
ABSTRACT

ENGELSONE, ANNA. Direct Transcription Methods in Optimal Control: Theory

and Practice. (Under the direction of Stephen Campbell)

In optimal control, as in many other disciplines, individuals developing the theory

and those applying it to real life problems do not always see eye to eye. Some results

developed by theoreticians have very limited practical value, while other useful results

may be unknown to practitioners or incorrectly interpreted. This work aims to bridge

the gap between these two groups by presenting theoretical results in a way that will

be useful to practitioners. We concentrate specifically on convergence results relating

to a class of methods known as direct transcription, where the entire optimal control

problem is discretized, in our case using a Runge-Kutta method, to form a nonlinear

program.

For unconstrained problems, we present several convergence results, then give an

original result that demonstrates that practically designed optimal control software

will be unable to attain theoretically possible convergence order in most cases. We

present a practical solution to this problem that is currently being implemented in

an industrial software package.

In the next chapter, we also prove that many equality constrained problems, in-

cluding problems unsolvable by other methods, are, for a direct transcription method,

equivalent to unconstrained problems, so that convergence results from the previous

chapter apply. We provide practical guidelines for regularizing a constrained problem

to ensure accurate solution by a direct transcription method.



For inequality constrained problems, we give a detailed overview of different sets of

necessary conditions and existing convergence results. We also present a phenomenon

we call ”virtual boundary arcs”, demonstrating the advantage of direct transcription

for another class of problems, in this case problems for which a boundary arc is

theoretically impossible but the cost structure forces the solution very close to the

constraint boundary.
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Chapter 1

Definitions

1.1 Example of a Control Problem

Optimal control is a discipline that studies the control of dynamic systems, i.e. sys-

tems described by differential or difference equations, with the goal of optimizing a

certain objective function.

For a small academic example, consider a trolley that travels along a track. Tied

to the bottom of the trolley is a rope with a weight at the bottom. The rope can

be rolled up and down. We assume a one-dimensional track and a two-dimensional

world in which the rope swings back and forth, subject to forces of tension and gravity.

(Figure 1.1.) Let us assume that we have direct control over the acceleration of the

trolley and the acceleration of the pulley rolling up the rope as the trolley travels

from left end of the track to the right end.
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g(x)

Figure 1.1: The Trolley Control System.

Mathematically, we can describe this dynamic system by

x′′(t) = −T (t) sin θ(t)

z′′(t) = −T (t) cos θ(t)

D′′(t) = a1(t)

R′′(t) = a2(t)

x(t) = R(t) sin θ(t) +D(t)

z(t) = R(t) cos θ(t)

where (x, z) are the coordinates of the load, the mass of the load is assumed to be

1, the mass of the rope is assumed to be negligible and θ is the angle between the

rope and the vertical axis. T is the tension of the rope. D and R are the position

of the trolley and the length of the rope, respectively, and a1, a2 are the respective

accelerations of the trolley and the rope.

Suppose that the trolley driver had direct control over the acceleration of the
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trolley and acceleration of the rope, through the gas pedal and the crank, for example.

Then a1 and a2 are the controls of the system.

Suppose that in finite time τ we wanted to get the trolley as close as possible

to the end of the track (point (1, 0)) while keeping the swinging load above the

terrain described by function g(x) but no less than 2 meters away from the trolley.

Mathematically, this means the addition of two constraints

z(t) ≤ g(x(t))

R(t) ≥ 2

and the objective: minimize (1 −D(τ))2.

Common sense tells us that even if we are unaware of strict bounds on the max-

imum allowable acceleration, we should ”regularize” the system to disallow infinite

acceleration. One way to do this is to modify the objective function, putting small

weights on the accelerations of trolley and rope along the entire time interval. Thus

the new objective is

min(1 −D(τ))2 + δ

∫ τ

0

a1(t)
2 + a2(t)

2dt

where δ is small and positive.

Theoretical control theory results support this common sense logic, requiring the

objective function to be positive definite with respect to all controls (see, for example,

Table 3.3-1 in [28].)

1.2 Standard Form and Alternative Formulations

Once additional differential equations have been added to replace the 2nd derivatives

on the left with 1st derivatives, the trolley problem takes on the form shared by many

control problems which appear in applications, namely the form
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min φ(x(tf )) +

∫ tf

t0

L(x, y, t)dt (1.1a)

x′ = f(x, y, t) (1.1b)

0 = g1(x, y, t) (1.1c)

0 ≤ g2(x, y, t) (1.1d)

x(t0) = ζ (1.1e)

0 = ψ(x(tf )) (1.1f)

where x(t) : R → R
m1 are states or differential variables, and y(t) : R → R

m2 are

algebraic variables. The functions φ : R
m1 → R and L : R

m1+m2+1 → R determine

what is alternately called the cost function, the objective function or the perfor-

mance index. The differential constraints are determined by f : R
m1+m2+1 → R

m1 ,

the algebraic equality constraints by g1 : R
m1+m2+1 → R

c1 and the algebraic in-

equality constraints by g2 : R
m1+m2+1 → R

c2, and boundary conditions determined

by ζ ∈ R
m1 , ψ : R

m1 → c3.

For a problem designed to model a real-life process, the algebraic variables will

include the controls, such as the acceleration of the trolley and the crank that winds

the rope. They will also include algebraic variables such as the tension in the rope

that are not controlled by the trolley driver. But from a mathematical standpoint, a

control is any subset of y that determines the solution completely for a particular set

of initial conditions.

Notice that a problem with a cost function of the form (1.1a) can be converted

into a problem with the cost function C(x(tf )), i.e. a problem in the so-called Mayer

form, by letting C = φ+ x2 where x2 is another state defined by

x′2 = L(x, u, t)

x2(0) = 0
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Similarly, a problem in which L, f, g1, g2 depend explicitly on t can be converted

into a problem whose functions depend only on x and y by letting t be another state,

x3, defined by

x′3 = 1

x3(0) = 0

So the problem (1.1a) is equivalent to a problem of the form

min C(x(tf )) (1.2a)

x′ = f(x, y) (1.2b)

0 = g1(x, y) (1.2c)

0 ≤ g2(x, y) (1.2d)

x(t0) = ζ (1.2e)

0 = ψ(x(tf )) (1.2f)

Finally, notice that a problem of the form (1.1a) or (1.2) is equivalent to the same

problem but with t0 = 0 and tf = 1, simply by letting t̄ = t/(tf − t0). The results

presented in the main chapters of this work were proved for problems in different

forms. To make them easier to read and compare, we have rewritten some of them

in a different form so that most results now refer to problems of the form 1.2.

1.3 Optimality Conditions

How does one find functions x and y that minimize the cost (1.2a) and also satisfy

the differential and algebraic equations (1.2b) – (1.2f)? As with discrete minimiza-

tion/maximization problems, there are additional equations and inequalities that the

optimal solution must satisfy. Combined with (1.2b) – (1.2f), they form a system of
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equations that, under certain additional conditions, will uniquely determine a local

minimum.

When minimizing a function of one variable with no constraints, a critical point

occurs where the derivative of the function is zero. In the presence of constraints, the

constraints are adjoined to the cost function with the aid of an adjoint variable to

form what is sometimes called the augmented performance index which is then

differentiated with respect to all variables. For continuous control problems, the first

derivative is replaced by the first variation and the resulting equations are called the

Euler-Lagrange Equations also known as first-order optimality conditions or

first-order necessary conditions (for optimality).

For constrained problems, the derivation of the first-order optimality conditions

is complicated (see Section 4.1) but for unconstrained problems of the form (1.2) the

augmented performance index has the form

J = C(x(tf )) + νTψ(x(tf)) +

∫ tf

t0

λT (f(x, y) − x′)dt

and the first-order optimality conditions take the form

x′ = ∇λH (1.3a)

λ′ = −∇xH (1.3b)

0 = ∇uH (1.3c)

x(t0) = ζ (1.3d)

λ(tf) = ∇xC(x(tf )) + νT∇xψ(x(tf )) (1.3e)

where H(x, u, λ) = λTf(x, u) is the Hamiltonian. See [28], Section 3.2 for a detailed

derivation.

Just as it is when we minimize a function, a critical point is not necessarily a

minimum, and in addition to first order optimality conditions there are 2nd order
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conditions to consider. When minimizing a function of several variables, we are

interested in whether its Jacobian is positive-definite. For optimal control problems,

this is replaced with conditions such as coercivity (Definition 2.2) written in terms of

the solution to a linearized problem or a Ricatti equation. For more information on

necessary and sufficient conditions for optimality for different types of problems, see

[11].

Suppose that the problem in (1.3) is actually a problem of the form

min φ(x(tf)) +

∫ tf

t0

L(x, y, t)dt (1.4a)

x′ = f(x, y, t) (1.4b)

x(t0) = ζ (1.4c)

0 = ψ(x(tf )) (1.4d)

”in disguise”. Then the Hamiltonian takes the form λ2L + λTf and we calculate

λ2(tf ) = ∇x2
φ(x) + x2 = 1 and λ′2 = −∇x2

H = 0 giving us λ2(t) = 1 for all t. So

for problems of the form (1.4), the first order optimality conditions can be applied

without loss of generality to the Hamiltonian defined by H = L+ λTf .

1.4 Methods of Solution

Methods for solving optimal control problems can be divided into two basic categories:

direct and indirect methods.

Indirect methods involve solving the boundary value problem (BVP) formed

by the first-order optimality conditions. For most problems, this cannot be done

analytically, so the equations are discretized in some fashion and solved numerically.

For this reason, indirect methods are also sometimes referred to as ”optimize then

discretize.” Currently the most popular methods for solving the BVP formed by
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the optimality conditions are so-called gradient algorithms. An overview of these and

some of the other methods discussed here can be found in [31].

Direct methods approximate the original problem by a discrete optimization

problem, an approach that is sometimes referred to as ”discretize then optimize.”

Some direct methods rely on techniques such as shooting or multiple shooting,

where the equations (1.2b) – (1.2f) are solved for a particular control, usually assumed

piecewise constant on a grid. Then the control is adjusted with the goal of making

the cost smaller, and the whole process is repeated until a tolerance is met. The

advantage of these methods is the relatively small size of the discretized problem,

their major drawback is their stability. For a quick overview of shooting and multiple

shooting methods see [3], Chapter 3.

In contrast, the class of methods we will call direct transcription methods dis-

cretize the entire problem on a grid, normally by using a collocation method based

on a numerical integrator. For a problem in Mayer form (1.2) this amounts to dis-

cretizing the differential equations to obtain algebraic equations in the variables xi, yi,

which represent the values of the states and the algebraic variables at the grid points

ti and, for higher order discretization methods, also variables χij , yij, which represent

the values of states and algebraic variables at the intermediate points. The algebraic

constraints and boundary conditions, evaluated at the gridpoints, provide additional

constraints for the discretized problem. The resulting problem is a large, sparse non-

linear program (NLP). For an overview of methods for solving large, sparse nonlinear

programs that arise from optimal control problems, see [3], Chapters 1 and 2.

Direct transcription methods are well suited to problems where the functions

f, gi are ”black boxes”, since in these cases the formulation of optimality conditions

may be difficult or impossible. However, for some inequality constrained problems

they are less accurate than indirect methods ([7], Chapter 4). In the main chapters
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of this thesis we will present two classes of problems for which direct transcription

outperforms other methods, inequality constrained problems that exhibit complicated

behavior near the constraint boundary and certain equality constrained problems with

high index constraints. But there is one thing that all numerical methods for solving

optimal control problems have in common - the need to numerically integrate the

differential equation (1.2b).

1.5 Convergence and Discretizations

The focus of this thesis is on the convergence properties of direct transcription meth-

ods. Most results given here evaluate convergence of a direct transcription method

by the maximum difference between the optimal solution for the original problem

and the optimal solution to the nonlinear program that is the discretization of the

original problem for a particular discretization method and a particular grid. The

grid can be uniform, with N = 1/h evenly spaced nodes h units apart. It can be

non-uniform, with the distances between nodes given by hi, i = 0, ..., N − 1. Because

finer grids produce larger problems that take longer to solve, we are interested in the

relationship between h, the maximum distance between gridpoints, and the error. We

say that the error in variable z is order b if there exist h̄, c > 0 such that

max
k

‖zk − z∗(tk)‖ ≤ chb

for all h < h̄.

A variety of discretizations exist for approximating differential equations. (For an

overview, see [22] and [23]). Many of these are collocation methods, i.e. methods

that approximate a function by a piecewise-continuous function or spline. One type

of collocation methods, using Radau points, was recently studied in connection with

direct transcription by Kameswaran and Biegler (see [26] and [27]), and shown to be
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very useful on certain problems. For an overview of different types of discretizations

used with direct transcription, see [31], Chapter 6.

Many of the discretizations used by practitioners for solving optimal control prob-

lems, both directly and indirectly, belong to the class of so-called classical Runge-

Kutta methods. Some Runge-Kutta methods, like the trapezoid method, which

approximates a function by linear splines, are also collocation methods. For our pur-

poses, a Runge-Kutta method is any method characterized by its Butcher array,

consisting of parameters a ∈ R
s×s and b, σ ∈ R

s. A Runge-Kutta method discretizes

the differential equations (1.2b) as

xi+1 = xi + hi

s
∑

j=1

bjf(χij, yij), i = 0, ..., N − 1

χij = xi + hi

s
∑

k=1

ajkf(χik, yik), i = 0, ..., N − 1, j = 1, ..., s.

So, for the purpose of direct transcription methods, a nonlinear program based on

the problem (1.2) obtained with a Runge-Kutta method characterized by (a, b, σ) has

the form

min C(xN ) (1.5a)

xi+1 = xi + hi

s
∑

j=1

bjf(χij , yij), i = 0, ..., N − 1 (1.5b)

χij = xi + hi

s
∑

k=1

ajkf(χik, yik), i = 0, ..., N − 1, j = 1, ..., s (1.5c)

0 = g1(xi, yi) (1.5d)

0 ≤ g2(xi, yi) (1.5e)

x0 = ζ (1.5f)

0 = ψ(xN ) (1.5g)

where tij = ti + σjhi, ti =
∑i−1

l=0 hl, and 0 ≤ σ1 ≤ ... ≤ σs ≤ 1.
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Many popular integrators, such as Euler’s Method, Trapezoid Method, Hermite-

Simpson or RK4, are Runge-Kutta methods. However, in practice, these methods are

often implemented in a form different from (1.5), out of considerations ranging from

time and storage to robustness.

Table 1.1: Order of Runge-Kutta discretization as an integrator.

Order Conditions

ci =
∑s

j=1 aij , dj =
∑s

i=1 biaij

1
∑s

i=1 bi = 1

2
∑s

i=1 di = 1/2

3
∑s

i=1 cidi = 1/6,
∑s

i=1 c
2
i bi = 1/3,

4
∑s

i=1 bic
3
i = 1/4,

∑s
i=1

∑s
j=1 biciaijcj = 1/8,

∑s
i=1 dic

2
i = 1/12,

∑s
i=1

∑s
j=1 diaijcj = 1/24,

Runge-Kutta methods are classified as explicit (aij = 0 whenever j ≥ i ) and

implicit. They are also classified by their order as an integrator (see Table 1.1 , which

is a copy of [21], Table 2). The order of a method as an integrator is the order of the

error between the solution to the differential equation x′ = f(t, x, y) for a particular

smooth function y and the solution to the discretization. As we will see in the

following chapters, the order of the error between the optimal solution to the original

problem and the optimal solution to the discretized problem is related to the order of

the discretization as an integrator, but additional conditions and considerations are
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necessary.

1.6 Computation

The computational studies presented in this monograph were done using the sparse

optimal control code SOCS (see http://www.boeing.com/phantom/socs/) devel-

oped at the Boeing company. SOCS is a collection of FORTRAN77 subroutines,

suited for solving any optimal control problems with dynamics given by ordinary

differential equations, including multiple-phase problems, and problems with right-

hand sides of dynamics and constraints described by user-defined functions. For more

information on SOCS , see [5].

SOCS allows the user to choose the discretization methods to be used as well

as the initial grid. Unless told otherwise, SOCS will formulate the discretization on

a coarse grid using a lower order method, find the optimal solution and then use

various heuristics to refine the grid and/or switch to a higher order discretization

method, reformulate the discretization, and repeat. To demonstrate convergence

properties, specifically convergence order, we often ask SOCS instead to solve the

problem on a particular grid using a particular discretization method and stop. For

more information on mesh refinement and stopping criteria for same, see [3], Section

4.7 For a detailed description of the mesh refinement algorithm currently used in

SOCS, see [8] and [7].

In the course of our work, we have produced a large number of FORTRAN77 codes

that define particular problems and initialize SOCS with specific execution parame-

ters. We have also written a number of Matlab (see http://www.mathworks.com)

routines for manipulating and graphing SOCS output. Finally, we used Maple
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(http://www.maplesoft.com) for algebraic manipulations in a number of our the-

oretical results as well as to solve optimal control problems using a number of dis-

cretizations not implemented in SOCS. All these codes are available in electronic form

at (http://www4.ncsu.edu/∼aengels/research/codes).
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Chapter 2

Unconstrained Problems

2.1 Overview

In this chapter we will cover problems of the form

minC(x(tf )) (2.1a)

x′ = f(x, y) (2.1b)

x(t0) = ζ. (2.1c)

Many results relating to convergence of direct transcription methods for optimal

control problems belong to Hager, Dontchev and Veliov [12, 13, 14, 15, 16, 19, 20, 21].

We follow their lead in making the following two assumptions about the problem (2.1).

Definition 2.1. The problem (2.1) is said to satisfy the smoothness con-

dition if it has a local solution (x∗, u∗) which lies in W 2,∞ ×W 1,∞, where W k,p is

the Sobolev space consisting of vector-valued measurable functions y : [t0, tf ] → R
m1

whose jth derivative y(j) lies in Lp for all j = 0, ..., k with the norm

||y||W k,p =

k
∑

j=0

||x(j)||Lp. (2.2)
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Moreover, there exists an open set Ω ⊂ R
m1 × R

m2 and ρ > 0 such that

Bρ(x
∗(t), u∗(t)) ⊂ Ω

for every t ∈ [t0, tf ], the first two derivatives of f are Lipschitz continuous in Ω, and

the first two derivatives of C are Lipschitz continuous in Bρ(x
∗(tf )).

Under the smoothness condition (Definition 2.1), we know that there exists a λ∗

such that x∗, u∗, λ∗ satisfy the optimality conditions (1.3) with ψ = 0.

Let

A(t) = ∇xf(x∗(t), y∗(t)), B(t) = ∇yf(x∗(t), y∗(t)), (2.3a)

V = ∇2
xxC(x∗(tf )), Q1(t) = ∇2

xxH(x∗(t), y∗(t), λ∗(t)), (2.3b)

Q2(t) = ∇2
xxH(x∗(t), y∗(t), λ∗(t)), Q3(t) = ∇2

xxH(x∗(t), y∗(t), λ∗(t)). (2.3c)

Definition 2.2. We say that the problem (2.1) satisfies the coercivity con-

dition if for any (x, y) satisfying

x′ = A(t)x+B(t)y

x(t0) = 0

there exists α > 0 such that

x(tf )
TV x(tf ) +

∫ tf

t0

x(t)TQ1x(t) + 2x(t)TQ3y(t) + y(t)TQ2y(t)dt ≥ α

∫ tf

t0

y(t)2dt.

Coercivity is related to positivity of the Hessian of H which makes it a type of

2nd order optimality condition.

In [19], W. Hager proves second order convergence in y for certain explicit Runge-

Kutta methods. Translated into standard Runge-Kutta form, his assumptions take

the form:
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D1 ajk = 0 for k ≥ j

D2 ρj =
∑s

k=1 ajk for j = 1, ..., s

D3 bj > 0 for j = 1, ..., s

D4 bj = bs−j+1 for j = 1, ..., s

D5
apj

as−j+1,s−p+1
=

bj

bp
for j = 1, ..., s− 1; p = j + 1, ..., s.

The assumption (D1) means that the RK is explicit by definition and (D5) imposes

no additional restrictions on a and b if s < 3. If s = 3 or 4, (D5) imposes only the

restriction
aj1

as,s−j+1
= b1

bj
for j = 2, ..., s− 1.

Hager’s result can be interpreted as follows:

Theorem 2.3. If the optimal control problem (2.1) satisfies smoothness (Defi-

nition 2.1) and coercivity (Definition 2.2) and its RK discretization is at least 2nd

order as an integrator (Table 1.1) and satisfies conditions D.1-D.5 and has a local

optimal solution (x, y), then

max
k

‖xk − x∗(tk)‖ + max
k

‖yk1 − y∗(tk)‖ ≤ ch2.

See Section 2.4.1 for a proof of how Theorem 2.3 follows from the result in [19].

Note that this result proves only second order convergence, even for methods of higher

order.

In [14], Dontchev, Hager and Veliov prove second order convergence for 2nd order
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Runge-Kutta methods that satisfy the conditions

∑

i∈Nl

bici =
∑

i∈Nl

biσi (2.4a)

s
∑

i=1

∑

j∈Nl

biaij =
∑

i∈Nl

bi(1 − σi) (2.4b)

∑

i∈Nl

bi > 0 (2.4c)

for all l ∈ [1, s] where Ni = {j ∈ [1, s] : σj = σi}.
The result, reproduced here as Theorem 2.4, is also applicable to problems with

generalized control constraints of the form y ∈ U .

Theorem 2.4. (Adapted from [14]) If the optimal control problem (2.1) satisfies

the smoothness and coercivity conditions (Definitions 2.1 and 2.2), and the Runge-

Kutta scheme is 2nd order (see Table 1.1) and satisfies the conditions (2.4), then

for all sufficiently small h = maxhk, the discretization of (2.1) obtained according to

this Runge-Kutta scheme has a strict local minimizer (x, y) and an associated adjoint

variable λ such that, if dy∗

dt
has bounded variation,

max
i=1,...,N,j=1,...,s

||xi − x∗(ti)|| + ||λi − λ∗(ti)|| + ||yi−1,j − y∗(ti−1,j)|| ≤ ch2

Of special importance is the result in [21], where Hager derives conditions on the

parameters of a Runge-Kutta scheme (see Table 2.1, which is a copy of [21], Table 1)

that guarantee high order convergence for the multipliers as well as the states.

These conditions are much more general than either (D1)–(D5) or (2.4) and include

many of the discretizations used by practitioners. They also guarantee convergence

order higher than 2 for some higher order methods. Hager classifies a method that

satisfies the additional conditions in Table 2.1 as ”order κ for optimal control”. The

Table, which is copied directly from [21], contains conditions for orders up to 4. Later,
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Table 2.1: Order of Runge-Kutta discretization for optimal control.

Order Conditions

ci =
∑s

j=1 aij, dj =
∑s

i=1 biaij

1
∑s

i=1 bi = 1

2
∑s

i=1 di = 1/2

3
∑s

i=1 cidi = 1/6,
∑s

i=1 c
2
i bi = 1/3,

∑s
i=1 d

2
i /bi = 1/3

4
∑s

i=1 bic
3
i = 1/4,

∑s
i=1

∑s
j=1 biciaijcj = 1/8,

∑s
i=1 dic

2
i = 1/12,

∑s
i=1

∑s
j=1 diaijcj = 1/24,

∑s
i=1 cid

2
i /bi = 1/12,

∑s
i=1 d

3
i /b

2
i = 1/4,

∑s
i=1

∑s
j=1 biciaijdj/bj = 5/24,

∑s
i=1

∑s
j=1 diaijdj/bj = 1/8

in [9], Bonnans and Laurent-Varin developed an algorithm that allowed them to de-

rive ”order for optimal control” conditions for orders up to 7. Hager’s theorem can

be stated in the following way:

Theorem 2.5. (Adapted from [21], Theorem 2.1) If the optimal control problem

(2.1) satisfies the smoothness and coercivity conditions (Definitions 2.1 and 2.2), and

the Runge-Kutta scheme is of order κ for optimal control (Table 2.1) with bi > 0

for each i, then for all sufficiently small h = maxhk, the discretization of (2.1)

obtained according to this Runge-Kutta scheme has a strict local minimizer (x, y) and
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an associated adjoint variable λ such that, if dy∗

dt
has bounded variation,

max
k=0,...,N

||xk − x∗(tk)|| ≤ chκ

max
k=1,...,N

||y(xk, λk) − y∗(tk)|| ≤ chκ

max
k=1,...,N

||λk − λ∗(tk)|| ≤ chκ

where y(xk, λk) is a local minimizer of H corresponding to λ = λk, x = xk.

Theorem 2.5 is the only theoretical result we have come across that proves higher

order convergence for a large class of Runge-Kutta methods which includes the meth-

ods implemented in many software packages including SOCS, such as the Trapezoid

Method, which has the Butcher array representation

a =





0 0

1/2 1/2



 , b =





1/2

1/2



 , σ =





0

1





and the Hermite-Simpson Method, which can be represented by

a =











0 0 0

5/24 1/3 −1/24

1/6 2/3 1/6











, b =











1/6

2/3

1/6











, σ =











0

1/2

1











.

According to Table 2.1, this makes Trapezoid Method order 2 for optimal control

and Hermite-Simpson method order 4.

However, notice that Theorem 2.5 only proves high order convergence of states

and multipliers. Control convergence is notoriously harder to prove.

Theorems 2.3 and 2.4 establish second order convergence for the control under

restrictive conditions that neither Trapezoid nor Hermite-Simpson satisfy. And both

[21] and [14] give numerical results demonstrating that for many methods and even

for very simple linear problems, the controls are often found to a much lower accuracy

than the states and multipliers.
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Theorem 2.5 provides a way of post-calculating the controls using the states and

multipliers and guarantees that the resulting values are accurate to the same order.

This post-calculation procedure would not be hard to implement in SOCS. All one

would have to do is use an existing code that implements an unconstrained minimiza-

tion algorithm such as some variation of Newton’s method to find y that minimizes

the function H = λT
k f(xk, y) and repeat for every k. For problems of reasonable

size that satisfy Hager’s smoothness and coercivity assumptions this should be both

simple and fast.

However, if we tried to do it, we would encounter a big problem: the multiplier

estimates produced by SOCS are not as accurate as the discrete multipliers in The-

orem 2.5. In the next section, we will demonstrate that this is due to the fact that

the theorem assumes a Butcher array implementation whereas SOCS implements

more compact variations of popular Runge-Kutta methods such as Trapezoid and

Hermite-Simpson. These implementations are mathematically equivalent, so the

states and algebraic variables that solve the discretization are the same regardless of

implementation, but the multipliers are in fact different.

In particular, for the Trapezoid method (TR) , we will show that, for uniform

grids, the compressed implementation used in SOCS produces multipliers that are

2nd order accurate at midpoints, not gridpoints. We will also show that simple

interpolation is sufficient to obtain 2nd order estimates of the multipliers at gridpoints.

Finally, we will show that the control produced by the TR discretization regardless of

implementation is 2nd order accurate at the inside gridpoints, that is, all gridpoints

except t0 and tN = tf . This is the first result to show 2nd order convergence in

the control for TR, which had heretofore been believed to only produce 1st order

convergence. In Section 2.3, we will present some preliminary results for the Hermite-

Simpson method (HS).
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2.2 Multiplier Convergence

2.2.1 New Theoretical Result

As noted above, TR is a Runge-Kutta method characterized by

α =





0 0

1/2 1/2



 , b =





1/2

1/2



 , σ =





0

1



 .

This means that the TR discretization of problem (2.1) has the form

minC(xN ) (2.5a)

xk+1 = xk +
h

2
(f(xk, yk1, tk1) + f(χk, yk2, tk2)), k = 0, ..., N − 1 (2.5b)

χk1 = xk +
h

2
(f(xk, yk1, tk1) + f(χk1, yk2, tk2)), k = 0, ..., N − 1 (2.5c)

x0 = ζ, (2.5d)

and if the original problem satisfies the assumptions of Theorem 2.5 then (2.5) has a

solution w = (x, u, λ) which satisfies

max
k=0,...,N

‖xk − x∗(tk)‖ ≤ ch2

max
k=1,...,N

‖λk − λ∗(tk)‖ ≤ ch2.

However, by subtracting equation (2.5c) from (2.5b) we get that χk = xk+1. Also,

since σ = [0, 1], tk2 = tk+1 in (2.5b) and therefore y2
k = y1

k+1, so that in practice TR

is often simplified and implemented in the compressed form as

minC(xN) (2.6a)

−xk+1 + xk +
h

2
(f(xk, yk, tk) + f(xk+1, yk+1, tk+1)) = ηk, k = 0, ..., N − 1 (2.6b)
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x0 = ζ (2.6c)

where ηk is a small tolerance. The ηk is there because the discretization is imposed as

a constraint and thereby holds only up to a certain tolerance which is above machine

precision.

It is clear that when ηk = 0 the two formulations are mathematically equivalent

and therefore they must produce the same optimal values of xk, yk. However, if we

formulate the optimality conditions for (2.5) and (2.6), we can see that the optimal

multiplier variables are not related in any obvious ways and, in fact, take on different

numerical values. To simplify the notation we set t0 = 0, tf = 1, in what follows.

Theorem 2.6. If the smoothness and coercivity conditions (Definitions 2.1 and

2.2) are satisfied and dy∗

dt
is of bounded variation and the problem (2.1) is discretized

on a uniform grid h = hi = 1/N , then for all sufficiently small h its compressed TR

discretization (2.6) has a local optimal solution (x, y, λ) that satisfies

max
k=0,...,N

‖xk − x∗(tk)‖ ≤ ch2 (2.7a)

max
k=1,...,N

‖λk − λ∗(tk)‖ ≤ ch (2.7b)

max
k=1,...,N

‖λk − λ∗
(

tk −
h

2

)

‖ ≤ ch2 (2.7c)

max
k=1,...,N−1

∥

∥

∥

∥

λk+1 + λk

2
− λ∗(tk)

∥

∥

∥

∥

≤ ch2 (2.7d)

max
k=1,...,N−1

‖yk − y∗(tk)‖ ≤ ch2. (2.7e)

This result, which is proved in Section 2.4.2, demonstrates that whereas the multi-

pliers from the Butcher array formulation of TR are 2nd order accurate at gridpoints,

the multipliers from the popular compressed implementation are 2nd order accurate

at midpoints and only first order accurate at gridpoints. We have also proved that

one can get second order estimates on the grid using averaging, or equivalently, in-

terpolation. The new on the grid estimate for the adjoint is now being implemented
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in SOCS.

We have also shown that TR (regardless of implementation) gives second order

estimates of the control on the inside gridpoints. Until now, second or higher order

convergence in the control was only known to occur with certain restrictive classes of

methods (Theorems 2.3 and 2.4), of which neither TR nor any other of the commonly

used discretizations implemented in SOCS is a member.

The numerical results in the next section illustrate Theorem 2.6 on a particular

example.

2.2.2 Numerical Example

Example 2.1. Consider the example problem from [21]:

min

∫ 1

0

y(t)2 + x(t)y(t) +
5

4
x(t)2dt (2.8a)

x′(t) = 0.5x(t) + y(t) (2.8b)

x(0) = 1. (2.8c)

Note that this problem satisfies the coercivity condition (Definition 2.2) since the

quadratic form inside the integral in (2.8a) is positive definite and the problem has

one optimal solution given by

x∗(t) =
cosh(1 − t)

cosh(1)
(2.9a)

y∗(t) = −(tanh(1 − t) + 0.5) cosh(1 − t)

cosh(1)
(2.9b)

λ∗(t) =
2 cosh(1 − t) tanh(1 − t)

cosh(1)
. (2.9c)

In order to examine the uncompressed formulation we set up a Maple worksheet

that solves the necessary conditions to the uncompressed TR discretization of this
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problem analytically. In Table 2.2, we give the logarithm (base 2) of the max norm

of the error in x, y, λ for N = 10, 20, 40, 80. As the number of gridpoints doubles, the

logarithm of the error decreases by 2, so the error itself is a quarter of the previous

grid error. Thus both x and λ errors are order 2 as proved by Hager.

However, when we solve the same problem using SOCS on the same uniform grids

(by overriding the grid refinement algorithm and telling SOCS to only use TR), we see

in Table 2.3 that even though the resulting x values are the same, the λ values are only

first degree accurate just as equation (2.7b) of Theorem 2.6 states. In Table 2.4, we

show that, as per equation (2.7c), these values are a second order approximation to the

adjoint variables at the midpoints. We also show that, in accordance with equation

(2.7d), simple linear interpolation is sufficient to obtain second order approximations

to the adjoints on the inside gridpoints. Finally, in Table 2.5, we demonstrate that

the controls produced by TR are second order accurate on the inside gridpoints, as

stated in equation (2.7e). Figure 2.1 further illustrates this point by graphing y∗ − y

for N = 10, 20, 40, 80.

In contrast, using SOCS with the discretization specified to be the classical 4th

order Runge-Kutta method, given by

α =

















0 0 0 0

0 1/2 0 0

0 0 1/2 0

0 0 0 1

















, b =

















1/6

1/3

1/3

1/6

















, σ =

















0

1/2

1/2

1

















we obtain results that conform exactly to Theorem 2.5. The state and the multiplier

λ1 are fourth order approximations to the states and adjoints at the gridpoint, u is

third order, but u post-calculated from x and λ1 in the way given in Theorem 2.5 is

4th order or nearly so (Table 2.6). Figure 2.2 shows the plot of the error in u (not

post-calculated u). Note that it is similar to Figure 2.1 except for a vertical offset.
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Figure 2.1: Example problem solved with TR. Graph of y∗−y for N = 10, 20, 40, 80.
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Table 2.2: − log2 of uncompressed TR error to gridpoint values of x, y, λ.

N max
i=0...N‖xi − x∗(ti)‖ max

i=1...N‖λ1
i − λ∗(ti)‖

10 8.8010 9.4278
20 10.7249 11.1800
40 12.6850 13.0671
80 14.6646 15.0129

Order 2 2

N max
i=0...N‖yi1 − y∗(ti)‖ max

i=1...N‖y(λ1
i , xi) − y∗(ti)‖

10 4.3833 9.0806
20 5.3535 10.9346
40 6.3380 13.8634
80 7.3300 14.8282

Order 1 2

Table 2.3: − log2 of compressed TR error to gridpoint values of x, y, λ.

N max
i=0...N‖xi − x∗(ti)‖ max

i=0...N‖yi − y∗(ti)‖ max
i=1...N‖λi − λ∗(ti)‖

10 8.8010 4.3833 3.3677
20 10.7249 5.3535 4.3446
40 12.6850 6.3380 5.3332
80 14.6646 7.3300 6.3275

Order 2 1 1

Table 2.4: − log2 of compressed TR error in λ: at gridpoint, at midpoint, interpo-
lated at gridpoint.

N max
i=1...N‖λi − λ∗(ti)‖ max

i=1...N‖λi − λ∗
(

ti − h
2

)

‖ max
i=1...N−1‖λi+λi+1

2
− λ∗(ti)‖

10 3.3677 8.7633 8.0477
20 4.3446 10.6731 9.9185
40 5.3332 12.6283 11.8554
80 6.3275 14.6053 13.8243

Order 1 2 2
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Table 2.5: − log2 of compressed TR error in y: inside gridpoints and endpoints.

N max
i=1...N−1‖yi − y∗(ti)‖ ‖y0 − y∗(t0)‖ ‖yN − y∗(tf)‖

10 8.3757 4.3833 4.9563
20 10.2660 5.3535 5.9522
40 12.2114 6.3380 6.9500
80 14.1841 7.3300 7.9489

Order 2 1 1

Table 2.6: − log2 of RK4 error to gridpoint values of x, y, λ.

N max
i=0...N‖xi − x∗(ti)‖ max

i=1...N‖λ1
i − λ∗(ti)‖

5 15.6440 15.8353
10 19.4282 19.7289
20 23.3203 23.6685

Order 4 4

N max
i=0...N‖yi1 − y∗(ti)‖ max

i=1...N‖y(λ1
i , xi) − y∗(ti)‖

5 9.7356 17.5819
10 12.7113 21.2261
20 15.7039 24.4543

Order 3 3-4

The reasons for this offset are not clear.
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Figure 2.2: Example problem solved with RK4. Graph of y∗ − y for N = 5, 10, 20.
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2.3 Open Questions

We have proved some practical results regarding multiplier and control convergence

for Trapezoid Method. However, commercial direct transcription codes also use com-

pressed versions of other discretizations that may be preferable to TR because they

give higher order convergence in the states. The default option in SOCS , for example,

is to discretize the problem on a coarse grid using TR, then after two mesh refinement

iterations switch to a discretization called Hermite-Simpson method (HS).

Both TR and HS are collocation methods, but whereas the TR approximation

to the right-hand side of a differential equation is piecewise linear, HS approximates

a function with cubic splines. TR is 2nd order as integrator as well as 2nd order

for optimal control, which means that, in its uncompressed form, it gives 2nd order

convergence in states, multipliers and post-calculated controls. HS is 4th order as an

integrator as well as 4th order for optimal control.

The Butcher-array formulation of HS is given by

xk+1 = xk + h(
1

6
f(xk, yk1, tk) +

2

3
f(χk1, yk2, tk+ 1

2

) +
1

6
f(χk2, yk3, tk+1)) (2.10)

χk1 = xk + h(
5

24
f(xk, yk1, tk) +

1

3
f(χk1, yk2, tk+ 1

2

) − 1

24
f(χk2, yk3, tk+1))(2.11)

χk2 = xk + h(
1

6
f(xk, yk1, tk) +

2

3
f(χk1, yk2, tk+ 1

2

) +
1

6
f(χk2, yk3, tk+1)). (2.12)

Two implementations of HS are available in SOCS. The default is HS-Compressed.

The other one is called HS-Separated. HS-Separated is obtained from the Butcher

array formulation by subtracting (2.12) from (2.10) to obtain χk2 = xk+1, then solving

(2.10) for f(χk1, y
2
k, tk+ 1

2

) and substituting into (2.11). HS-Separated is implemented
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Table 2.7: − log2 of HS-RK (Butcher array) error to gridpoint values of x, y, λ.

N max
i=0...N‖xi − x∗(ti)‖ max

i=0...N‖y1
i − y∗(ti)‖ max

i=0...N−1‖λ1
i − λ∗(ti)‖

5 17.6312 8.7187 16.8779
10 21.5477 10.6696 20.7249
20 25.5050 12.6455 24.6494

Order 2 1 1

in SOCS as

xk+1 − xk −
h

6
(f(xk, yk1, tk) + 4f(χk1, yk2, tk+ 1

2

) + f(xk+1, yk+1,1, tk+1)) = η1(2.13)

χk1 − xk −
1

2
(xk + xk+1) −

h

8
(f(xk, yk1, tk) + f(xk+1, yk+1,1, tk+1)) = η2(2.14)

where η1, η2 are preset tolerances.

The most compact formulation, HS-Compressed, is obtained by solving (2.14)

(η2 = 0) for χk1 and consists of only one equation

xk+1 − xk −
h

6
(f(xk, yk1, tk) + 4f(χ, yk2, tk+ 1

2

) + f(xk+1, yk+1,1, tk+1)) = η (2.15)

where χ is defined exactly by

χ = xk +
1

2
(xk + xk+1) +

h

8
(f(xk, yk1, tk) + f(xk+1, yk+1,1, tk+1)).

Note that HS-Compressed has only N(m1 + 2m2) variables and Nm1 constraints

compared to N(m1 +m2) and Nm1 constraints for TR-Compressed but it offers 4th

degree approximation of the state instead of only 2nd degree. It does not, however,

offer a 4th order approximation of adjoints at the gridpoint in the same way that

the Butcher array formulation (N(3m1 + 2m2) variables, 3Nm1 constraints) does

according to Theorem 2.5.

We implemented the Butcher array formulation of HS in Maple and applied it to

Example 2.1. The states, controls and multipliers we obtained were 4th, 2nd and 4th
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Figure 2.3: Example problem solved with HS. Graph of y∗ − y for N = 5, 10, 20.

Table 2.8: − log2 of HS-Compressed error to gridpoint values of x, y, λ.

N max
i=0...N‖xi − x∗(ti)‖ max

i=0...N‖y1
i − y∗(ti)‖ max

i=1...N‖λi − λ∗(ti)‖
5 17.6312 8.7187 2.4610
10 21.5459 10.6696 3.3934
20 25.4973 12.6455 4.3581

Order 4 2 1
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Table 2.9: − log2 of HS-Compressed error in λ: at gridpoint, at midpoint, interpo-
lated at gridpoint.

N max
i=1...N‖λi − λ∗(ti)‖ max

i=1...N‖λi − λ∗
(

ti − h
2

)

‖ max
i=1...N−1‖λi+λi+1

2
− λ∗(ti)‖

5 2.4610 8.8156 7.0228
10 3.3934 10.7175 8.8161
20 4.3581 12.6697 10.7177

Order 1 2 2

Table 2.10: − log2 of HS-Compressed error in y: inside gridpoints and endpoints.

N max
i=1...N−1‖y1

i − y∗(ti)‖ ‖y1
0 − y∗(t0)‖ ‖y1

N − y∗(tf )‖
5 9.0229 8.7187 13.1719
10 10.8162 10.6696 16.1703
20 12.7176 12.6455 19.0974

Order 2 2 3

order respectively (see Table 2.7). However, solving the same example with SOCS

demonstrated (see Tables 2.8 – 2.10) that HS-Compressed can only offer a 2nd degree

approximation to the adjoints at the midpoint, same as TR.

Unlike with TR, the control error on the inside gridpoints is not significantly

smaller than at the ends (Table 2.10, Figure 2.3). However, we did notice the linear

nature of the gridpoint errors in Figure 2.3. Notice in Table 2.10 that the endpoint

error appears to be 3rd order. Taken together with Figure 2.3, this may indicate

that HS-Compressed in fact gives a third order approximation to the control on some

rescaled grid. As expected, the uncompressed formulation, which we implemented

with Maple, gives multipliers that are 4th order accurate.

The slight discrepancy between the state values obtained with SOCS and Maple

can be explained by the difference in the solution algorithms (SQP in SOCS, exact

algebraic solution in Maple). The tables only give the logarithm of the errors, but
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the state errors themselves are on the order of 10−6, 10−7, 10−8 for N = 5, 10, 20

respectively, whereas the control errors are only on the order of 10−3 to 10−4.

In summary, future work would include

• A theorem similar to Theorem 2.6 for HS-Compressed. We would like to

establish 2nd order convergence at the midpoint, and the validity of simple

interpolation to obtain 2nd order approximations at the gridpoint. Can

adjoint approximations of order greater than 2 be obtained on the original

grid or on some other grid, either directly from the discrete multipliers or

though some kind of manipulation?

• Some insight into control error with HS. Can we prove 2nd order conver-

gence overall for yk1 and perhaps higher order convergence on a subgrid

or a shifted grid as we did with TR? Does yk2 converge to the either the

gridpoint or the midpoint values of the control and to which order?

• Studying the differences and similarities between HS-Compressed and

HS-Separated. Are the multipliers produced by HS-Separated and HS-

Compressed always the same? What are the advantages of one formula-

tion versus the other?

We have produced Maple worksheets and Matlab routines as well as organized

data from various SOCS implementations of Example 2.1. This setup allows for easy

data analysis and implementation of numerical experiments to test out any further

conjectures relating to the above three questions. All that remains is theoretical work.
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2.4 Proofs

2.4.1 Proof of Theorem 2.3

The paper [19], page 458 makes the following assumptions about a problem of the

form (2.1):

A1 There exist an optimal control y∗ and a corresponding trajectory x∗

A2 The differential equation x′ = f(x, y) can be integrated for all y in some neigh-

borhood of y∗

A3 There exists an optimal solution χh, yh to the discretization

A4 Both the discrete and the continuous optimality conditions hold

A5 The discretization is order b as an integrator, where b ≥ 2.

A6 If x1, x2 are solutions to x′ = f(x, y) satisfying x1(s) = p1, x2(s) = p2 for some

s ∈ [0, 1] then for all t ∈ [0, 1], ‖x1(t) − x2(t)‖ = O(‖p1 − p2‖).

Now (A1), (A2), (A4) follow from smoothness and (A6) follows from smoothness

and coercivity (see [16]), whereas (A3) and (A5) are part of the theorem statement.

The RK discretization of (2.1) has the form

min C(xN ) (2.16a)

xi+1 = xi + hi

s
∑

j=1

bjf(χij, yij), i = 0, ..., N − 1 (2.16b)

χij = xi + hi

s
∑

k=1

ajkf(χik, yik), i = 0, ..., N − 1, j = 1, ..., s (2.16c)

x0 = ζ. (2.16d)
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Let αjp = aj+1,p+1 for j = 1, ..., s − 1; p = 0, ..., s − 2 and αsp = bp+1 for p =

0, ..., s− 1. Using (D1), we can rewrite (2.16) as

min C(x̄N0)

x̄ij = x̄i0 + hi

j−1
∑

p=0

αjpf(x̄ik, ȳik), i = 0, ..., N − 1, j = 1, ..., s

x̄i+1,0 = x̄i,s, i = 0, ..., N − 1

x̄00 = (0, 0, ζ)

where x̄i0 = xi for i = 0, ..., N , x̄ij = χi,j+1 for j = 1, ..., s − 1, ȳij = yi,j+1 for

j = 0, ..., s− 1.

Moreover, we can establish that the following conditions are satisfied

P1 ([19],p.458) x̄ij , ȳij approximate the state and the control at time ti + ρjhi where

0 = ρ0 ≤ ... ≤ ρs = 1. This follows from 0 ≤ σ1 ≤ ... ≤ σs ≤ 1, (D2), (D4) and

the relationship between (x̄ij , ȳij) and xi, χij, yij.

P2 ([19],p.460) αsj 6= 0 for j = 0, ..., s− 1, which follows from (D3).

P3 ([19], Eq.39) αsj = αs,s−j−1 for j = 0, ..., s− 1, which follows from (D5).

P4 ([19], Eq.38) αpjαsp = αsjαs−j−1,s−p−1 for j = 0, ..., s−2; p = j+1, ..., s−1, which

follows from D.6.

The assumption in [19], Theorem 3.1 that h
(

∇2
yyH

)−1
is bounded in y and h

follows directly from coercivity [21]. So the bound on the error in y follows from

Lemma 3.1 and Theorem 3.1 in [19] and the bound on the error in x follows from the

discretization being 2nd order as an integrator.

2.4.2 Proof of Theorem 2.6

We will utilize an abstract result from [21], reproduced here as Lemma 2.1.
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Lemma 2.1. ([21], Proposition 5.1) Let X be a Banach space and let Y be a

linear normed space with the norms in both spaces denoted ‖ · ‖. Let F : X → 2Y be

a set-valued map, let L : X → Y be a bounded linear operator, and let T : X → Y be

continuously Frechét differentiable in Br(w
∗) for some w∗ ∈ X and r > 0. Suppose

that the following conditions hold for some δ ∈ Y and scalars ǫ, γ, and τ > 0:

Q1 T (w∗) + δ ∈ F (w∗).

Q2 ‖ ▽ T (w) − L‖ ≤ ǫ for all w ∈ Br(w
∗).

Q3 The map (F − L)−1 is single-valued and Lipschitz continuous in Bτ (π), π =

(T − L)(w∗), with Lipschitz constant γ.

If ǫγ < 1, ǫr ≤ τ, ‖δ‖ ≤ (1− γǫ)r/γ, then there exists a unique w ∈ Br(w
∗) such that

T (w) ∈ F (w). Moreover, we have the estimate

‖w − w∗‖ ≤ γ

1 − γǫ
‖δ‖.

Formulate the Hamiltonian for (2.6)

H̄(x, y, λ) = C(xN ) +
N−1
∑

k=0

λk+1

(

−xk+1 + xk +
h

2
(f(xk, yk) + f(xk+1, yk+1))

)

,

and let

T (w) =











T 1(w)

T 2(w)

T 3(w)











=











H̄λk
, k = 1, ..., N

H̄xk
, k = 1, ..., N

H̄yk
, k = 0, ..., N











where w = (x, y, λ) = (x0, ..., xN , y0, ..., yN , λ1, ..., λN).

We apply function space norms to x, y and λ by considering them as piecewise

constant functions on [t0, tf ] with respect to the gridpoints tk with value xk (yk, λk)

on the kth subinterval.
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Define a norm on the domain of T by

‖w‖ = ‖x‖L∞ + ‖y‖L2 + ‖λ‖L∞ (2.17)

and a norm on the range of T by

‖(p, q, r)‖ = ‖p‖L1 + ‖q‖L1 + ‖r‖L2. (2.18)

Let Ak, Bk, Qik denote A,B,Qi evaluated at t = tk and let L(w) be given by

−xk+1 + xk +
h

2
(Akxk +Bkyk + Ak+1xk+1 +Bk+1yk+1) , k = 0, ..., N − 1(2.19a)

h(Q1k
xk +Q3k

yk) +

(

I +
h

2
AT

k

)

λk+1 −
(

I − h

2
AT

k

)

λk, k = 1, ..., N − 1(2.19b)

h

2
(2V xN +Q1N

xN +Q3N
yN) −

(

I − h

2
AT

N

)

λN (2.19c)

h

2

(

Q20
y0 +QT

30
x0 +BT

0 λ1

)

(2.19d)

h

(

Q2k
yk +QT

3k
xk +

1

2
BT

k (λk+1 + λk)

)

, k = 1, ..., N − 1(2.19e)

h

2

(

Q2N
yN +QT

3N
xN +BT

NλN

)

. (2.19f)

We will apply Lemma 2.1 (case F = 0) to two different values of w∗, ŵ and w̌,

where

x̂ = x̌ = (x(t0)
∗, ..., x(tN)∗),

λ̂ = (λ∗(t1), ..., λ
∗(tf )),

λ̌ =

(

λ∗
(

t0 +
h

2

)

, ..., λ∗
(

tN−1 +
h

2

))

.

and ŷ, y̌ are defined in Lemma 2.5.

Next, we have several small lemmas that will help us prove two useful theorems.

Then, Theorem 2.7 will establish that (Q3) of Lemma 2.1 holds for L defined above

for F = 0 near both ŵ and w̌. In Theorem 2.8, we will calculate T (ŵ) and T (w̌).
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Finally, we tie it all together in the proof of Theorem 2.6. The next Lemma is known

but we include its proof to illustrate the role of h in the norms used.

Lemma 2.2. Given N ≥ 1, h = 1
N

, then for any vector z ∈ Rm(N+1),

‖z‖L1 ≤ c1‖z‖L2 ≤ c2‖z‖L∞.

Proof. Let 〈·, ·〉 denote the Euclidean inner product and let 1̄ be a vector of N +1

ones. Using the Schwartz inequality,

‖z‖L1 =

N+1
∑

i=1

h‖zi‖ = 〈
√
h1̄,

√
h‖zi‖〉 ≤

√
h‖1̄‖2‖

√
hz‖2

=

√

N + 1

N
‖z‖L2 ≤

√

2N

N
‖z‖L2 =

√
2‖z‖L2 .

For the second inequality,

‖z‖L2 =

√

√

√

√

N+1
∑

i=1

h‖zi‖2 ≤

√

√

√

√

N+1
∑

i=1

h(max
i

‖zi‖)2 =

√

N + 1

N
(max

i
‖zi‖)2 ≤

√
2‖z‖L∞.

Lemma 2.3. For all sufficiently small h, the solution x to the system of equations

xk+1 = xk +
h

2
(Akxk + Ak+1xk+1) + zk, k = 0, ..., N − 1 (2.20a)

x0 = ζ, (2.20b)

where z, ζ are given, can be described by x = M1(z) +M2(ζ) where M1,M2 are linear

operators.
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Proof. We rewrite (2.20) as Āx = z + e1ζ where the block bidiagonal matrix

Ā =























I 0 · · · 0

−I − h
2
A0 I − h

2
A1

. . .
...

...
. . .

. . .
...

0

0 · · · −I − h
2
AN−1 I − h

2
AN























is invertible and e1 = (I, 0, ..., 0)T . Thus M1 = Ā−1,M2 = Ā−1e1.

Lemma 2.4. For all (x, λ) ∈ Bτ (x
∗(tk), λ

∗(tk)), where τ is independent of h, there

exists a unique y satisfying Hy(x, y, λ) = 0 and ‖y − y∗(tk)‖ ≤ c(‖λ− λ∗(tk)‖+ ‖x−
x∗(tk)‖).

Proof. Coercivity implies that Hyy(x
∗(t), y∗(t), λ∗(t)) = Q2(t) is invertible for all t

and hence uniformly positive definite since we are working on a closed finite interval

[21]. So the result follows from the Implicit Function Theorem.

Lemma 2.5. There exist ŷ, y̌ satisfying

‖y∗(tk) − ŷk‖ ≤ ch, k = 0, ..., N

‖y∗(tk) − y̌k‖ ≤ ch2, k = 1, ..., N − 1

‖y∗(tk) − y̌k‖ ≤ ch, k = 0, N

such that ŷ, y̌ solve H̄yk
(x∗(tk), y, λ) for λ = λ̂ and λ = λ̌ respectively.

Proof. First, note that

H̄yk
=























hHy(xk, yk,
λk+1+λk

2
), k = 1, ..., N − 1

h
2
Hy(x0, y0, λ1), k = 0

h
2
Hy(xN , yN , λN), k = N.
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Applying Lemma 2.4 with x = x∗(tk) and λ = λ̂k+1+λ̂k

2
we obtain, for k = 1, ..., N−

1,

‖ŷk − y∗(tk)‖ ≤ ‖λ
∗(tk+1) + λ∗(tk)

2
− λ∗(tk)‖

=
‖λ∗(tk+1) − λ∗(tk)‖

2
≤ ch.

Similarly, if k = N and λ = λ̂N then

‖ŷk − y∗(tk)‖ ≤ ‖λ∗(tN ) − λ∗(tN)‖ = 0

and if k = 0,

‖ŷk − y∗(tk)‖ ≤ ‖λ∗(t1) − λ∗(t0)‖ = ch.

This establishes Lemma 2.5 for ŷ.

For y̌, we proceed in the same way, noting that, for k = 1, ..., N − 1,

∥

∥

∥

∥

∥

λ∗
(

tk + h
2

)

+ λ∗
(

tk − h
2

)

2
− λ∗(tk)

∥

∥

∥

∥

∥

≤ ch2,

but
∥

∥

∥

∥

λ∗
(

t1 −
h

2

)

− λ∗(t1)

∥

∥

∥

∥

≤ ch

and
∥

∥

∥

∥

λ∗
(

tN − h

2

)

− λ∗(tN)

∥

∥

∥

∥

≤ ch.

Theorem 2.7. In the norms given by equations (2.17) and (2.18), the function

L−1 is Lipschitz continuous everywhere with Lipschitz constant γ = c
h
.

Proof. Consider the equation L(w) − π = 0 where π = −(p, q, r) ∈ R3N+1. It can

be easily shown that this equation forms a set of first order necessary conditions to
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the quadratic programming problem

min
xk,yk

(

N−1
∑

k=1

Lk(xk, yk) + qT
k xk + rT

k yk

)

+
1

2
(hL0(x0, y0) + 2r0y0)

+
1

2
(hLN (xN , yN) + 2hxT

NV xN + 2qT
NxN + 2rT

NyN) (2.21a)

xk+1 = xk +
h

2
(Akxk +Bkyk + Ak+1xk+1 +Bk+1yk+1) + pk (2.21b)

x0 = ζ (2.21c)

where Lk(xk, yk) = 1
2

(

xT
kQ1k

xk + 2xT
kQ3k

yk + yT
k Q2k

yk

)

.

By Lemma 2.3, (2.21) can be written as 1

min
y,x

L̄(x, y) + q̄Tx+ r̄Ty (2.22)

x = M1(PB̄y + p) +M2(ζ) (2.23)

where

P =
h

2











I I
. . .

...

0
. . .

. . . 0
... · · · I I











,

L̄ = xT Q̄1x+ yT Q̄2y + 2xT Q̄3y

=
N−1
∑

k=1

Lk(xk, yk) +
1

2
(L0(x0, y0) + LN(xN , yN) + xT

NV xN ),

q̄ =
1

h
(0, q1, ..., qN−1, 2qN),

r̄ =
1

h
(2r0, r1, ..., rN−1, 2rN),

B̄ = (B0, ..., BN).

1The idea behind this transformation was borrowed from [20], page 1066.
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Substituting (2.23) into (2.22) we obtain the unconstrained problem miny C(y)

where

C(y) = ((yT B̄TP T + pT )MT
1 + ζTMT

2 )Q̄1(M1(PB̄y + p) +M2(ζ)) + yT Q̄2y

+2((yT B̄TP T + pT )MT
1 + ζTMT

2 )Q̄3y + q̄T (M1(PB̄y + p) +M2(ζ)) + r̄Ty

= yT Q̄y + (φ1 + φ2ζ)
Ty + φ3(ζ) + φ4

where

Q̄ = B̄TP TMT
1 Q̄1M1PB̄ + Q̄2 + 2B̄TP TMT

1 Q̄3

φ1 = 2(B̄TP TMT
1 Q̄1 + Q̄3

T
)M1p+ B̄TP TMT

1 q̄ + r̄

φ2 = 2B̄TP TMT
1 Q̄1M2 + 2Q̄3

T
M2.

Since C(y) = yT Q̄y corresponds to the problem (2.21) with p = q = r = ζ = 0,

the coercivity condition on the original problem implies yT Q̄y ≥ β‖y‖L2. So, by [15],

Lemma 4, given y1, y2 corresponding to two different values φ̄1, φ̄2 of φ̄ = φ1 + φ2ζ ,

we have ‖y1 − y2‖L2 ≤ c‖φ̄1 − φ̄2‖L2. If φ̄i = φ̄(pi, qi, ri, ζ), then we have

‖y1− y2‖L2 ≤ c‖(B̄TP TMT
1 Q̄1 + Q̄3

T
)M1(p

1 −p2)+ B̄TP TMT
1 (q̄1 − q̄2)+ (r̄1 − r̄2)‖L2 .

To make the following discussion more readable, let z̈
.
= z1 − z2 where z can be

p, q, r, x, y or λ. Note that x = M1p̈ is the solution to

xk+1 = xk +
h

2
(Akxk + Ak+1xk+1) + p̈k (2.24a)

x0 = 0. (2.24b)
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Thus we have

xk+1 =

(

I − h

2
Ak+1

)−1(

I +
h

2
Ak

)

xk +

(

I − h

2
Ak+1

)−1

p̈k

=

(

Πk
i=k−1(I −

h

2
Ai+1)

−1(I +
h

2
Ai)

)

xk−1

+(I − h

2
Ak+1)

−1(I +
h

2
Ak)(I −

h

2
Ak)

−1p̈k−1 + (I − h

2
Ak+1)

−1p̈k

=

(

Πk
i=0(I −

h

2
AT

i+1)
−1(I +

h

2
AT

i )

)

x0

+

k
∑

i=0

(

Πk
j=i(I −

h

2
AT

j+1)
−1(I +

h

2
AT

j )

)

(I − h

2
Ai+1)

−1p̈i

=

k
∑

i=0

(

Πk
j=i(I −

h

2
AT

j+1)
−1(I +

h

2
AT

j )

)

(I − h

2
Ai+1)

−1p̈i.

Let a = maxk=0,...,N ‖Ak‖/2 and assume h < 1/a, so that, for j = 0, ..., N ,

‖I +
h

2
Aj‖ ≤ 1 + ha

‖
(

I − h

2
Aj

)−1

‖ ≤ (1 − ha)−1

We also use the fact that (1+ha)1/h, (1−ha)−1/h are both bounded from above by ea

which in turn is bounded by maxt0<t<tf e
‖A(t)‖/2. And so we have, for k = 0, ..., N−1,

‖xk+1‖ ≤
k
∑

i=0

(

Πk
j=i‖(I −

h

2
AT

j+1)
−1‖‖I +

h

2
AT

j ‖
)

‖(I − h

2
Ai+1)

−1‖‖p̈i‖

≤
N−1
∑

i=0

(1 + ha)N−i

(1 − ha)N−i+1
‖p̈i‖ ≤ e2a

N−1
∑

i=0

‖p̈i‖

≤ c

h
‖p̈‖L1 .

Hence

‖x‖L∞ = max
k

‖xk‖ ≤ c

h
‖p̈‖L1

and therefore by Lemma 2.2,

‖M1p̈‖L2 = ‖x‖L2 ≤ c

h
‖p̈‖L1 .
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The second term can be evaluated as follows:

‖P TMT
1 (q̄1 − q̄2)‖L2 ≤ ‖2

h
P TMT

1 (0
q̈)‖L2 ≤ ‖2

h
P T‖L2‖MT

1 (0
q̈)‖L2.

Now

‖2

h
P T‖L2 = max

‖z‖
L2=1

√

h(z2
1 + (z1 + z2)2 + ...(zN−1 + zN)2 + z2

N)

= max
‖z‖

L2=1
‖(0, z1, ..., zN) + (z1, ..., zN , 0)‖L2

≤ max
‖z‖

L2=1
2‖(z0, z1, ..., zN)‖L2

= 2.

and µ = MT
1 (0

q̈) is the solution to

µ0 = µ1 +
h

2
AT

0 µ1 (2.25a)

µk = µk+1 +
h

2
AT

k (µk + µk+1) + q̇k, k = 1, ..., N − 1 (2.25b)

µN =
h

2
AT

NµN + 2q̇N . (2.25c)
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where q̇k = q̈k for k = 1, ..., N − 1, q̇N = 2q̈N . So we have, for k = 1, ..., N − 1,

µk = (I − h

2
AT

k )−1(I +
h

2
AT

k )µk+1 + (I − h

2
AT

k )−1q̇k

=

(

Πk+1
i=k (I − h

2
AT

i )−1(I +
h

2
AT

i )

)

µk+2

+(I − h

2
AT

k )−1(I +
h

2
AT

k )(I − h

2
AT

k+1)
−1q̇k+1 + (I − h

2
AT

k )−1q̇k

=

(

ΠN−1
i=k (I − h

2
AT

i )−1(I +
h

2
AT

i )

)

µN

+
N−1
∑

i=k

(

Πi−1
j=k(I −

h

2
AT

j )−1(I +
h

2
AT

j )

)

(I − h

2
AT

i )−1q̇i

=

(

ΠN−1
i=k (I − h

2
AT

i )−1(I +
h

2
AT

i )

)

(I − h

2
AT

N )−1q̇N

+
N−1
∑

i=k

(

Πi−1
j=k(I −

h

2
AT

j )−1(I +
h

2
AT

j )

)

(I − h

2
AT

i )−1q̇i

=

N
∑

i=k

(

Πi−1
j=k(I −

h

2
AT

j )−1(I +
h

2
AT

j )

)

(I − h

2
AT

i )−1q̇i.

Note that the last expression also describes µN .

We calculate an upper bound on ‖µk‖ similarly to ‖xk+1‖ in (2.24), by letting

a = maxk=1,...,N ‖AT
k ‖/2 and assuming h < 1/a, so that, for k = 1, ..., N ,

‖µk‖ ≤
N
∑

i=k

(

Πi−1
j=k‖(I −

h

2
AT

j )−1‖‖I +
h

2
AT

j ‖
)

‖(I − h

2
AT

i )−1‖‖q̇i‖

≤
N
∑

i=1

(1 + ha)i−1

(1 − ha)i
‖q̇i‖ ≤ (1 + ha)N

(1 − ha)N

N
∑

i=1

‖q̇i‖ ≤ 2e2a

N
∑

i=1

‖q̈i‖

=
c

h
‖q̈‖L1.

Also,

‖µ0‖ ≤ ‖(I +
h

2
AT

0 )‖‖z0‖ = c‖z0‖ ≤ c

h
‖q̈‖L1
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so that

‖µ‖L∞ = max
k

‖µk‖ ≤ c

h
‖q̈‖L1.

and therefore by Lemma 2.2

‖MT
1 q̈‖L2 = ‖µ‖L2 ≤ c

h
‖q̈‖L1.

Thus we have

‖ÿ‖L2 ≤ c

h
(‖p̈‖L1 + ‖q̈‖L1 + ‖r̈‖L2 .) (2.26)

Now subtract L(w1) − π2 = 0 from L(w2) − π1 = 0 to obtain

ẍk+1 = ẍk + h (Akẍk +Bkÿk + Ak+1ẍk+1 +Bk+1ÿk+1) + p̈k, (2.27a)

k = 1, ..., N − 1

ẍ0 = 0 (2.27b)

λ̈k = λ̈k+1 +
h

2
AT

k

(

λ̈k + λ̈k+1

)

+ h(Q1k
ẍk +Q3k

ÿk) + q̈k, (2.28a)

k = 1, ..., N − 1

λ̈N =
h

2
AT

N λ̈N +
h

2
(2V xN +Q1N

ẍN +Q3N
ÿN) + q̈N (2.28b)

Compare (2.24) to (2.27) to conclude

‖ẍ‖L∞ ≤ c

h
‖hB̄ÿ + p̈‖L1 ≤ c‖ÿ‖L2 +

c

h
‖p̈‖L1 .

Next, compare (2.25) to (2.28) to conclude

‖λ̈‖L∞ ≤ c
N−1
∑

k=1

(h‖Q1k
ẍk +Q3k

ÿk‖ + ‖q̈k‖) +
ch

2
‖2V ẍN +Q1N

ẍN +Q3N
ÿN‖ + ‖q̈N‖

≤ c‖ÿ‖L1 + c‖ẍ‖L1 +
c

h
‖q̈‖L1

≤ c‖ÿ‖L2 +
c

h
(‖p̈‖L1 + ‖q̈‖L1).
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Combining these results with (2.26), we have

‖x1−x2‖L∞ +‖y1−y2‖L2 +‖λ1−λ2‖L∞ ≤ c

h
(‖p1−p2‖L1 +‖q1−q2‖L1 +‖r1−r2‖L2).

This completes the proof of Theorem 2.7.

Theorem 2.8. Given the previous definitions and assumptions it follows in the

norm given by (2.18) that,

‖T (ŵ∗)‖ = ‖(p̂, q̂, r̂)‖ = ch2

‖T (w̌∗)‖ = ‖(p̌, q̌, ř)‖ = ch3.

Proof. By definition of ŷ, y̌, we have ‖r̂‖L2 = ‖ř‖L2 = 0. Using Lemma 2.5 and

the fact that f is Lipschitz continuous we have, for k = 0, ..., N − 1,

‖p̂k‖ = ‖ − x∗(tk+1) + x∗(tk) +
h

2
(f(x∗(tk), ŷk) + f(x∗(tk+1), ŷk+1))‖

= ‖ − x∗(tk+1) + x∗(tk) +
h

2
(f(x∗(tk), y

∗(tk)) + f(x∗(tk+1), y
∗(tk+1))

+
h

2
(f(x∗(tk), ŷk) − f(x∗(tk), y

∗(tk))) +
h

2
(f(x∗(tk+1), ŷk+1) − f(x∗(tk), y

∗
k+1))‖

≤ ‖ − x∗(tk+1) + x∗(tk) +
h

2
(f(x∗(tk), y

∗(tk)) + f(x∗(tk+1), y
∗(tk+1)))‖

+ch‖ŷk − y∗(tk) + ŷk+1 − y∗(tk+1)‖

≤ c1h
3 + c2h

2 = ch2.

giving ‖p̂‖L1 = ch2.

For p̌ we have, for k = 1, ..., N − 2,

‖p̌k‖ ≤ c1h
3 + ch‖y̌k − y∗(tk) + y̌k+1 − y∗(tk+1)‖ = ch3.

But

‖p̌0‖ ≤ c1h
3 + ch‖y̌0 − y∗(t0) + y̌1 − y∗(t1)‖

≤ c1h
3 + h(c2h+ c3h

2) = ch2
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and

‖p̌N−1‖ ≤ c1h
3 + ch‖y̌N−1 − y∗(tN−1) + y̌N − y∗(tN)‖

≤ c1h
3 + h(c2h

2 + c3h) = ch2.

So

‖p̌‖L1 ≤
(

N−2
∑

k=1

h(c1h
3)

)

+ 2h(c2h
2) ≤ ch3.

To evaluate q̂ and q̌, we first rewrite them in terms of Hx. Thus we have, for

k = 1, ..., N − 1,

q̂k = λ∗(tk+1) − λ∗(tk) +
h

2
fx(x

∗(tk), ŷk)
T (λ∗(tk) + λ∗(tk+1))

= λ∗(tk+1) − λ∗(tk) + hHx

(

x∗(tk), ŷk,
λ∗(tk) + λ∗(tk+1)

2

)

and

q̂N = −λ∗(tN) +
h

2
fx(x

∗(tN), ŷN)Tλ∗(tN ) + Cx(x
∗(tN ))

=
h

2
Hx(x

∗(tN), ŷN , λ
∗(tN ))

and for q̌ we have

q̌k = λ∗
(

tk +
h

2

)

− λ∗
(

tk−1 +
h

2

)

+hHx

(

x∗(tk), y̌k,
λ∗
(

tk + h
2

)

+ λ∗
(

tk−1 + h
2

)

2

)

, k = 1, ..., N − 1

q̌N = −λ∗
(

tN − h

2

)

+
h

2
H

(

x∗(tN ), y̌N , λ
∗

(

tN − h

2

))

+ λ∗(tN).

Next, let H̃(t, λ) = Hx(x
∗(t), y∗(t), λ). Consider the RK method given by α =

[1/2], b = [1], σ = [0]. Checking Table 1 in [21], we determine that it is a 2nd order

method. So, integrating λ′ = −H̃(t, λ) from tk to tk+1 with step size h, we obtain

q̃1
k = −λ∗(tk+1) + λ∗(tk) − hHx

(

x∗(tk), y
∗(tk),

λ∗(tk) + λ∗(tk+1)

2

)

= O(h3).
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Applying the 2nd order RK method given by α = [1/2], b = [1], σ = [1/2] with

step size h to the same equation from tk−1 + h
2

to tk + h
2
, we obtain

q̃2
k = −λ∗

(

tk +
h

2

)

+ λ∗
(

tk−1 +
h

2

)

−hHx

(

x∗(tk), y
∗(tk),

λ∗
(

tk + h
2

)

+ λ∗
(

tk−1 + h
2

)

2

)

= O(h3).

We also define

q̃3 = λ∗
(

tN − h

2

)

− h

2
H

(

x∗(tN), y∗(tN ), λ∗
(

tN − h

2

))

+ λ∗(tN ) = O(h2),

which is obtained by applying the 1st order RK method given by α = [0], b = [1], σ =

[1], with step size h/2 to the equation λ′ = −H̃(t, λ) from tN − h
2

to tN .

Finally, we use Lipschitz continuity of Hx and λ∗ and Lemma 2.5 to show

‖q̂k‖ = ‖q̂k + q̃1
k‖ ≤ ch3 + ch‖ŷk − y∗(tk)‖ ≤ ch2,

‖q̂N‖ ≤ ch

and

‖q̌k‖ = ‖q̌k + q̃2
k‖ ≤ ch3 + ch‖y̌k − y∗(tk)‖ ≤ ch3,

‖q̌N‖ = ‖q̌N + q̃3‖ ≤ h3c+ ch‖y̌N − y∗(tN )‖ ≤ ch2.

Thus

‖q̂‖L1 ≤
(

N−1
∑

k=1

h(c1h
2)

)

+ h(c2h) ≤ ch2

and

‖q̌‖L1 ≤
(

N−1
∑

k=1

h(c1h
3)

)

+ h(c2h
2) ≤ ch3.

With these lemmas and theorems in place we can now prove our main theorem.
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Proof. [Proof of Theorem 2.6] Let δ̂ = −T (ŵ) and δ̌ = −T (w̌). By Theorem 2.8

we have, in the norm defined in (2.18),

‖δ̂‖ = ‖p̂‖L1 + ‖q̂‖L1 + ‖r̂‖L2 ≤ c(h2 + h2 + 0) = ch2

and similarly

‖δ̌‖ ≤ c(h3 + h3 + 0) = ch3.

By Theorem 2.7, (Q3) of Lemma 2.1 holds for both ŵ and w̌ with γ = c/h and

τ = ∞, and (Q2) follows from [14], Lemma 5.1, so that we have

‖ ▽ T (w) − L‖ ≤ ch(‖w − w∗‖ + h)

For ǫ = ch(‖w−ŵ‖+h) (where c is the same constant as in the previous equation),

choose r independent of h but small enough to satisfy ǫγ < 1. Since τ = ∞, we have

ǫr ≤ τ and (1 − γǫ)r/γ ≥ r/γ = ch ≥ ch2 ≥ δ̂. Then by Lemma 2.1 there exists

a locally unique w such that T (w) = 0, that is, w satisfies the first order necessary

conditions for the discretized problem. Moreover,

‖w − ŵ‖ ≤ γ

1 − γǫ
‖δ̂‖ = cγh2 = ch.

By the same reasoning, we have

‖w − w̌‖ ≤ cγ‖δ̌‖ ≤ ch2.

By our definition of the norm on w (see (2.17)), this implies

‖x− x∗‖L∞ + ‖λ− λ̂‖L∞ ≤ ch (2.29)

‖x− x∗‖L∞ + ‖λ− λ̌‖L∞ ≤ ch2 (2.30)

and the first three identities of Theorem 2.6 (equations (2.7a) – (2.7c)) follow imme-

diately. The fourth identity, (2.7d) follows from (2.7c) by smoothness of λ, indeed,

∣

∣

∣

∣

∣

∣

∣

∣

λk + λk+1

2
− λ∗(tk)

∣

∣

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ∗
(

tk − h
2

)

+ λ∗
(

tk + h
2

)

2
− λ∗(tk)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ ch2 ≤ ch2.
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Now yk satisfies H̄yk
(x, y, λ) = 0 and for k = 1, ..., N − 1,

H̄yk
(x, y, λ) = hHy(xk, yk,

λk+1 + λk

2
),

so by Lemma 2.4 and (2.7a),(2.7c) we have

‖yk − y∗k‖ ≤ c

(

‖λk+1 + λk

2
− λ∗(tk)‖ + ‖xk − x∗(tk)‖

)

≤ ch2

which gives us (2.7e).
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Chapter 3

Equality Constrained Problems

3.1 Overview

In this chapter we will consider equality constrained optimal control problems of the

form

min C(x(tf)) (3.1a)

x′ = f(t, x, y) (3.1b)

0 = g(t, x, y) (3.1c)

x(t0) = ζ. (3.1d)

The dynamics of an equality constrained problem form a Differential Algebraic

Equation (DAE). There is extensive theory dealing with DAEs and methods for solv-

ing them (see [10] to start). The following definition is central to that theory

Definition 3.1. The index of a DAE, F (x, x′, t) = 0, is defined as the minimum

number of times all or part of the DAE needs to be differentiated with respect to t to

determine x′ as a continuous function of x and t.

Remember from Chapter 1 that indirect and control parameterization methods

require that a subset of y, called the control, be designated. Let u be the control
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and let x2 be defined by y = (x2, u). Control parameterization methods require the

dynamics to be solved for x, x2 and indirect methods require that the optimality con-

ditions be solved for x, x2 and the adjoint variables. All of the classical discretizations

of DAEs only converge for index three or less and also require that the DAE have

special structure if the index is greater than one. Often the restriction is to index one

or two [10].

Direct transcription methods approach the problem differently and do not require

the selection of u. Does that mean that the index of the dynamics no longer plays

a role in their convergence properties? In the next section, we will present a new

convergence result that is based on the property of the dynamics we call the ”virtual

index” . In our review of existing literature, we found no other results that relate to

equality constrained problems with constraints involving x as well as y, i.e. constraints

that can be anything but index 1.

Note that some results in the previous chapter are also applicable to problems

with general control constraints of the form y ∈ U .

The result in [29] follows a line of thinking most similar to ours. Our assumptions

are more restrictive, but we are also able to establish higher order convergence for

most Runge-Kutta methods, whereas [29] only proves convergence for Euler’s method.
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3.2 The Virtual Index

3.2.1 Theoretical Results

Consider a problem of the form

min C(x(tf )) (3.2a)

x′ = f(t, x, y) (3.2b)

0 = φ(t, x) + F (t, x)y (3.2c)

x(t0) = ζ (3.2d)

where φ : R
m1+1 → R

c,F : R
m1+1 → R

c×m2 .

By definition (see Section 1.5), a RK discretization of (3.2) is given by

min C(xN ) (3.3a)

xi+1 = xi + hi

s
∑

j=1

bjf(tij , χij, yij), i = 0, ..., N − 1 (3.3b)

χij = xi + hi

s
∑

k=1

ajkf(tij, χik, yik), i = 0, ..., N − 1, j = 1, ..., s (3.3c)

0 = φ(tij , χij) + F (tij)yij , i = 0, ..., N, j = 1, ..., s (3.3d)

x0 = ζ. (3.3e)

Our main result takes the form

Theorem 3.2. Let F (t, x) be sufficiently smooth and full row rank on a suffi-

ciently large open neighborhood Ω of Γ, where Γ ∈ R × Rn is the graph of x∗. Then

there exists U which is as smooth as F such that F
(

U1 U2

)

=
(

I 0
)

and for all

(x, u) the problem (3.2) is equivalent to the unconstrained problem given by

min C(x(tf)) (3.4a)

x′ = θ(t, x, u) (3.4b)

x(t0) = ζ (3.4c)
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where y is connected to u by the relationship

y = −U1(t, x)φ(t, x) + U2(t, x)u(t).

Moreover, applying any RK to (3.2) is equivalent to applying the same discretization

to (3.4).

Proof. First, we must establish the existence and smoothness of U . For F = F (t)

this was established by Evard in [18]. For the more general case, where F is a function

of x as well as t, the proof is due to Campbell (see [17]). This result gives us U that is

defined and smooth for all t, x and not just locally. Now we can make the substitution

y =
(

U1 U2

)





v

u



 transforming (3.2) into

min C(x(t0)) (3.5a)

x′ = f(t, x, U1(t, x)v + U2(t, x)u) (3.5b)

0 = φ(t, x) + v (3.5c)

x(t0) = ζ. (3.5d)

Then we can eliminate the constraint (3.5c) and express v as a function of x,

obtaining the problem

min C(x(tf ))

x′ = f(t, x,−U1(t, x)φ(t, x) + U2(t, x)u)
.
= θ(t, x, u)

ζ = x(0),

which is exactly the problem (3.4).

Now, apply the transformation

yij = −U1(tij , χij)φ(tij, χij) + U2(tij, χij)uij
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for i = 0, ..., N, j = 1, ..., s to (3.3) to obtain

min C(x(tf )) (3.6a)

xi+1 − xi = hi

s
∑

j=1

bjθ(tij, χij , uij), i = 0, ..., N − 1 (3.6b)

χij = xi + hi

s
∑

k=1

ajkθ(tik, χik, uik), i = 0, ..., N − 1, j = 1, ..., s (3.6c)

x0 = ζ (3.6d)

where θ(t, x, u) = f(t, x,−U1(t, x)φ(t, x) +U2(t, x)u). Notice that (3.6) is the Runge-

Kutta discretization of (3.4) with the same Butcher array parameters bj , aij and σj .

The implication of Theorem 3.2 is that the convergence results presented in Chap-

ter 2 for unconstrained problems will apply to problems of the form (3.2) as long as

F (t, x) is full row rank and as smooth as the order of the RK discretization being

used. We will now present corollaries for all of the theorems in Chapter 2.

Corollary 3.3. If

• F (t, x) is full row rank in a sufficiently large open neighborhood of Γ

• The optimal control problem (3.1) satisfies smoothness (Definition 2.1)

with the conditions applied to F and φ as well as C and f

• The operators U1, U2 are bounded everywhere in the neighborhood of Γ and

φ is Lipschitz continuous in x

• The equivalent unconstrained problem satisfies coercivity (Definition 2.2)

• The RK used to discretize the problem is at least 2nd order as an integrator

(Table 1.1)

• The RK used to discretize the problem satisfies conditions (D1)-(D5) in

Section 2.1

• The discretized problem has a local optimal solution (x, y)
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then

max
k

‖xk − x∗(tk)‖ + max
k

‖y1
k − y∗(tk)‖ ≤ ch2.

Proof. Smoothness of the original problem implies smoothness in the equivalent

unconstrained problem and so we have, by Theorem 2.3,

max
k

‖xk − x∗(tk)‖ + max
k

‖u1
k − u∗(tk)‖ ≤ ch2

for the equivalent unconstrained problem. We then have

‖y1
k − y∗(tk)‖ = ‖U1(tk)(φ(tk, xk) − φ(tk, x

∗(tk))) + U2(t)(u
1
k − u∗(tk))‖

≤ c1‖xk − x∗(tk)‖ + c2‖u1
k − u∗(tk)‖

= O(h2).

Corollary 3.4. If

• F (t, x) is full row rank in a sufficiently large open neighborhood of Γ

• The optimal control problem (3.1) satisfies smoothness (Definition 2.1)

with the conditions applied to F and φ as well as C and f

• The operators U1, U2 are bounded in a neighborhood of Γ and φ is Lipschitz

continuous in x

• The equivalent unconstrained problem satisfies coercivity (Definition 2.2)

• The RK used to discretize the problem is 2nd order as an integrator (Ta-

ble 1.1)

• The RK used to discretize the problem satisfies the conditions (2.4)

then for all sufficiently small h = maxhk, the discretization of (3.1) obtained accord-

ing to this Runge-Kutta scheme has a strict local minimizer (x, y) and an associated

adjoint variable λ such that, if dy∗

dt
has bounded variation,

max
k=0,...,Ni=1,...,s

‖xk − x∗(tk)‖ + ‖yki − y∗(tki)‖ ≤ ch2
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This corollary follows from Theorem 2.4 in the same way that the previous one fol-

lows from Theorem 2.3. We have left out the adjoint error because, as we have seen in

the previous section, multipliers are not necessarily equivalent for two different formu-

lations of the same problem and, moreover, multiplier convergence is implementation-

dependent, limiting the practical usefulness of most existing multiplier- convergence

results.

Finally, we have a corollary of Theorem 2.5. Since we are not interested in control

convergence, we can leave out the conditions on U1, U2 and φ for this one:

Corollary 3.5. If

• F (t, x) is full row rank in a sufficiently large open neighborhood of Γ

• The optimal control problem (3.1) satisfies smoothness (Definition 2.1)

with the conditions applied to F and φ as well as C and f

• The equivalent unconstrained problem satisfies coercivity (Definition 2.2)

• The RK used to discretize the problem is order κ for optimal control (Ta-

ble 2.1) and has bi > 0 for each i

then for all sufficiently small h = maxhk, the discretization of (3.1) obtained accord-

ing to this Runge-Kutta scheme has a strict local minimizer (x, y) such that, if dy∗

dt

has bounded variation,

max
k=0,...,N

||xk − x∗(tk)|| ≤ chκ.

All of these corollaries require coercivity, which is a difficult condition to test for

in practice. However, note that given matrices Qi(t), V (t) defined for the equivalent

unconstrained problem, if Q3(t) = 0 for all x, y, λ then xTV x ≥ 0 and xTQ1x ≥ 0

for all x and uTQ2(t)u > α‖u‖2 for all u, t forms a set of sufficient conditions for

coercivity. Then note that if H is the Hamiltonian to the original problem and H̄ is
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the Hamiltonian to the equivalent unconstrained problem then

Q2(t) = H̄uu(x
∗, u∗, λ∗) = UT

2 Hyy(x
∗, y∗, ν∗, η∗)U2.

In the following sections, we will illustrate our result with several examples. The

first example is fairly straightforward, the 2nd presents a more complicated time-

dependent U matrix, the third example models a physical problem and presents F

and U that are dependent on both t and x. However, all have linear constraints and

simple dynamics and cost structure that allow for easy verification of coercivity. For

each of these examples, we will see how performance of the method is altered when

the cost parameters are changed so that coercivity is no longer satisfied.

As the examples will demonstrate, ensuring coercivity is often simply a matter

of regularizing the problem with respect to all algebraic variables. Thus if the user

sees the problem as high index due to his choice of control, but he suspects that

another choice of control might make it an index one problem, he does not need to

calculate what that ”virtual control” is or perform the transformation. All he has to

do to make sure that a direct transcription code will solve the problem correctly is

regularize it with respect to all algebraic variables, instead of just the one he thinks

of as the control.

3.2.2 Example 1: Time-Invariant Transformation

In the following example problem, the choice of control that makes the problem index

1 is fairly obvious. It is also designed is such a way as to make it easy to find the

exact optimal solution and compare it to the result given by SOCS. We use it as a

simple illustration of the concepts in the previous section.

Let hi, fi be continuous functions. Consider the following problem.

min
1

2

∫ 1

0

5
∑

i=1

qi(zi − hi)
2dt (3.7a)
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z′1 = z4 + f1(t) (3.7b)

z′2 = z1 + f2(t) (3.7c)

z′3 = z2 + f3(t) (3.7d)

0 = z3 + z5 + f4(t) (3.7e)

z1(0) = z1(1) = 1 (3.7f)

z2(0) = z2(1) = −1 (3.7g)

z3(0) = z3(1) = 1. (3.7h)

Here, z1, z2 and z3 are differential variables, and z4, z5 are algebraic variables.

Suppose that the user designates the algebraic variable z5 as the control. Treating

z5 as a known input function and differentiating the constraint (3.7e) four times, we

obtain

z′4 = −f ′
1 − f ′′

2 − f ′′′
3 − f ′′′′

4 − z′′′′5 ,

an equation for z′4 in terms of other variables.

This makes the DAE (3.7b)–(3.7e) index 4 in the remaining variables {z1, z2, z3, z4}.
As expected, given this choice of control, an indirect method (implemented through

SOCS) fails on this problem.

However, if we let z4 be the control, then differentiating (3.7e) just once, we have

z′5 = −f ′
4 − z2 − f3,

so the DAE (3.7b)–(3.7e) is index 1 for this choice of control.

We can also confirm this using the theory we developed in the previous chapter.

For this problem, F = (0 1), so

(

U1 U2

)

=





0 1

1 0



 , U2(t)
T∇yyHU2(t) =

(

1 0
)





q4 0

0 q5









1

0



 = q4
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(see note on the Hamiltonian for problems in equivalent forms at the end of Sec-

tion 1.3.)

We also have V = 0 and Q3 = 0 for all t.

xTQ1x = q1x
2
1 + q2x

2
2 + q3x

2
3 ≥ 0

for all x, t as long as q1, q2, q3 ≥ 0 and uTQ2u = q4u
2 > αu2 as long as q4 > α.
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Figure 3.1: Functions hi = ±(sin(2πt) − 1) for Example 1. (i = 1 is top graph.)

To demonstrate numerically how the accuracy of the solution is affected by the

value of q4, we pick smooth functions hi(t) with amplitude 1 (Figure 3.1) and choose

fi(t) so that zi = hi, i = 1, ..., 5 satisfies the dynamics and the constraints. We then
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Figure 3.2: Error graphs zi − hi for Example 1 using hi = ±(sin(2πt) − 1), qi = 1.
(i = 1 is the top graph)

solve the problem (3.7) using standard options in SOCS. SOCS uses HS to produce

its final answer. It is a 4th order RK that is also 4th order for optimal control and

the problem satisfies all other conditions in the corollaries. Figure 3.2 shows the

difference between hi and the optimal solution calculated by SOCS when all qi are

set to be 1. We also see that setting q5 and q3 to zero does not affect the accuracy.

However, when we set q4 = 0, the resulting solution does not satisfy the dynamics as

shown by z4 − h4 in Figure 3.4.

62



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1
x 10

−6 z
1
 − h

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5
x 10

−7 z
2
 − h

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5
x 10

−7 z
3
 − h

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1
x 10

−5 z
4
 − h

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5
x 10

−7 z
5
 − h

5

Figure 3.3: Error graphs zi − hi for Example 1 using hi = ±(sin(2πt) − 1), with
q1 = q2 = q4 = 1, q3 = q5 = 0. (i = 1 is the top graph.)
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Figure 3.4: Error graphs zi − hi for Example 1 using hi = ±(sin(2πt) − 1), with
q1 = q2 = q3 = 1, q4 = 0. (i = 1 is the top graph.)
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3.2.3 Example 2: Time-Dependent Transformation

Our second example is the following problem with a time varying constraint.

min

∫ 1

0

q1x
2 + q2y

2
1 + q3y

2
2dt (3.8a)

x′ = −x+ 2y1 + 3y2 (3.8b)

0 = x+ sin(2πt)y1 + cos(2πt)y2 (3.8c)

x(0) = x(1) = 1. (3.8d)

Notice that if the user takes either y1 or y2 or any fixed linear combination of the

two to be the control, then there will always exist point of singularity at which the

problem is no longer index 1. Indeed, if u = ay1 + by2, v = y2, then




u

v



 =





a b

0 1









y1

y2





and




y1

y2



 =





1/a −b/a
0 1









u

v





so that

sin(2πt)y1 + cos(2πt)y2 =
(

sin(2πt) cos(2πt)
)





y1

y2





=
sin(2πt)

a
u+

(

cos(2πt) − b

a
sin(2πt)

)

v.

This means the problem is high index in x and v whenever cos(2πt) = b
a
sin(2πt).

However, we can calculate

(

U1 U2

)

=





sin(2πt) cos(2πt)

cos(2πt) − sin(2πt)





that transforms the constraint into 0 = x+ v. We also have V = Q3 = 0, Q1 = q1,

Q2 = UT
2 ∇2

yyHU2 = cos2(2πt)q2 + sin2(2πt)q3,
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so q1 must be non-negative and both q2 and q3 must be nonzero on the entire interval

for coercivity to be satisfied. When either q2 or q3 are 0, SOCS fails to come up with

a solution. But when q2 = q3 = 1, the solution is easily obtained (Figure 3.5).
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Figure 3.5: Graph of optimal solution for Example 2, qi = 1.
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3.2.4 Example 3: Physical Problem, t and x Dependent Trans-

formation

A variety of state constrained mechanical systems can be modeled by

x′ = v (3.9a)

v′ = F (x, v, t) +B(x, t)λ (3.9b)

0 = G(x, t) (3.9c)

where B = GT
x and λ is a generalized force that arises because of the physical con-

straint (3.9c).

Now suppose that the constraint (3.9c) depends on a control u and we want to

minimize a cost which we will assume in integral form. Then we have a problem in

the form

min
u

P (x(T ), T ) +

∫ T

0

L(x, v, u, λ, t)dt (3.10a)

x′ = v (3.10b)

v′ = F (x, v, t) +B(x, u, t)λ (3.10c)

0 = G(x, u, t). (3.10d)

One example of the control acting through the constraint in this manner would

be an object, such as a load or vehicle, being pushed by a surface which could be

part of another vehicle or machine. The control in this formulation determines the

position and orientation of the pushing surface and the constraint (3.10d) models the

contact between the object being pushed, which is modeled by (3.10b), (3.10c), and

the pushing surface.

It is a well-known and easily verifiable fact that (3.10b)–(3.10d) is an index three

DAE in x, v, λ. That is, the optimization problem (3.10) is index three for a given
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control u. However, if we consider λ to be the control and Gu is invertible, then

(3.10b)–(3.10d) is an index one DAE in x, v, u. So that while the designer is not

likely to consider the constraint force λ as the control because of implementation

considerations, the fact that such a possibility exists in theory makes (3.10) an index

one problem for direct transcription software.

A simple instance of the problem (3.10) can be stated as follows:

min x1(1)2 + x2(1)2 +

∫ 1

0

q1L
2 + q2b

2 + q3c
2 dt (3.11a)

x′1 = v1 (3.11b)

x′2 = v2 (3.11c)

v′1 = −v1 + L (3.11d)

v′2 = −v2 − bL (3.11e)

0 = x1 − bx2 − c (3.11f)

1 = −x1(0) = x2(0) (3.11g)

2 = −v1(0) = v2(0). (3.11h)

The dynamics and constraint (3.11f) can be thought of as a flat surface pushing

an object at (x1, x2) across a smooth flat surface which has the usual type of friction

model proportional to the velocity. The friction coefficient is −1 in (3.11d), (3.11e).

The controls b, c determine the location and slope of the pushing surface. The initial

conditions specify that the object starts at point (−1, 1), moving away from the origin

with initial velocity (−2, 2). The objective is to push the object close to the origin

while keeping the algebraic variables bounded (or small, depending on the weights).

In this case, F (t, x) = (0,−x2,−1), and we can take

(

U1 U2

)

=











0 1 0

0 0 −1

−1 0 x2











.
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We also have Q1 = Q3 = 0, V =





1 0

0 1



, which is nonnegative and

Q2 = UT
2 ∇2

L,b,cHU2 =





q1 0

0 q2 + x2(t)
2q3



 (3.12)

which is positive definite for all x and t as long as q1 and q2 are positive.

The calculated trajectory of the object in x1-x2 space and the values of L, b, c

versus time for q1 = q2 = q3 = 0.01 are shown in Figure 3.6. This trajectory achieves

x1 = −0.1155, x2 = 0.0074 at time t = 1, so that ‖x(1)‖ = 0.0134. (All values are

rounded to four decimal places). The trajectories look the same when q3 is changed

to zero since (3.12) is still nonsingular. As expected, SOCS fails to come up with a

solution when just q1 is changed to zero and (3.12) is always singular. When both q2

and q3 are set to zero, the resulting b and c trajectories oscillate wildly (see Figure 3.7).

This solution gives x(1) = (−0.1271, 0), ‖x(1)‖ = 0.0162. If we consider getting the

object close to the origin to be our main objective, and the second part of the cost

function as merely there for regularization, than this is worse by 21 percent than the

first solution.

When q2 = 0 and q1, q3 are positive, the computed trajectories (Figure 3.8) look

similar to Figure 3.6 except at the last node, where b takes a sharp dive and x2 is

pushed a little closer to 0. This is due to the x2
2q3 term being nearly singular when x2 is

close to 0 resulting in a near singularity of (3.12). In this case x(1) = (−0.1183, 0.0042)

and ‖x(1)‖ = 0.014, 4 percent worse than the first solution. The fact that the main

objective is not satisfied as well does not necessarily mean that the solutions we

obtained are suboptimal for their respective problems, but our theory allows us to

conclude that the first solution is definitely optimal in the case q1 = q2 = q3 = 0.01.

The numerical examples confirm the theoretical result in the previous section. As

long as there is some choice of control that will make the dynamics of the problem
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an index one DAE and this ”virtual control” is positively weighted in the cost, the

code (in this case, SOCS) can find an optimal solution. Thus what is important

numerically is this ”virtual index.” One consequence of this is that a user seeking to

regularize a constrained control problem that appears to have high index dynamics

should add a small regularizing cost on all the algebraic variables rather than just

the control variables as is common practice.
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Figure 3.6: Graph of calculated trajectory of the object in x1-x2 space with
time-lapsed view of the pushing surface (upper graph) and graph of L, b, c vs time
(lower graph) for Example 3, qi = 0.01.
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Figure 3.7: Graph of calculated trajectory of the object in x1-x2 space and graph
of L, b, c vs time for Example 3, q1 = 0.01, q2 = q3 = 0.
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Figure 3.8: Graph of calculated trajectory of the object in x1-x2 space and graph
of L, b, c vs time for Example 3, q1 = q3 = 0.01, q2 = 0.
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Chapter 4

Inequality Constrained Problems

4.1 Overview

In this chapter we will consider problems of the form

minC(x(tf )) (4.1a)

x′ = f(x, y) (4.1b)

0 ≥ g(x, y) (4.1c)

x(t0) = ζ (4.1d)

ψ(x(tf )) = 0. (4.1e)

Remember that in order to solve an optimal control problem with an indirect

method one must solve the boundary value problem made up of its first-order opti-

mality conditions. So one must have a set of first-order necessary conditions that,

under 2nd order assumptions such as coercivity (Definition 2.2) will have a unique

solution that is also a local minimum for the problem. Direct transcription does

not require defining or solving the optimality conditions, but, even though there are

other ways to prove convergence for some discretization methods (see [30, 32]), most
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authors whose work is discussed in this chapter use some form of necessary conditions

in their proofs.

However, finding such a set of optimality conditions is a very nontrivial problem

for an inequality constrained problem. The authors of the two convergence results

described in this section (Theorems 4.6 and 4.7) use two distinctly different Hamilto-

nians and derive two different sets of optimality conditions, (4.6) and (4.11).

The problem is that in order to derive a good set of optimality conditions even

under very restrictive assumptions on problem structure one must have some knowl-

edge of the behavior of the optimal solution. At any given time τ and for any given

constraint gi(x(t), y(t), t) ≤ 0, one of three things is possible with regards to the

optimal solution (x∗(t), y∗(t)):

1. the constraint is inactive, gi(x
∗(τ), y∗(τ), τ) < 0;

2. the solution lies on a boundary arc, gi(x
∗(t), y∗(t)) = 0 at t = τ and, for some

δ̄ > 0, gi(x
∗(t), y∗(t)) = 0 for either t = τ + δ or t = τ − δ for all δ < δ̄;

3. there is a touchpoint (gi(x
∗(t), y∗(t)) = 0 at t = τ but gi(x

∗(t), y∗(t)) < 0 for

t ∈ (τ − δ) ∪ (τ + δ) for some δ > 0.

Thus, to formulate a set of optimality conditions that has a unique solution, one

must first guess at the number of boundary arcs and touchpoints in the solution, and

the order in which they occur. One set of optimality conditions that takes into account

problem structure was developed by Jacobson, Lele and Speyer in their 1977 paper

[24]. The same paper also contains a result concerning the existence of boundary

arcs that will be very important in the next section. A concept central to Jacobson,

Lele and Speyer’s paper is that of order, which can be applied to both equality and

inequality constraints.

Definition 4.1. The order of a constraint is the minimum number of times it
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needs to be differentiated with respect to t to obtain an expression that can be solved

for y.

The paper [24] makes the following assumptions about a problem of the form (4.1)

for all t ∈ [t0, tf ]:

A1 m2 = c = 1 (g and y are scalars)

A2 g is a function of x only and is of order p

A3 y is piecewise continuous, supt ||y(t)|| <∞

A4 f is continuously differentiable up to (p+ 1) times in both x and y

A5 The problem has an optimal solution with finite cost

A6 g(2p−1) exists

A7 Along a boundary arc, the y that maintains g(p)(x, y) = 0 is p times continuously

differentiable w.r.t. t.

A8 Along the optimal solution, ▽yg
(p)(x, y) 6= 0

Jacobson, Lele and Speyer define

H(w) = λTf(x, y) + νTg(x, y) (4.2)

where w = (x, y, λ, ν) and prove

Theorem 4.2. ([24], Theorem 5) If a problem of the form (4.1) satisfies the

assumptions (A1)-(A9) then a set of necessary conditions for optimality is formed by
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x′ = f(x, y) (4.3a)

λ′ = −∇xH(w) (4.3b)

0 = ∇yH(w) (4.3c)

x(t0) = ζ (4.3d)

λ(tf) = −∇C(x(tf )) −∇x(π
Tφ(x(tf))) (4.3e)

where ν(t) ≥ 0 when g(x(t)) = 0 and ν(t) = 0 when g(x(t)) < 0. Moreover, at the

junction points ti of boundary and interior arcs (i.e. at the touchpoints or beginning

and end of boundary arcs),

λ(t+i ) = λ(t−i ) − η(ti)∇g(x(ti)) (4.4a)

H(w(t+i )) = H(w(t−i )) (4.4b)

η(ti) ≥ 0 (4.4c)

This theorem has an important corollary :

Corollary 4.3. ([24], page 274) If the problem satisfies the assumptions (A1)–

(A9) and the order of the constraint p is odd and greater than 1, then the optimal

solution will, at most, only touch the boundary.

This result restricts the appearance of boundary arcs in optimal solutions to high-

order inequality constrained problems. A good complement to Corollary 4.3 is Corol-

lary 2 in [33], which imposes very restrictive conditions on the existence of touchpoints

in problems of order 1.

As for convergence results relating to direct transcription methods, all the ones

we were able to find are limited to problems discretized using Euler’s method. Euler’s

method is a first order integrator that discretizes x′ = f(x, y) by

xi+1 = xi + hif(xi, yi).
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In [13], Dontchev and Hager prove a convergence result for problems with inequal-

ity constraints on the state only under assumptions similar to the ones they made for

unconstrained problems in results presented in Chapter 2. The optimality conditions

they use do not require a guess at the problem structure and are very different from

the conditions in Theorem 4.2. We rewrite their result to fit a problem of the form

(4.1) with g = g(x) and φ = 0.

For the Hamiltonian given by

H(x, y, λ, ν) = λTf(x, y) − νT∇g(x)f(x, y) (4.5)

define the matrices A(t), B(t), Q1(t), Q2(t), Q3(t) as in equation (2.3) and define K(t)

by K = ∇g(x∗(t)). In addition to coercivity (see Definition 2.2), impose the following

form of the smoothness condition (see Definition 2.1):

Definition 4.4. The problem (4.1) is said to satisfy the smoothness condition

if it has a local solution (x∗, y∗) which lies in W 2,∞ × W 1,∞ and there exists an

open set Ω ⊂ R
m1 × R

m2 and ρ > 0 such that Bρ(x
∗(t), y∗(t)) ⊂ Ω for every t ∈

[t0, tf ] and the first two derivatives of f as well as the first three derivatives of g are

Lipschitz continuous in Ω and the first two derivatives of C are Lipschitz continuous

in Bρ(x
∗(tf )). Finally, there exist λ∗ ∈W 2,∞ and ν∗ ∈W 1,∞ such that x∗, y∗, λ∗ and
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ν∗ satisfy the first order optimality conditions of the form

x′ = f(x, y) (4.6a)

λ′ = −∇xH(x, y, λ, ν) (4.6b)

0 = ∇yH(x, y, λ, ν) (4.6c)

g(x, y) ∈ N (ν) (4.6d)

x(t0) = ζ (4.6e)

λ(tf ) = 0 (4.6f)

ν ≤ 0 (4.6g)

ν ′ ≥ 0 (4.6h)

where N (ν) is a set of functions such that y(t) ≤ 0 and ν ′(t)Ty(t) = 0 almost every-

where in [t0, tf ] and ν(tf )
Ty(tf) = 0.

Dontchev and Hager also impose the condition of independence at A: A(t)

Definition 4.5. Let

A(t) = {j ∈ {1, ..., c} : gj(x
∗(t)) = 0} (4.7)

be the set of constraints active at time t. We say that a problem of the form (4.1)

satisfies independence at A if A(0) is empty and there exists a scalar β > 0 such

that
∣

∣

∣

∣

∣

∣

∑

j∈A(t)

vjKj(t)B(t)

∣

∣

∣

∣

∣

∣

≥ β
∣

∣vA(t)

∣

∣

for any v ∈ R
k and for every t ∈ [t0, tf ] where A(t) is non-empty.

The result is

Theorem 4.6. If Smoothness, Independence at A and Coercivity hold, then for

all sufficiently small h, there exists a local solution (x, y) of the Euler discretization

of the problem (4.1) with g a function of x only and no final state constraints and
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associated Lagrange multipliers (λ, ν) such that

||x− x∗||H1 + ||y − y∗||L2 + ||λ− λ∗||H1 + ||ν − ν∗||L2 ≤ ch

and

||x− x∗||W 1,∞ + ||y − y∗||L∞ + ||λ− λ∗||w1,∞ + ||ν − ν∗||L∞ ≤ ch2/3.

where (x∗, y∗, λ∗, ν∗) are evaluated at the gridpoints, W k,∞ is the norm defined by

equation 2.2 and

||z||H1 =
√

||z||2L2 + ||z||2L2. (4.8)

Moreover, x̄, λ̄, y, ν are Lipschitz continuous in time with a Lipschitz constant

independent of h where

x̄k =
xk+1 − xk

h
, λ̄k =

λk+1 − λk

h
.

Malanowski, Buskens and Maurer prove the most general result in [29], showing

first order convergence of differential, algebraic and adjoint variables (states, controls

and multipliers) for problems with combined control and state inequality constraints.

We rewrite it here to fit problems of the form (4.1). Assume

B1 The functions C, f, φ and g are twice Frechet differentiable in all arguments, and

the respective derivatives are locally Lipschitz continuous in x, y.

B2 There exists a local solution x∗, y∗.

and define

A(t) = ∇xf(x∗(t), y∗(t)), B(t) = ∇yf(x∗(t), y∗(t)), (4.9)

Kx(t) = ∇xg(x
∗(t), y∗(t)), Ky(t) = ∇yg(x

∗(t), y∗(t)), E(t) = ∇φ(x∗(tf)).

(4.10)
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Malanowski et al define A as in Equation (4.7) and let Θx(t),Θy(t) be the matrices

whose rows are made up of the rows of Kx(t), Ky(t) respectively that are in A(t).

They then make two additional assumptions:

B3 There exists β > 0 such that for almost every t ∈ [t0, tf ], ‖Θy(t)T z‖ ≥ β‖z‖ for

all z ∈ R
card(A(t)).

B4 For any e ∈ R
d the following BVP has a solution (is completely output control-

lable):

x′ = Ãx+ B̃y

x(t0) = 0

Ex(tf ) = e

where

Ã = A(t) −B(t)Θy(t)T (Θy(t)Θy(t)T )−1Θx(t),

B̃ = B(t)(I − Θy(t)T (Θy(t)Θy(t)T )−1Θx(t)).

The Hamiltonian defined by Malanowski et al is different from the one used by

Dontchev and Hager (4.5). In fact it is equivalent to the one used by Jacobson et al

(4.2):

H = λTf(x, y) + νTg(x, y)
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and the optimality conditions they propose are

x′ = f(x, y) (4.11a)

λ′ = −∇xH(x, y, λ, ν) (4.11b)

0 = ∇yH(x, y, λ, ν) (4.11c)

λ(tf) = ∇C(x∗(tf )) −∇x(π
Tφ(x∗(tf))) (4.11d)

λ(t0) = −µ. (4.11e)

Next, define

Ã(t) = {j ∈ A(t) : ν∗(t) > 0}

and let Θ̃x(t), Θ̃y(t) be the matrices whose rows are made up of the rows ofKx(t), Ky(t)

respectively that are in Ã(t). Letting w∗ = (x∗, y∗, λ∗, ν∗), the authors impose the

following two 2nd order conditions on the problem

B5 There exists γ > 0 such that for all t ∈ [t0, tf ]

vT∇2
yyH(w∗(t))v ≥ γ‖v‖

for all v ∈ R
m2 satisfying Θ̃y(t)v = 0.

B6 The Ricatti equation

Q′ = −QA− ATQ−∇2
xxH(w∗) +











∇2
yxH(w∗)

Θ̃x





T

+Q





BT

0





T





×

×





∇2
yyH(w∗)

(

Θ̃y
)T

Θ̃y 0





−1







∇2
yxH(w∗)

Θ̃x



+





BT

0



Q





has a solution Q that satisfies

xT
(

∇2C(x∗(tf )) + ∇2
xx(π

Tφ(x∗(tf))) −Q(tf )
)

x ≥ 0

for all x ∈ R
m1 that satisfies Ex = 0
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The final result takes the form

Theorem 4.7. (Adapted from [29], Theorem 5.7) If assumptions (B1)–(B6) are

satisfied then for all sufficiently small h there exist locally unique xh, yh, λh, νh, πh and

µh which satisfy the optimality conditions for the Euler discretization of problem (4.1)

given by ∇Hh = 0 where

Hh = C(xN)+πTφ(xN)+µT (x0−ζ)+
N−1
∑

i=0

(

λT
i+1(−xi+1 + xi + hf(xi, yi)) + hνT

i g(xi, yi)
)

such that

‖x∗ − xh‖1 + ‖λ∗ − λh‖1 ≤ ch

‖x∗ − xh‖∞ + ‖y∗ − yh‖∞ + ‖λ∗ − λh‖∞ + ‖ν∗ − νh‖∞ ≤ ch

|π∗ − πh| + |µ∗ − µh| ≤ ch.

Notice the similarities between ”independence at A” (Definition 4.5) and (B3),

coercivity as defined by Hager (Definition 2.2) and (B5), the 2nd order conditions

for unconstrained problems written in terms of Ricatti equations in [28] and [11] and

(B6).

We will not be presenting any new convergence results in the following sections.

However, we will demonstrate how the fact that they do not require the formulation of

optimality conditions makes direct transcription methods very well suited for certain

inequality constrained problems [25]. For the problems in the next section, a boundary

arc in the solution is theoretically impossible due to the result in [24], but the cost

structure forces the solution very close to the constraint boundary. This results

in a large number of closely spaced touchpoints with very small deviations from the

constraint in between. We will show that the formulation of optimality conditions

for these problems may be impossible, and even where it is possible, the resulting
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boundary value problem is extremely ill-conditioned. Direct transcription methods,

on the other hand, can solve these problems to a high degree of accuracy as our

numerical results will demonstrate.

In Section 4.3, we briefly discuss open questions and partial results related to

another important issue, initialization. Finding an initial feasible solution is necessary

to initialize any numerical method for solving optimal control problems, but this

becomes a non-trivial task when inequality constraints are involved.

4.2 Virtual Boundary Arcs

4.2.1 The Heat Equation Problem

Consider an insulated metal rod of length π meters that is heated at both ends for

a period of 5 hours. Suppose that we are able to apply heat in precisely measured

quantities at each end and suppose that we want to minimize the total heat output

along the rod while keeping the temperature at a point x meters from the left end of

the rod at time t hours higher than g(x, t).

Let u(x, t) be the temperature at point x at time t and let v0, vπ be the heat

applied at each end. Then the problem can be represented mathematically as

min J(u, v0, vπ) =

∫ π

0

∫ 5

0

u(x, t)2dtdx+

∫ 5

0

q1v
2
0(t) + q2v

2
π(t) dt (4.12a)

ut = uxx (4.12b)

u(0, x) = u0(x) (4.12c)

u(t, 0) = v0(t) (4.12d)

u(t, π) = vπ(t) (4.12e)

u(x, t) ≥ g(x, t). (4.12f)
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We will approximate the PDE control problem (4.12a)–(4.14) by an ODE problem

by partitioning the rod into N equal intervals. The values of N we will discuss here

would be much too small if our goal were to solve the PDE problem as accurately as

possible. However, our primary interest in this problem is that this approximation

gives rise to a family of similarly structures ODE control problems with constraints

whose order depends on N and can be arbitrarily high. We will show that SOCS is

able to solve these problem for values of N that result in a high order. As for the

original PDE problem, it is interesting to note that the solution changes very little

for N > 10 (see Figure 4.2.)

We let xi = i π
N

and let ui(t) be an approximation to u(t, xi) for i = 1, . . .N − 1.

We let δ = π
N

, assume u0 = v0 and uN = vπ with u0, uN the new controls and

approximate uxx using centered differences. Finally, we approximate the x integration

in the original cost by the Trapezoid method, obtaining the following problem

min
δ

2

(

∫ 5

0

u2
0(t) + u2

N(t) +

N−1
∑

i=1

2ui(t)
2 dt

)

+

∫ 5

0

q1u
2
0(t) + q2u

2
N(t)dt (4.13a)

u′1 =
1

δ2
(u2 − 2u1 + u0) (4.13b)

u′i =
1

δ2
(ui+1 − 2ui + ui−1), ui(0) = u(0, xi), i = 2, ..., N − 2 (4.13c)

u′N−1 =
1

δ2
(uN − 2uN−1 + uN−2) (4.13d)

0 ≥ gi = g(xi, t) − ui(t), i = 0, ..., N. (4.13e)

We take g to be

g(x, t, a, c) = c sin x sin

(

πt

5

)

− a. (4.14)

If the values of a, c are clear from the discussion, we shall omit them from the notation.

We also take q1 = q2 = 10−3 which is typical of the situation where the control

weight is really for numerical regularization. The symmetry in the cost and dynamics
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when q1 = q2 means that the optimal controls u0 and uN are equal. We will speak of

the optimal control and only plot one of them in the discussion that follows. We also

take the initial temperature profile to be zero, u(0, x) = 0.

4.2.2 Numerical Results

Fixing c = 1, a = 0.7, we solve this problem numerically using SOCS for different

values of N . Figure 4.1 displays the profile for N = 10 and Figure 4.2 shows the

control for N = 10, 31. The pictures vary very little once N > 5.
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Figure 4.1: Optimal state u(x, t) for problem (4.13) with N = 10.
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Figure 4.2: Optimal control for problem (4.13) with N = 10 and N = 31.

We are interested in the relationship between the solution profile and the con-

straints. Our numerical experiments show that, when N is even, the only constraint

active anywhere on the time interval is gN/2. Similarly, when N is odd, the only

active constraints are g(N−1)/2 and g(N+1)/2. So the problem is equivalent to a prob-

lem with a single constraint of order N/2 (or two constraints of order (N − 1)/2).

Figure 4.3 shows g(xN/2, t) and uN/2(t) for the case N = 10 where N/2 = 5 is odd

and greater than 1. However, the figure appears to show a smooth transition onto the
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constraint surface, riding the surface (a boundary arc), and then a departure. Does

this contradict the result in [24]?

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
 0. 8

 0. 6

 0. 4

 0. 2

0

0.2

0.4

0.6

u

g

Figure 4.3: uN/2(t) and g(xN/2, t) for problem (4.13) for N = 10.

If we look more closely, it turns out that the results are not that simple. Figure

4.4 shows the central section of gN/2 for N = 10, 31. The graph for N = 31 has been

displaced upward to make comparison easier. Both graphs show spikes at either end.

They are rather small, of height only about 10−6, but this value is well above floating

point error, which is 10−8. In the middle, we see many smaller spikes and notice that

the two curves look like noisy copies of the same curve. To get an even better idea

of the size of the constraint deviations, we rescale the central portion of gN/2. Let

w(v) = sign(v)|v|1/6. The curve in Figure 4.5 is w(gN/2 for N = 10 and the horizontal

lines are w(10−k) where k = 5, 6, 7, 8, 9.

To understand this phenomenon even better, let us modify the constraint. We

keep N = 10, c = 1 but allow a to increase from its default value of 0.7. That is, we
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lower the constraint surface. When a reaches 1, the solution is just u = 0 and the

cost is zero. Figures 4.6 and 4.7 show gN/2 for a = 0.7, 0.9, 0.9 and a = 0.9, 0.925, 0.95

respectively. We notice that the interval where gN/2 is very small is shrinking as

expected, but the pattern of oscillations remains the same. As the constraint is

lowered even further, the smaller oscillations disappear, and only three, two, then

one touchpoint remain.

Interestingly enough, others have tried to solve this problem (with the original

parameter values) using an indirect method, and failed. In [4], index reduction was

used to reformulate a set of optimality conditions for the problem (4.13) as a low-

index boundary value problem. The authors assumed a boundary arc in the solution,

and the boundary value problem, formulated for different values of N , all even, was

passed to SOCS. Solutions were obtained for N = 4, but not for any N > 4. Note

that when N = 4, the order of the problem appears to be 2 which is even, but when

N = 6, the order is 3 which is odd and greater than 1.
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Figure 4.4: Constraint deviation for problem (4.13) for N = 10, 31.
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Figure 4.5: Rescaled constraint deviation for problem (4.13), for N = 10.
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Figure 4.6: Constraint deviation for problem (4.13) for N = 10, a = 0.7, 0.8, 0.9.

92



2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
 2

0

2

4

6

8

10

12

14

16
x 10 -6

2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7
 2

0

2

4

6

8

10

12

14
x 10 - 6

a = 0.900 a = 0.925

2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7
 0. 5

0

0.5

1

1.5

2

2.5

3
x 10  -5

a = 0.950

Figure 4.7: Constraint deviation for problem (4.13), for N = 10, a = 0.9, 0.925, 0.95.
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4.2.3 Discussion

What is the significance of these numerical results, and how do they match up with

existing theoretical and numerical results?

First of all, looking at Figures 4.1, 4.2 and 4.3, we see that a direct transcription

algorithm (SOCS) appears to be successful in solving the problem (4.13a)–(4.13),

arriving, within a very reasonable amount of time, at a solution that ”makes sense”

as an approximation to the optimal solution to the original PDE problem (4.12a)–

(4.12f), even though we don’t know the optimal solution to this PDE problem.

We also notice that the problem is equivalent to a problem with a single constraint

of order N/2 or two constraints of order (N − 1)/2 depending on whether N is odd

or even. Using this observation and the symmetry in the problem when q1 = q2 = q,

we can rewrite it in the form given in [24]. For N even, it is

min uN/2+1 (4.15a)

u′1 =
1

δ2
(u2 − 2u1 + u0) (4.15b)

u′i =
1

δ2
(ui+1 − 2ui + ui−1), i = 2, ...N/2 − 1 (4.15c)

u′N/2 =
2

δ2
(uN/2−1 + uN/2) (4.15d)

uN/2+1 = (1 +
2q

δ
)u2

0(t) + 2u2
N/2 + 4

N/2−1
∑

i=1

ui(t)
2 (4.15e)

0 ≥ g(π/2, t) − uN/2(t). (4.15f)

This problem is in Mayer form as required by (A1), has a scalar control u0 and a

scalar constraint (4.15f) as required by (A2), which is a function of uN/2 only and is

order N/2 (A3). The right hand side of the differential equations (4.15b)–(4.15d) is

a simple linear function, continuously differentiable N/2 + 1 times in u0 as well as

u1, u2, ...uN/2 as required by (A5).
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For g given by (4.14), the constraint (4.15f) takes the form

ḡ(u, t) = sin

(

πt

5

)

− 0.7 − uN/2(t).

Since the sine function is infinitely differentiable, we know that ḡ(N − 1) exists as

required by (A7). On the other hand ḡ(N/2) = sin(N/2)
(

πt
5

)

− u2 + 2u1 − u0 and

∇u0
ḡ(N/2) = −1 6= 0 as required by (A9). Given the convexity of f , (A6) is safe

to assume by coercivity (see Definition 2.2 and discussion in Section 2.4.1). (A4)

and (A8) are the hardest to verify but notice that the control is Figure 4.2 appears

smooth.

So assuming that this problem satisfies all the assumptions in Theorem 4.3 we

know that the solution cannot have a boundary arc when N > 4 and N/2 is odd.

Thus the result in [4] makes sense. SOCS could not find a solution to the optimality

conditions assuming a boundary arc because a solution did not exist.

Finally, notice that the solution near the constraint boundary becomes better

behaved as the constraint is lowered (Figures 4.6 and 4.7). By lowering the constraint,

the cost of staying above the boundary is reduced. Intuitively, when the cost structure

forces the solution close to a boundary arc that is theoretically impossible, the BVP

formed by the optimality conditions becomes very ill-conditioned, making the problem

unsolvable by indirect methods. However, a direct transcription method is able to

resolve the problem to a high degree of accuracy by introducing small oscillations

which grow smaller in size and greater in number as the cost of staying away from

the boundary is increased. In essence, direct transcription is able to regularize the

problem by ignoring ill-conditioned parts of the optimality conditions.

Conditioning of the heat equation problem was studied in some detail in [25].

However, with a problem as large as this, analysis can only be carried so far. We

will now present a smaller example which exhibits behavior very similar to that of

the heat equation problem. Because this is a smaller problem with fixed order, we
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are able to do some theoretical calculations and demonstrate the effects of the ill-

conditioning on our ability to solve a problem with a ”virtual boundary arc”. We are

also able to produce some interesting graphs that, even more clearly than Figures 4.6

and 4.7, demonstrate what happens as the solution is forced closer and closer to the

constraint.

4.2.4 Example Problem

Consider the problem

J = minv
1

2

∫ 1

0

ρ(x1 − 1)2 + u2 dt (4.16a)

x′1 = x2, x1(0) = 0 = x1(1) (4.16b)

x′2 = x3, x2(0) = 1 = −x2(1) (4.16c)

x′3 = u, x3(0) = 2 = x3(1) (4.16d)

x1(t) ≤ L (4.16e)

where ρ ≥ 0 and 1 ≥ L > 0.

For the case ρ = 0, the problem (4.16) is studied in [24], where it is demonstrated

that the constraint is 3rd order and exact optimal solutions are found for ranges of

L values.

We solve the problem with SOCS for L = 0.134 and different values of ρ. For

ρ = 0 and 104 the solution appears to have two touchpoints (Figure 4.8.)

As ρ approaches 5× 104, the solution starts to exhibit an apparent boundary arc.

To examine the solution behavior near the constraint more closely, we use expansion

functions

FK(x1) = 0.134
( x1

0.134

)K

(4.17)
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Figure 4.8: x1 (left) and control u (right) for ρ = 0 (top) and ρ = 10000 (bottom.)

which compress the graph away from 0.134 and greatly expand it near 0.134. The

amount of compression and expansion increases with K. Applying F with K =

5×102, 5×104, 5×104, 2×107 to the problem with ρ = 5×104, 105, 1.5×105, 3×105

respectively we see the number of touchpoints increase from two to three to four to

five to at least seven (Figures 4.9–4.12). It is interesting to note that while J increases

with H ,
∫ 1

0
(x1(t) − 1)2dt stays almost constant around 0.798.
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Figure 4.9: Example problem with ρ = 5× 104, plots of x1 (top left), control u (top
right), and F500(x1) (bottom.) Number of touchpoints: 3.
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Figure 4.10: Example problem with ρ = 105, plots of x1 (top left), control u (top
right), and F50000(x1) (bottom.) Number of touchpoints: 4.
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Figure 4.11: Example problem with H = 1.5 × 105, plots of x1 (top left), control u
(top right), and F50000(x1) (bottom.) Number of touchpoints: 5.
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Figure 4.12: Example problem with H = 3 × 105, plots of x1 (top left), control u
(top right), and F20000000(x1) (bottom.) Number of touchpoints: > 7.
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4.2.5 Theoretical Result

We have demonstrated that the example problem, like the heat equation problem,

exhibits ”virtual boundary arcs”. Next, we will further examine the issue of using

indirect methods to solve virtual boundary arc problems. In order to even consider

the use of an indirect method on a problem like this one, one must have at least an

upper bound on the number of touchpoints. As we have seen that can be difficult to

determine even on a simple problem like (4.16), as the oscillations get smaller and

closer together. We will now demonstrate that, even if the number of touchpoints

could be determined, conditioning problems would prevent this type of problem from

being successfully solved by an indirect method.

Let tk for k = 1, . . . , n− 1, be the kth point of contact between the solution and

the constraint. Let t0 = 0 and tn = 1. Writing down the optimality conditions of the

form given in [24] for the example problem we have

x′1 = x2 (4.18a)

x′2 = x3 (4.18b)

x′3 = u (4.18c)

λ′1 = −ρ(x1 − 1) − η (4.18d)

λ′2 = −λ1 (4.18e)

λ′3 = −λ2 (4.18f)

0 = λ3 + u (4.18g)

where η = 0 if x1 − L < 0 and η ≥ 0 if x1 = L. In addition, we have the boundary

conditions on x and the junction conditions

λ(t−k ) = λ(t+k ) + ζ(tk)











1

0

0











(4.18h)
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at every point tk, where the constraint is touched, where ζ(tk) is non-positive. From

(4.18h) we conclude that λ2, λ3 are continuous at tk but λ1 can have a jump. Then

from (4.18g) we have that u is continuous and hence x1, x2, x3 are continuously dif-

ferentiable on the whole interval.

Let y1 = x1 − L. Let yj = xj for j = 2, 3 and yj = λj−3 for j = 4, 5, 6. The

optimality conditions on each subinterval [tk, tk+1] (or more technically [t+k , t
−
k+1]),

take the form y′ = Ay where

A =





























0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 −1

−ρ 0 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0





























and some boundary conditions at t+k , t
−
k+1.

Thus the optimal solution on each subinterval [tk, tk+1] can be written as eA(t−tk)z[k],

k = 0, . . . , n − 1, where the z[k] are constant vectors. For every touchpoint tk, we

have, by definition, x1(tk) = L and, since the x1 curve has a horizontal tangent at tk

and is convex down, x2(tk) = 0 and x3(tk) ≤ 0. We can then define the remaining

necessary conditions as

z[k]1 = z[k]2 = 0 for k = 1, . . . , n− 1 (4.19)

z[k]i =
(

eAδkz[k − 1]
)

i
for k = 1, . . . , n− 1; i = 1, 2, 3, 5, 6 (4.20)

z[k]4 ≥
(

eAδkz[k − 1]
)

4
for k = 1, . . . , n− 1. (4.21)

To find the exact solution we will need to guess n and solve for z[k], and doing

so will necessarily entail inverting B = eAδk . The condition number of B is κ(B) =

‖B‖‖B−1‖. Numerical experiments done with Matlab (calculating B for a fixed ρ
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and different values of δ) show that the first element in the fourth row is dominant.

So, a lower bound on ||B|| is given by |B4,1| = |eAδk

4,1 |. A calculation in Maple shows

that

eAδk

4,1 =
1

6
h5

[

e
1

2
hδk

(

cos

(√
3

2
hδk

)

+
√

3 sin

(√
3

2
hδk

))

+e−
1

2
hδk

(

cos

(√
3

2
hδk

)

−
√

3 sin

(√
3

2
hδk

))

+ e−hδk − ehδk

]

=
1

6
h5ehδkQ(hδk)

where h = ρ
1

6 . Looking at the graph of Q(z) we see that it goes positive near 1.24

and is above 0.4 by 1.82. Therefore

‖B‖ ≥ 1

15
ρ

5

6 ehδk if hδk ≥ 1.82. (4.22)

For any matrix S we have ‖S‖ ≥ |λ| where λ is any eigenvalue of S. The matrix

A has six distinct eigenvalues, including h and −h, so the eigenvalues of B include

e−hδk and ehδk . Thus the same holds for B−1 and we have

‖B−1‖ ≥ ehδk , ‖B‖ ≥ ehδk . (4.23)

Combining (4.22) and (4.23), we have

κ(B) ≥ e2hδk (4.24a)

and

κ(B) ≥ e2hδk max{1, 1

15
ρ

5

6} if hδk ≥ 1.82. (4.24b)

Conditions (4.24a) and (4.24b) show that as ρ increases, the problem becomes

increasingly ill conditioned unless hδk stays bounded. But if hδk stays bounded with

increasing h, then δk becomes small and the problem becomes ill-conditioned either

because of the nearby touchpoints or for k = 0 because of the very short interval and
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nonzero boundary conditions on the left end. Conditions (4.24a) and (4.24b) describe

the conditioning on a subinterval. Thus we have the optimality conditions for this

problem become a very ill-conditioned boundary value problem for ρ in the range

considered here independent of the actual number of touchpoints. The conditioning

of the overall problem is much worse if the number of subintervals also increases as

δk decreases which seems to be what we observe computationally.

Thus we have demonstrated a definite advantage of using direct transcription

methods on inequality constrained problems. Since direct transcription methods only

resolve behavior that is numerically significant, it is able to produce a meaningful

solution to problems with ”virtual boundary arcs” in spite of the inherent conditioning

problems.

4.3 Open Questions: Initialization

4.3.1 Monitor Functions

In this section we will consider using monitor functions, a method that is commonly

applied to solving boundary value problems [1], to initialize a code like SOCS. Even

in the absence of constraints, stiffness in the function f or the lack of smoothness

in the optimal control, as in, for example, with a bang-bang control, can result in a

big difference between the properties of the original problem and the properties of a

discretization of this problem on a coarse uniform grid. SOCS, which measures the

accuracy of the solution by how close the behavior of the discretization approximates

the behavior of the original problem, is then forced to refine the grid multiple times,

resulting in finer and finer grids. Good grid refinement algorithms take care of this

problem somewhat [7], but it still means more iterations to the grid refinement pro-

cedure and larger NLPs to work with at each iteration. One solution is a coarse but
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nonuniform initial grid that takes into account the structure of the problem and the

initial guess.

The advantage of monitor functions for this task is that they can be used when f

is a black box. The idea behind the algorithm, given in [6] is as follows:

1. Using a variable step integrator of fixed order P with tolerance 10−R, integrate

the system

dx

dt
= f(t, x, y(t, x)) x(t0) = ζ

ds

dt
= φ(t, x) s(t0) = 0

where y(t, x) is the initial guess for y, supplied by the user. Suppose that the

integration terminates at tf in Msteps and the value of s at the final gridpoint

is sf .

2. Let MAXGRID,MINGRID be given and let S be the tolerance desired for the

initial guess and Q be the order of the discretization used by SOCS (2 for

Trapezoid and 4 for Hermite-Simpson). Set the number of nodes in the initial

grid according to the formula (explained in [6]):

N = min{MAXGRID,max{MINGRID,M10S/Q−R/P}}.

and let

sk = sf
k − 1

N − 1
, k = 1, ..., N

3. Using a numerical integrator, integrate

dx

ds
=

f(t, x, y(t, x))

φ(t, x)
x(0) = ζ

dt

ds
=

1

φ(t, x)
t(0) = t0

from 0 to sf and output (x(s), t(s)) at s = sk for k = 1, ..., N .

106



Two types of monitor functions were considered by the authors of [6]:

φ(t, x) =

√

√

√

√α +

m1
∑

i=0

βifi(t, x)2

and

φ(t, x) = γ +

(

m1
∑

i=0

βifi(t, x)
2

)ω

where

γ =
1

tf − t0

∫ tf

t0

‖f‖2ωdt

has to be determined by a separate integration.

The first monitor function with α = βi = 1 is the arclength function. It equidis-

tributes the nodes along the graph of x. The second monitor function, first suggested

in [2] to minimize the error in linear interpolation, is proved in [6] to provide a lower

residual error than the first one. Numerical experiments in [6] have demonstrated

the usefulness of monitor functions on some example problems, but several issues still

remain to be investigated before initialization routines based on monitor functions

can be integrated into a package like SOCS.

4.3.2 Order Reduction

The method discussed in this section applies specifically to inequality constrained

problems that are hard to initialize because the initial solution must satisfy all con-

straints.

One technique for dealing with problems that have high order constraints is order

reduction. The constraint (equality or inequality) of order p is differentiated p

times. Each differentiation produces additional boundary conditions and differential

equations. The resulting system is a first-order DAE, easily solved for the states given

any initial control values. There are several disadvantages to this approach:
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• It requires differentiating the constraint function, i.e. additional work by

the user or by a numerical integrator, often very difficult or even impossible

if the constraint function is a ”black box”.

• Repeated integrations affect the accuracy of the result, so the optimal

solution to the problem thus transformed may be very different from the

optimal solution to the original problem

• The transformed problem is much larger than the original problem, so

solving it takes a lot more time and computational resources.

However, what if we used order reduction for initialization purposes only? If all we

are interested in is a feasible solution, accuracy is no longer as important. A numerical

integrator can be used to transform the constraints and to solve the transformed

problem for some value of the control. The result will then be transmitted to a direct

transcription solver as an initial feasible solution to the original problem.

For a problem of the form (4.1) without final state constraints (φ = 0) and a

single scalar pth order inequality constraint the algorithm looks like this: rewrite

g(x) ≤ 0 as g(x) + 1
2
α2

0 = 0. From this, we get α0(t0) = ±
√

−2g(ζ). Differentiating

once, we get g′(x) + α1α0 = 0, where α1 = α′
0. From this, we get the boundary

condition α1(t0) = − g′(ζ)
α0(t0)

. We do this p times, until the scalar control u appears in

the equation, so that in the end the problem (4.1) is transformed into

minC(x(tf ))dt (4.25a)

x′ = f(x, y) (4.25b)

α′
i = αi+1, i = 0, ..., p− 1 (4.25c)

x(t0) = ζ (4.25d)

α(t0) = ζ̄ (4.25e)

0 = g(p)(x, u) + Sp(α). (4.25f)
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The constraint (4.25f) can then be used to solve for u in terms of α, so that what

we have as a result is an unconstrained problem with a single control αp. Setting

αp to whatever we want, we can then simply integrate the equations (4.25b)–(4.25c)

starting from (x, α)(t0) = (ζ, ζ̄).

However, in practice it is not so simple. Some numerical experiments with using

this approach done on a variation of the trolley problem (see Section 1.1) have demon-

strated another problem that can arise when applying order reduction to difficult-to-

solve inequality constrained problems - the resulting system of differential equations

can be very stiff if we tried to solve it for a fixed αp.

But there are still other things that can be tried. For example, the initialization

strategies built into SOCS or another software package can be used to find an initial

solution (x, u, α) to the transformed problem (4.25). If there is any success with using

this method on problems with smooth constraints described by inifintely differentiable

functions like the trolley problem, there still remain many interesting questions re-

garding numerical differentiation and integration of ”black box” constraints, the goal

being of course to eliminate additional work on the part of the user.

Another side question would be finding a non-recursive formula for determinitng

the coefficients of the polynomial Sp(α). For p from 0 to 6, the polynomial takes the
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form

S0 (α) = 1/2α0
2

S1 (α) = α0α1

S2 (α) = α1
2 + α0α2

S3 (α) = 3α1α2 + α0α3

S4 (α) = 3α2
2 + 4α1α3 + α0α4

S5 (α) = 10α2α3 + 5α1α4 + α0α5

S6 (α) = 10α3
2 + 15α2α4 + 6α1α5 + α0α6

and Sp is obtained from Sp−1 by a simple application of the chain rule. Whereas

numerical differentiation should be used on g, applying it to S would result in un-

necessary loss of accuracy. It would be much better to append Sp to g(p), which can

only be done if we have a non-recursive formula for its coefficients.

In summary, using order reduction for initialization of high-order optimal con-

trol problems may not be feasible, and the results so far are not very encouraging.

However, there are many things one could still try, and there are also some interest-

ing questions arising from this problem. Some of them have to do with numerical

integration and differentiation. Others, like the determination of the coefficients of

Sp(α) belong to the realm of ”pure math”, and may very well have been pursued by

someone in a completely unrelated field.
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Chapter 5

Summary of Contributions

Inequality Constrained Problems (Chapter 4)

Section 4.1 presents two results selected from among several papers studied by the

author in connection with the project discussed in greater detail in Chapter 3. The

results are restated to maintain uniformity of notation throughout the monograph

and observations are made regarding the different assumptions and practical consid-

erations.

The original material in Section 4.2 is based on work done by Dr. Betts, Dr. Camp-

bell and the author in 2003. The heat equation problem was suggested by Dr. Camp-

bell who also coined the term ”virtual boundary arcs”. The author’s personal contri-

butions include

1. Designing and implementing numerical experiments in SOCS for the heat equa-

tion problem (4.13a)–(4.13) as well as the example problem (4.16).

2. Designing the transformation functions w(v) and FK which provide for a visu-

alization of small oscillations exhibited by the solutions to both problems.

3. For the example problem which demonstrates the conditioning problem inherent
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in problems with virtual boundary arcs, calculating the upper bounds on the

condition number, (4.24a) and (4.24b).

Two papers were published based on the results of this research:

• J. T. Betts, S. L. Campbell, and A. Engelsone, Direct transcription solu-

tion of optimal control problems with higher order state constraints: theory

vs. practice, Optimization and Engineering, to appear.

• J. T. Betts, S. L Campbell, and A. Engelsone, Direct transcription solu-

tion of inequality constrained optimal control problems, Proc. 2004 Amer-

ican Control Conf., Boston, 1622-1626.

Section 4.3 discusses the problem of initializing numerical algorithms for solving

optimal control problems. The idea of using order reduction for initialization was

suggested by the author, who worked on it independently in early 2004. Experiments

in Matlab and SOCS showed the shortcomings of the approach originally adopted

by the author. The section discusses possible solutions. Using monitor functions to

initialize SOCS was a joint project of Dr. Campbell and a former student Mr. Kalla.

In the spring of 2004, the author debugged, organized and rewrote some of the Matlab

code written by Mr. Kalla and noted some numerical phenomena that had not been

observed before.

Equality Constrained Problems (Chapter 3)

Section 3.1 includes the authors observations about the lack of convergence results

for equality constrained problems and notes which of the results in other chapters

may be applicable to this case.

The results in Section 3.2, developed by Dr. Campbell, Dr. Betts and the author in

2004, challenge common thinking about control problems and convergence and extend
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strong direct transcription convergence results to a class of problems that most other

methods are unable to solve.

The proof of Theorem 3.2, which establishes equivalence between unconstrained

problems and certain high-index equality constrained problems, is the author’s as are

the corollaries which extend prior convergence results to problems with ”virtual index

1”. However, the conjecture belongs to Dr. Campbell, who has also has provided a

lot of guidance with the proofs.

Two papers were published on the subject of virtual index:

• A. Engelsone, S. L. Campbell, and J. T. Betts, Direct transcription

solution of higher-index optimal control problems, Proc. IMACS World

Congress on Scientific Computation, Paris, 2005.

• A. Engelsone, S. L. Campbell, and J. T. Betts, Direct transcription so-

lution of higher-index optimal control problems and the virtual index, Ap-

plied Numerical Mathematics, to appear.

In addition, the author gave two presentations of these results,

• Direct Transcription Solution of Higher-Index Optimal Control Problems

McMaster Optimization Conference: Theory and Applications, Hamilton,

Canada, July 28-30, 2004

• Direct Transcription Solution of Higher-Index Optimal Control Problems

IMACS World Congress on Scientific Computation, Paris, France, July

12-16, 2005

Unconstrained Problems (Chapter 2)

Section 2.1 contains a detailed overview of existing convergence results for uncon-

strained problems. The author has restated and reformulated some of the results
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to maintain consistency of notation and make them more easily accessible to practi-

tioners. The section also introduces the issue of multiplier convergence which is the

subject of the next section.

In spring of 2005, while running numerical experiments for example problems in

Chapter 3, the author noticed the discrepancy between the theoretical result (repro-

duced here as Theorem 2.5) and the multiplier estimates provided by SOCS for the

Trapezoid and Hermite-Simpson discretization methods. The author then designed

numerical experiments using SOCS and Maple and talked to Dr. Betts, our contact at

SOCS, at length about the SOCS procedures for estimating multipliers. The author

eventually discovered the reason for the discrepancy and demonstrated it through

numerical experiments.

Finally, the author proved Theorem 2.6, which shows that multiplier convergence

for the Trapezoid method depends on the particular implementation of the method.

The theorem states that the multipliers obtained from the compressed version of the

method implemented in most codes are only 1st order accurate at the gridpoints,

however, a simple interpolation (currently being implemented in SOCS) is sufficient

to produce multiplier values that are 2nd order accurate. The theorem also states

that the controls obtained from any implementation of the Trapezoid method are 2nd

order accurate on the inside gridpoints. This is the only result known to the author

that establishes higher order control convergence for a commonly used discretization

method. All these results are presented and discussed in Section 2.2.

The one currently published paper

• A. Engelsone, S. L. Campbell, and J. T. Betts, Order of convergence in

the direct transcription solution of optimal control problems, Proc. IEEE

Conf. Decision Control - European Control Conference, Seville, Spain,

2005.
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discusses the literature and notes the discrepancy between earlier theory and numer-

ical results for both Trapezoid and Hermite-Simpson but does not include Theorem

2.6. The paper

• A. Engelsone and S. L. Campbell, Adjoint Estimation using Direct Tran-

scription Multipliers: Trapezoidal Method,

which has been submitted for publication, includes more numerical results on Trape-

zoid method and Theorem 2.6. The author also hopes to have a theoretical result

for the Hermite-Simpson method, discussed here in detail in Section 2.3, in the near

future.
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