EMTG solutions may
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be re-targeted in an operational navigation tool such as Multiple Interferometric Ranging Analysis
using GPS Ensemble (MIRAGE). In its lowest-fidelity mode, EMTG is used to design Lucy with two-
body dynamics, a two-point direct shooting transcription, and a patched-conic flyby transcription [2].
This type of analysis can be done very quickly and across a broad search space.

Once a set of low-fidelity solutions is generated, the trajectory is then re-optimized using the same
two-point direct shooting for the interplanetary trajectory phases, n-body gravity, solar radiation
pressure (SRP), and a high-fidelity model of the Earth gravity assist maneuvers [3]. Additional con-
straints are added to prevent the spacecraft from passing too close to the Sun during interplanetary
phases and the Moon while inside the Earth’s sphere of influence. EMTG provides analytical partial
derivatives for all of the problem constraints [4], enabling rapid and robust convergence.

The optimization techniques described in this work are applied to Lucy in several different ways.
First, the baseline trajectory is periodically redesigned to take into account changes in the spacecraft
design or new constraints. This redesign is done by first optimizing the trajectory in low and then
high fidelity in EMTG, and then using the high-fidelity solution as an initial guess for re-optimization
in Systems Tool Kit (STK) [5]. Second, EMTG’s high-fidelity mode is used to successively re-
optimize the mission-to-go after each major maneuver in a Monte Carlo analysis. The EMTG results
are then re-targeted in MIRAGE. The motivation for and results of this process are described
in detail by McAdams et al. [6]. Third, EMTG is used to optimize the trajectory for each day
in the primary launch period. These trajectories are then verified in General Mission Analysis
Toolkit (GMAT) [7] using an automated process developed by the authors. Finally, we plan to use
EMTG to generate initial guesses for each maneuver during operations. Just as in the Monte Carlo
analysis, all EMTG solutions will be re-targeted in MIRAGE before any commands are sent to the
spacecraft.

PHYSICS MODEL

Multiple Gravity Assist with n Deep-Space Maneuvers

The trajectory transcription used in this work is EMTG’s Multiple Gravity Assist with n Deep-
Space Maneuvers using Shooting (MGAnDSMs) [2, 8]. This transcription can model a trajectory
with any number of impulsive maneuvers. MGAnDSMs models the trajectory between two boundary
points as a two-point shooting phase. The trajectory is propagated forward in time from the left-
hand boundary condition and backward in time from the right-hand boundary condition. The
optimizer chooses the time of flight (TOF ) for the phase, along with necessary parameters to define
the magnitude and direction of any impulsive deep-space maneuver (DSM)s. The TOF from the
left-hand boundary to the first DSM, as well as from each DSM to the next DSM or to the right-hand
boundary where appropriate, is expressed as the product of a “burn index” ηi with the phase TOF .
The sum of the ηi must equal 1.0, guaranteeing that the propagation arcs fit within the phase TOF .
Therefore, if a phase has only one impulse, then the time from the left boundary to the DSM, ∆t1,
and the time from the DSM to the right boundary, ∆t2 will be:

∆t1 = η1TOF (1)
∆t2 = η2TOF (2)

Mass is propagated across each impulse by means of the exponential form of the rocket equation
as shown in Equation 3.

m+
i = m−

i exp

(
−∆v

Ispg0

)
(3)

where m−
i is the mass of the spacecraft before the maneuver, m+

i is the mass of the spacecraft after
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Figure 1: Diagram of the MGAnDSMs transcription. The red arrows represent impulsive DSMs,
and the green-highlighted black arrows represent natural perturbations.

Table 1: Decision variables that define an MGAnDSMs phase

Variable Description
TOF time-of-flight of the phase
ηi Fractions of the phase TOF that define the time between DSMs and the

boundaries, as well as between DSMs and other DSMs. One per DSM
plus one for the right-hand boundary.

∆vi,x x component of DSM i. One per DSM
∆vi,y y component of DSM i. One per DSM
∆vi,z z component of DSM i. One per DSM

the maneuver, ∆v is the magnitude of the impulsive DSM, g0 is the acceleration due to gravity at
sea level on Earth, and Isp is the specific impulse of the spacecraft’s thruster.

The decision variables and constraints necessary to define an MGAnDSMs phase are listed in
Tables 1 and 2, respectively. A diagram of the MGAnDSMs phase architecture is shown in Figure
1. The subscript mp denotes that a given constraint is expressed at the match point.

Dynamics and Propagation

The low-fidelity trajectories in this work are modeled using two-body dynamics and propagated by
solving Kepler’s problem. EMTG uses a universal-variable formulation, combined with a variable-
order Laguerre root finder [9, 10].

The high-fidelity trajectories in this work are modeled using an n-body point mass gravity model,

Table 2: Constraints that define an MGAnDSMs phase.

Constraint Depends on
x+
mp = x−

mp TOF , all ηi, all ∆vi,x, all ∆vi,y, all ∆vi,z, boundary variables
y+mp = y−mp TOF , all ηi, all ∆vi,x, all ∆vi,y, all ∆vi,z, boundary variables
z+mp = z−mp TOF , all ηi, all ∆vi,x, all ∆vi,y, all ∆vi,z, boundary variables
ẋ+
mp = ẋ−

mp TOF , all ηi, all ∆vi,x, all ∆vi,y, all ∆vi,z, boundary variables
ẏ+mp = ẏ−mp TOF , all ηi, all ∆vi,x, all ∆vi,y, all ∆vi,z, boundary variables
ż+mp = ż−mp TOF , all ηi, all ∆vi,x, all ∆vi,y, all ∆vi,z, boundary variables
m+

mp = m−
mp TOF , all ηi, all ∆vi,x, all ∆vi,y, all ∆vi,z, boundary variables∑n+1

i=1 ηi = 1.0 all ηi
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Table 3: Decision variables that define a patched-conic launch

Variable Description
tlaunch epoch of launch
v∞ magnitude of the outgoing velocity asymptote
RLA right ascension of the outgoing velocity asymptote in ICRF
DLA declination of the outgoing velocity asymptote in ICRF

the J2 term of the central body (e.g. the Sun or the Earth), and solar radiation pressure. The model
used for this work includes all eight planets, Pluto, and Earth’s moon as drawn from the DE430
ephemeris [11]. EMTG propagates these trajectories with an 8th-order fixed-step Runge-Kutta
explicit integrator [?]. Using a fixed-step integrator ensures that the analytical partial derivatives of
the final state with respect to the initial state and the time of integration are exact [?].

Launch

In low fidelity, EMTG uses a patched-conic, zero-sphere of influence (SOI) approximation of
launch. The optimizer chooses the launch epoch and the outgoing v∞, Right Ascension of Launch
Asymptote (RLA), and Declination of Launch Asymptote (DLA) as shown in Table 3. The patched-
conic launch model does not add any constraints to the problem. The initial state of the spacecraft in
the heliocentric reference frame is then computed at the center of the launch body as per Equations
4-11. The coefficients in Equation 11 are a polynomial fit to the performance of the actual launch
vehicle, which in the case of Lucy is an Atlas V 401.

C3 = v2∞ (4)
x0 = xbody (tlaunch) (5)
y0 = ybody (tlaunch) (6)
z0 = zbody (tlaunch) (7)
ẋ0 = ẋbody (tlaunch) + C3 cosRLA cosDLA (8)
ẏ0 = ẏbody (tlaunch) + C3 sinRLA cosDLA (9)
ż0 = żbody (tlaunch) + C3 sinDLA (10)
m0 = aLV + bLV C3 + cLV C

2
3 + dLV C

3
3 + eLV C

4
3 + fLV C

5
3 (11)

When EMTG is used to optimize Lucy in high fidelity, the launch is modeled by an impulsive
departure from a circular parking orbit at 185 km altitude. EMTG then propagates from the
departure maneuver to the point at which Lucy exits the SOI of the Earth. This process introduces
additional decision variables and constraints, but a complete discussion is out of scope for this paper.
A full description may be found in the companion paper by Ellison et al. [3].

Gravity Assist Model

EMTG uses two different models for Lucy’s Earth gravity assists, depending on the fidelity of the
simulation. In low fidelity, EMTG uses a patched-conic, zero-SOI approximation that is common
to many preliminary design tools. This is done by adding six new decision variables, defining
the incoming and outgoing v∞, and two new constraints: one to require that the magnitude of
v∞,out matches the magnitude of v∞,in, and one to ensure that the bend angle does not require the
spacecraft to fly below a user-defined safe distance hsafe from the body, as described in Equations
12-14, where F is the constraint posed to the optimizer. The decision variables are listed in Table
4, and the constraints are listed in Table 5. In the context of Lucy, hsafe is 300 km. The flyby is
un-powered, i.e., no maneuver occurs at periapse.
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Table 4: Decision variables that define a patched-conic flyby

Variable Description
v∞,in,x x component of incoming velocity vector
v∞,in,y y component of incoming velocity vector
v∞,in,z z component of incoming velocity vector
v∞,out,x x component of outgoing velocity vector
v∞,out,y y component of outgoing velocity vector
v∞,out,z z component of outgoing velocity vector

Table 5: Constraints that define a patched-conic flyby

Constraint Depends on
∥v∞−in∥ = ∥v∞−out∥ v∞−in−x, v∞−in−y, v∞−in−z, v∞−out−x, v∞−out−y, v∞−out−z

h ≥ hsafe v∞−in−x, v∞−in−y, v∞−in−z, v∞−out−x, v∞−out−y, v∞−out−z

F = hFB − hsafe (12)

hFB =
µ

v2∞,out

(
1

sin δFB

2

− 1

)
− rbody (13)

δFB = arccos

(
v∞,out • v∞,in

v∞,outv∞,in

)
(14)

When EMTG is used to optimize Lucy in high fidelity, the gravity assist maneuvers are modeled
by propagating through the finite SOI of the Earth, with the Earth as the central body. This process
introduces additional decision variables and constraints, but a complete discussion is out of scope
for this paper. A full description may be found in the companion paper by Ellison et al. [3].

Encounter Model

EMTG models the Trojan and Donaldjohanson encounters as an intercept, i.e, a match of the
precise position of the body but with a non-zero v∞ vector. Since the Trojans and Donaldjohanson
are very small, EMTG does not model a bend angle. EMTG encodes six decision variables describing
the incoming and outgoing velocity vectors, as described in Table 6, and three constraints to ensure
that the incoming and outgoing velocity vectors are identical, as described in Table 7. This model
is used in both the low- and high-fidelity Lucy results in this work, and yields a trajectory accurate
enough to be re-targeted in MIRAGE with more precise encounter modeling.

Table 6: Decision variables that define a small-body flyby

Variable Description
v∞,in,x x component of incoming velocity vector
v∞,in,y y component of incoming velocity vector
v∞,in,z z component of incoming velocity vector
v∞,out,x x component of outgoing velocity vector
v∞,out,y y component of outgoing velocity vector
v∞,out,z z component of outgoing velocity vector
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Table 7: Constraints that define a small-body flyby

Constraint Depends on
v∞,in,x = v∞,out,x v∞,in,x, v∞,out,x

v∞,in,z = v∞,out,y v∞,in,y, v∞,out,y

v∞,in,z = v∞,out,z v∞,in,z, v∞,out,z

SOLVER

Nonlinear Programming

The optimization of the MGAnDSMs problems in this work may be formulated as nonlinear
program (NLP) problems. The optimizer solves a problem of the form:

Minimize f (x)
Subject to:
xlb ≤ x ≤ xub

c (x) ≤ 0
Ax ≤ 0

(15)

where xlb and xub are the lower and upper bounds on the decision vector, c (x) is a vector of nonlinear 
constraint functions, and A is a matrix describing any linear constraints (e.g. time constraints).

The problems in this work, like most other interplanetary trajectory optimization problems, consist 
of hundreds of variables and tens to hundreds of constraints. Such problems are best solved with 
a sparse NLP solver such as Sparse Nonlinear OPTimizer (SNOPT) [12]. SNOPT uses a sparse 
sequential quadratic programming (SQP) method and benefits g reatly f rom p recise k nowledge of 
the problem Jacobian, i.e., the matrix of partial derivatives of the objective function and constraints 
with respect to the decision variables. EMTG provides analytical expressions for all of the necessary 
partial derivatives, leading to improved convergence vs. using numerically approximated derivatives 
[4,8,13]. SNOPT, like all NLP solvers, requires an initial guess of the solution and tends to converge 
to a solution in the neighborhood of that initial guess. The next section discusses EMTG’s fully 
automated method for generating initial guesses.

Monotonic Basin Hopping

In the past two decades, researchers have explored stochastic search methods that do not require 
an initial guess. Stochastic search techniques allow an automated system to efficiently de sign a 
complex trajectory without human input [2, 14–24]. EMTG is designed to operate without user 
oversight, and so relies heavily upon stochastic search. The particular stochastic search method 
used in this work is monotonic basin hopping (MBH).

MBH [25] is an algorithm for searching for the best solutions to problems with many local optima. 
Many problems, including those described in this work, are structured such that individual locally 
optimal “basins” cluster together, where the distance in the decision space from one local optima 
to the next in a given cluster may be traversed in a short “hop.” A problem may have several such 
clusters. MBH was originally developed to solve molecular conformation problems in computational 
chemistry, but has been demonstrated to be effective o n various types o f i nterplanetary trajectory 
problems [14, 20–22, 26, 27]. Pseudocode for MBH is given in Algorithm 1.

Special attention is given to decision variables that define the time-of-flight between two boundary 
points, e.g. Earth or Trojan flybys in Lucy. These are the most significant variables that define a 
trajectory and therefore it is sometimes necessary to drastically perturb them in order to “hop” 
to a new cluster of solutions. With some (low) uniform-random probability ρ, each time-of-flight 
variables is shifted by ± 1 synodic period of the two boundary points defining that trajectory phase.
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In preliminary design for Lucy, ρ was set to 0.05. In high fidelity re-optimization, ρ is set to 0.0,
because we do not expect significant changes to the trajectory.

Algorithm 1 Monotonic Basin Hopping (MBH)
generate random point x
run NLP solver to find point x∗ using initial guess x
xcurrent = x∗

if x∗ is a feasible point then
save x∗ to archive

end if
while not hit stop criterion do

generate x′ by randomly perturbing xcurrent

for each time-of-flight variable ti in x′ do
if rand (0, 1) < ρtime−hop then

shift ti forward or backward one synodic period
end if

end for
run NLP solver to find locally optimal point x∗ using in initial guess x′

if x∗ is feasible and f (x∗) < f (xcurrent) then
xcurrent = x∗

save x∗ to archive
else if x∗ is infeasible and ∥c (x∗)∥ < ∥c (xcurrent)∥)

xcurrent = x∗

end if
end while
return best x∗ in archive

MBH is run until either a specified number of iterations (trial points attempted) or a maximum
CPU time is reached, at which point the best solution stored in the archive is returned. The version
of MBH used in EMTG has two parameters: the stopping criterion and the type of random step
used to generate the perturbed decision vector x′. In this work, the random step is drawn from a
bi-directional Pareto distribution with the Pareto parameter, α, set to 1.4. The bi-directional Pareto
distribution usually generates small steps that allow MBH to exploit the local cluster around the
current best solution. However, some of the steps generated by the bi-directional Pareto distribution
are much larger, in some cases spanning the entire decision space. These larger steps allow MBH to
explore the full decision space. This approach has been shown to be robust on complex interplanetary
trajectory design problems [24].

MBH may be started either from a uniform-randomly chosen point in the decision space or from
an initial guess derived from a previous problem. As long as the two problems are sufficiently similar,
the latter approach is more efficient than starting from randomness. This property is exploited in
the following section.

Python EMTG Automated Trade Study Application (PEATSA)

EMTG is most often run in a large-scale search mode, in which there are tens-to-thousands of
individual cases that must be optimized. One example, as described later in this work, is the case
of mapping a launch period to generate an optimal solution at one-day, or finer, intervals. Another
example is the case of re-optimizing the mission-to-go for thousands of Monte Carlo samples. While
it is possible to perform an independent global search on each problem posed to EMTG using NLP
and MBH as described above, it is greatly advantageous to exploit similarities between the cases
and share information between EMTG runs.

In this work, we use EMTG in tandem with the Python EMTG Automated Trade Study Ap-
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plication (PEATSA) wrapper script developed by Knittel et al. [28]. The user selects one or more
variables by which solutions may be compared to each other, and the difference between the value(s)
of these variable(s) define a “seed distance.” PEATSA harvests the results from a set of EMTG runs,
and determines based on seed distance which EMTG solutions should be used to seed their neigh-
bors. The EMTG cases are then re-run with each MBH process with the initial guesses locations
chosen by PEATSA. After a short period of time (minutes), the EMTG runs are terminated and
the seed-sharing process is repeated. This continues until either solutions to the population of cases
cease to improve, the solutions all meet some user-defined threshold, or the analyst chooses to end
the study.

RESULTS

Nominal Trajectory

The computational process described in the previous section is successfully applied to the Lucy
mission. Lucy includes a launch, three Earth gravity assists, six small-body encounters, and nine
MGAnDSMs phases. Figure 2 shows the problem structure as defined in EMTG.

The Lucy trajectory presented here, as developed for critical design review (CDR), was optimized
first in EMTG’s low-fidelity mode, then in EMTG’s high-fidelity mode. The low-fidelity solution
was used as a starting point for the high-fidelity optimization. The resulting high-fidelity EMTG
trajectory was then re-targeted in MIRAGE. Table 8 shows how the solution for the open of the
21-day launch period differs between the tools. Note that the low-fidelity, patched conic EMTG run
yields a lower ∆v than the high-fidelity EMTG and MIRAGE runs because the low-fidelity run does
not account for SRP or n-body perturbations.

Figure 2: Structure of the Lucy mission

Figures 3 and 4 show the trajectory in an ecliptic plane projection and in a side view, respectively.
From Figure 4, it is clear that Lucy’s Trojan asteroid targets lie in significantly different orbital
planes. The Lucy mission is only possible because each of these targets cross the ecliptic plane in
approximately the same place.

Launch Period Optimization

Another application for the process described in this work is the optimization of a high-fidelity
“launch vehicle target specification,” i.e., a table of C3, RLA, and DLA targets across a 21-day
launch period. This information is then provided to the launch vehicle flight dynamics team, who
use the targets as terminal constraints for their optimization of the launch vehicle’s trajectory.
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Table 8: Comparison of the low- and high-fidelity EMTG Lucy trajectories with the MIRAGE
baseline, for the October 16th, 2021 launch opportunity.

Parameter EMTG EMTG MIRAGE
(low-fidelity) (high-fidelity)

Launch 10/16/2021 10/16/2021 10/16/2021
DSM1 epoch 4/23/2022 11/15/2021 11/15/2021
DSM1 (m/s) 2.1 3.8 3.5
EGA1 epoch 10/17/2022 10/16/2022 10/16/2022
EGA1 altitude (km) 300 300 283
DSM2 epoch 2/1/2024 2/7/2024 2/6/2024
DSM2 (m/s) 889.6 910.9 909.6
EGA2 epoch 12/13/2024 12/13/2024 12/13/2024
EGA2 altitude (km) 341 334 350
Donaldjohanson epoch 4/20/2025 4/20/2025 4/20/2025
DSM3 epoch 4/13/2027 4/7/2027 4/7/2027
DSM3 magnitude (m/s) 308.6 312.9 310.6
Eurybates epoch 8/12/2027 8/12/2027 8/12/2027
Polymele epoch 9/15/2027 9/15/2027 9/15/2027
DSM4 epoch 9/29/2027 9/29/2027 9/29/2027
DSM4 magnitude (m/s) 114.7 115.9 117.4
Leucus epoch 4/18/2028 4/18/2028 4/18/2028
DSM5 epoch 7/22/2028 7/23/2028 7/23/2028
DSM5 magnitude (m/s) 349.7 350.8 349.6
Orus epoch 11/11/2028 11/11/2028 11/11/2028
EGA3 epoch 12/27/2030 12/27/2030 12/27/2030
EGA3 altitude (km) 654 611 637
Patroclus epoch 3/3/2033 3/3/2033 3/3/2033
Total mission ∆v (m/s) 1664.7 1693.5 1696.8
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Figure 3: Ecliptic-plane projection of the Lucy baseline trajectory

Figure 4: Side view of the Lucy baseline trajectory
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The Lucy launch period optimization was performed using EMTG in its highest-fidelity mode, 
as described earlier in this work. Additional constraints were applied to the launch portion of the 
mission. First, it was necessary to prevent Lucy from passing too close to the Moon. Since the 
Moon’s orbit about the Earth is approximately circular and the launch hyperbola will cross the 
Moon’s orbital distance only once, it is sufficient to  impose a constraint that “when the spacecraft 
reaches 384,000 km from the center of the Earth, it must also be at least 50,000 km from the Moon.” 
This was accomplished by breaking the portion of the trajectory from launch to Earth SOI exit into 
two phases: one before before crossing the moon’s orbit, and one after. The boundary point between 
the phases is then constrained to be at exactly 384,000 km from the Earth and greater than or equal 
to 50,000 km from the Moon.

Second, the outbound hyperbola must be physically reachable by the launch vehicle. While the 
launch provider’s analysis is much more sophisticated and less constrained than the analysis here, 
it is sufficient fo r th is wo rk to  im pose a co nstraint th at th e sp acecraft/launcher st ack be gins in  a 
circular parking orbit that crosses the latitude and longitude of the launch site, Cape Canaveral Air 
Force Station (CCAFS) at an altitude of 185 km, and that the time between launch and hyperbolic 
injection be greater than the time that it takes the launch vehicle to reach that parking orbit. The 
first step is to constrain the initial orbit to an inclination of 2 8.5◦ ,  guaranteeing that the spacecraft 
passes over CCAFS. Next, we constrain the latitude and longitude of the injection maneuver such 
that it occurs approximately over the Indian Ocean – 180◦ of true anomaly after launch; enough 
time for the launch vehicle to ascend from the surface of the Earth to the parking orbit.

High-fidelity trajectories were optimized in EMTG for each day in the period from 10/16/2021 to 
11/5/2021, subject to the constraints described above. These optimizations were carried out using 
the PEATSA process described in this work, and required no initial guess. Each trajectory was then 
re-targeted in the GMAT [7], using the EMTG trajectory as an initial guess. The GMAT solutions 
did not modify the launch asymptote, but rather re-targeted only the spacecraft’s maneuvers. The 
GMAT rendering is higher fidelity in the sense that EMTG models only the J 2 term of the Earth’s 
non-spherical gravity and approximates all maneuvers as impulses, whereas GMAT models a 50x50 
Earth gravity field a nd fi nite bu rns. Th e re sults of  th is an alysis, in cluding th e GM AT verification 
step, are shown in Table 9.

In general, the difference between the EMTG and GMAT solutions was very small, less than 5 m/s 
or 0.3% of the total mission ∆v. There are several explanations for these differences. First, EMTG 
and GMAT use different force models, as previously described. Second, the two tools use different 
integrators - a fixed-step 8th-order Runge-Kutta for EMTG and an adaptive-step Runge-Kutta 
with 8th-order propagation and 9th-order error control for GMAT. Third, since we only forward 
target position coordinates in GMAT from the EMTG initial guess, resulting in 11 individual 
calls to GMAT’s differential corrector, differences between the two trajectories build up from one 
maneuver/target to the next. The latter is likely the biggest cause of the differences between the 
two tools. Fortunately, this would not be an issue in operations because we would re-optimize the 
mission-to-go after each maneuver is executed. Regardless, the GMAT step is a valuable verification 
that the launch asymptote coordinates are accurate and suitable for use in interfacing with the 
launch vehicle flight dynamics team.

CONCLUSION

The two-point direct shooting transcription described in this work, when combined with either low-
or high-fidelity physics models as appropriate for a  given analysis, i s a  powerful tool for optimizing 
interplanetary cruise trajectories. The results presented here show the effectiveness o f E MTG and 
PEATSA as part of the Lucy design process. As shown in this work, this technique is invaluable in 
performing early-stage design and in developing a set of target coordinates for the launch vehicle.
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Table 9: Launch vehicle target specification and mission ∆v across the primary launch period.

Date C3 RLA DLA EMTG GMAT difference difference
[km2/s2] [◦] [◦] ∆v[m/s] ∆v[m/s] [m/s] [%]

10/16/2021 28.62876135 16.8 8.6 1690.5 1691.8 1.3 0.1%
10/17/2021 28.67983783 17.9 8.6 1667.3 1668.8 1.5 0.1%
10/18/2021 28.72026844 19.0 9.1 1645.3 1646.1 0.9 0.1%
10/19/2021 28.68516925 18.2 12.6 1625.7 1626.8 1.1 0.1%
10/20/2021 28.69115134 20.9 8.6 1608.4 1609.5 1.1 0.1%
10/21/2021 28.7420877 22.0 8.6 1594.8 1595.8 1.1 0.1%
10/22/2021 28.80194404 23.1 8.6 1584.6 1585.5 0.9 0.1%
10/23/2021 28.8817291 24.2 8.7 1578.2 1579.1 0.9 0.1%
10/24/2021 29.04366881 25.3 8.5 1575.2 1576.2 1.0 0.1%
10/25/2021 29.18388615 22.8 17.1 1574.1 1575.3 1.1 0.1%
10/26/2021 29.18363233 24.2 16.6 1580.6 1584.0 3.4 0.2%
10/27/2021 29.17938111 27.5 11.0 1586.1 1586.8 0.6 0.0%
10/28/2021 29.17996957 28.3 11.5 1595.9 1600.7 4.8 0.3%
10/29/2021 29.18033459 29.2 11.9 1606.0 1606.9 1.0 0.1%
10/30/2021 29.18064859 30.1 12.2 1616.7 1619.1 2.4 0.1%
10/31/2021 29.18101012 31.0 12.5 1628.2 1630.5 2.3 0.1%
11/1/2021 29.18132028 32.0 12.9 1640.4 1643.4 3.0 0.2%
11/2/2021 29.18160595 32.9 13.2 1653.2 1654.7 1.6 0.1%
11/3/2021 29.18186002 33.8 13.5 1666.5 1670.5 4.0 0.2%
11/4/2021 29.18209995 34.8 13.8 1680.3 1684.4 4.0 0.2%
11/5/2021 29.18231928 35.7 14.2 1694.6 1697.5 2.9 0.2%
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