
Table 1 Summary of parameters 

Radius of spherical shell 
Shell thickness 
Shell material 
Shell mass 
o)m — relative angular speed at maxi

mum torque 
Minimum average torque in Earth 's 

magnetic fielda when co = com 

Maximum slewing torque 
Driving field intensity for maximum 

slewing torque 
Driving field frequencj^ = 1.2com 

Power required for maximum torque 
Mass of torquing coils 
Peak suspension field strength 
Suspension field frequency 
Effective suspension "spring con

stant ' ' 
Total power for sphere suspension6 

Mass of suspension coils6 

25 cm 
0.5 cm 
aluminum 
10.6 kg 

54 radians/sec 

240 dyne-cm 
1.4 X 106 dyne-cm 

20 gauss 
10 cps 
18 w 
30 kg 
5 gauss 
288 cps 

1000 dynes/cm 
8.4 w 
5 kg 

a For 400 mile orbit at 45 deg inclination. 
b Not counting damping coils if added. 

and magnetically actuated spherical shell is feasible and that 
the mass, size, and wattage requirements are reasonable when 
compared with other systems. This method of attitude con
trol offers the advantages of large range of control, lack of Mo
tional effects, negligible interacting torques (no gyroscopic 
effects), and ability to passively dump undesired cumulative 
angular momentum into the Earth's magnetic field. 

The parameters for the example discussed in the text are 
summarized in Table 1. 
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Aircraft Corp. The present paper includes that portion of 
the original study that dealt with propulsion requirements 
as well as extensions to the orbit transfer analyses. 

Scope of S t u d y 

Fig. 1 illustrates a typical elliptical satellite orbit which 
can be described in terms of various sets of orbital elements. 
In this report, the following elements are considered: length 

Propulsion Requirements for 
Controllable Satellites THEODORE N. EDELBAUM 1 

United Aircraft Corp. 
East Hartford, Conn. 

Propulsion requirements are determined for several controllable satellite miss ions . Both high 
thrust propulsion systems such as chemical rockets and low thrust propulsion systems such as ion 
rockets are considered. Rendezvous miss ions are treated by determining m i n i m u m fuel maneuvers 
for small , s imultaneous changes in the e lements of quasi-circular orbits. Orbit transfer miss ions 
are treated by determining m i n i m u m fuel maneuvers for large changes in the e lements of circular 
orbits. Orbit maintenance missions are treated by determining the propulsion necessary to cancel 
perturbations due to the atmosphere, the Earth's bulge, and the sun and m o o n . Among the results 
of the study is a closed-form analytic solution for the o p t i m u m low thrust transfer between inclined 
circular orbits of different radii. 
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Fig. 1 Satellite orbit 

of the semimajor axis a, eccentricity e, inclination to the 
equatorial plane i, and angle between the line of nodes and 
the line of apsides co. The semimajor axis is half the distance 
between the point of closest approach to the Earth (perigee) 
and the point of furthest retreat from the Earth (apogee). 
The line connecting these two points (the major axis) is known 
as the line of apsides. The eccentricity represents the per
centage difference between the semimajor axis and either 
the perigee or the apogee distance. The inclination is the 
angle between the orbital plane and the X, Y reference plane. 
The intersection of the orbital plane and the reference plane 
is known as the line of nodes (the line N-N' in Fig. 1). Angu
lar position in the orbit is measured from either the perigee 6 
or a fixed reference point 6r. 

This study is concerned with the propulsion requirements 
for varying these orbital elements. Several representative 
missions are treated under the following headings: (a) 
Precision Orbit Establishment (b) Modification of Circular 
Orbits (c) Orbit Maintenance. 

Typical missions in the section on precision orbit establish
ment include the placement of a 24-hr satellite directly above 
a given point on the Earth's Equator and rendezvous with 
other vehicles in orbit. Circular orbits have been considered 
because they are simple to analyze and because they are de
sirable for many satellite missions. In all cases, the initial 
departure of the orbit from the desired circular orbit is as
sumed to be small so that the changes may be considered as 
linear. 

In the section on modification of circular orbits, the use of 
propulsion to produce gross changes in the orbit is considered. 
Here also only circular orbits are considered. Typical 
missions under this heading include the establishment of 
equatorial orbits from nonequatorial parking orbits, changes 
in orbit altitude, and changes in the position in the orbit. 

The section on orbit maintenance deals with cases where a 
perturbed orbit is controlled so as to cancel the effects of the 
perturbations. As particular examples, the maintenance of 
an orbit in the atmosphere and of a 24-hr satellite orbit in the 
presence of solar, lunar and bulge perturbations are con
sidered. 

Some of these missions can be accomplished either with 
systems (such as chemical rockets) having high thrust-
weight ratios or with systems having low thrust-weight 
ratios (such as ion rockets or plasma jets). The proposed 
devices can give accelerations of from less than 10 ~4 gm to 
greater than 102 gm. These accelerations can result in correc
tions being made during many revolutions of the satellite or 
at essentially a single point in the orbit. Most of the avail
able propulsion systems tend to result in maneuver times 

1080 

that are either much shorter or much longer than the time 
for one revolution. Only these cases are treated herein be
cause they constitute the primary interest and because the 
intermediate cases do give intermediate results. Generally, 
a high thrust system is taken as having a vehicle thrust-
weight ratio of § or greater, while a low thrust system is as
sumed to have a vehicle thrust-weight ratio of 10~2 or less. 
A further restriction on the low thrust system is that the 
maneuver must require many revolutions of the satellite. 
If the required maneuver becomes very small, the low thrust 
system need be used during only a fraction of a revolution 
and will behave as a high thrust system. With typical elec
trical propulsion systems having thrust-weight ratios on the 
order of 10 ~4, this latter circumstance corresponds to minute 
corrections. 

The high thrust systems are normally characterized by 
low specific impulse and high fuel consumption. The maneu
vers for this system are optimized so as to minimize fuel con
sumption. On the other hand, the low thrust systems tend 
to have high specific impulse and low fuel consumption but 
very long maneuver times. For these systems the engine is 
assumed to run continuously and maneuver time is mini
mized. As long as the engine runs continuously, minimum-
time maneuvers are also minimum-fuel maneuvers and vice 
versa. One unusual system is the energy storage system 
described in (l).2 This system uses an electric generator to 
charge an energy storage unit over many revolutions of the 
satellite and then releases the energ}^ in short impulses. 
Here, the interest is in minimizing both fuel consumption and 
energy consumption in order to minimize charging time as 
well as fuel. However, since energy minimization is equiva
lent to fuel minimization in this case, the high thrust system 
results are directly applicable to this system. 

The control systems examined are not required to have 
variable thrust magnitude. Only burning time and thrust 
direction are varied. In general, the engines are assumed to 
be fully controllable in direction. This could be realized in 
practice by gimballing the nozzles or b}^ turning the whole 
satellite. Some attitude control system is probably required 
but is not discussed. 

All the results of the mission analyses are expressed in terms 
of a required characteristic velocity. Characteristic velocity 
is a useful parameter because it is independent of both spe
cific impulse and thrust-weight ratio for either high or low 
thrust systems. All propulsion systems are assumed to oper
ate at constant specific impulse so that the mass ratio re
quired for any maneuver is equal to the exponential of the 
required characteristic velocity divided by the exhaust 
velocity. 

Precis ion Orbit E s t a b l i s h m e n t 

Small Changes of Individual Elements of Orbit 

Optimum High Thrust Corrections: Optimum methods of 
making both large and small changes in the individual ele
ments of circular satellite orbits with high thrust have been 
treated in the literature, e.g., (1 through 10). For changes in 
the semimajor axis or eccentricity, the well-known Hohmann 
transfer ellipse is optimum. For small changes in inclination, 
the optimum maneuver is a single impulse at the line of nodes 
directed normal to the plane of the orbit. Changes in posi
tion in the orbit are accomplished by transferring to a larger 
or a smaller orbit and revolving in this orbit until the original 
orbit can be re-entered at the desired point. Reference (3) 
shows that tangential impulses are essentially indistinguish
able from the true optimum for this case. For this case the 
characteristic velocity requirements are inversely propor
tional to the number of revolutions in the intermediate orbit. 

2 Numbers in parentheses indicate References at end of paper. 
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Optimum Low Thrust Corrections: The optimum low thrust 
correction maneuvers for each of these elements are derived 
in the Appendix. Derivations of the first three of these are 
also given in (11) and the fourth is derived in (1). For 
changes in the semimajor axis, the optimum maneuver re
quires directing the thrust so that it is always tangent to the 
velocity vector. For changes in eccentricity, the optimum 
maneuver closely approximates directing the thrust in one 
direction normal to the line of apsides. This program is 
more than twice as efficient as the radial thrust programs for 
changes in eccentricity suggested in the literature. Changes 
in inclination are accomplished by directing the thrust normal 
to the plane of the orbit for half a cycle and then reversing 
the direction for the other half. Rider has recently treated 
low thrust changes in inclination for elliptic orbits of any 
eccentricity (12). Changes in position in the orbit are made 
by applying tangential thrust in one direction until half the 
correction is made and then applying tangential thrust in 
the other direction until the original orbit is re-established. 
As with high thrust, the characteristic velocity is reduced by 
increasing the number of revolutions required for the maneu
ver. The characteristic velocity requirements for these 
maneuvers with both high and low thrust are given in Table 1. 
Changes in the major axis can be accomplished with the same 
characteristic velocity with either type of system, but changes 
in eccentricity with low thrust require a 30% higher char
acteristic velocity than with high thrust, changes in inclina
tion require 57% more, and changes in position with the same 
number of revolutions, 100% more. This difference in char
acteristic velocity for changes in position is probably not 
significant because the low thrust system will normally re
quire a large number of revolutions to make the correction, 
and even for only one revolution the characteristic velocity 
requirement for changing position is an order of magnitude 
smaller than that required for other changes. It is necessary 
to perform a complete mission analysis to determine the 
significance of these differences in characteristic velocity. 
Low thrust systems and high thrust systems are funda
mentally different and cannot be compared on this basis 
alone. 

Combinat ion Maneuvers 

High Thrust: Small changes in both the semimajor axis 
and the eccentricity can be made simultaneously with a total 
velocity increment which is equal to that for the larger cor
rection alone. The reason for this is that whatever must 
be added to one of the impulses must be subtracted from the 
other, and the sum of the impulses remains the same. Changes 
in position can also be obtained free by splitting one of the 
impulses into two parts. For example, not quite all of the 
required velocity increment is applied in the second impulse, 
and the rest is applied in a third impulse. Several recent 
papers have used this concept for changes in position (13 
through 15). 

Analysis of the optimum maneuvers for the general three-
dimensional case is quite complex even for the quasi-circular 
orbits considered herein (16). It is believed that the opti
mum maneuver generally requires three impulses for changes 
in major axis, eccentricity, and inclination; four impulses 
are required if orbital position is to be changed also. Because 
of the large number of variables and the complex equations 
needed to analyze this general maneuver, the general case 
is not treated herein. Instead, a simplified case is analyzed 
where the optimum planar maneuver is combined with a 
change in inclination without changing the planar maneuver. 
The results of this analysis, which is contained in the Appen
dix, are given in Fig. 2. This figure shows the combinations 
of planar and nonplanar changes that can be obtained for any 
given characteristic velocity. The planar change in semi-
major axis or eccentricity per unit characteristic velocity is 
plotted against the nonplanar change in inclination that can 

Table 1 Characteristic 
changes of 

High thrust 

£-0.6*? 
Vo do 

AV 
1 ~ = 0.5 Ae 
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f— 
Vo n 

velocity requirements for 
quasi-circular orbits 

Low thrust 

AV n r Aa 
— = 0.5 — 

v o o>0 

AV 
= 0.649 Ae 
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^ = 1.571 At 

^ = 0.212 *»' 
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\ vo \ 
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W s 9 0 0€0r^ 

V° 

0.25 0.50 0.75 
Ai 

AV/Vn 

100 1.25 

Fig. 2 Combination maneuvers for quasi-circular orbits: 
high thrust 

be obtained with the same unit characteristic velocit3r. As 
in the planar case, small changes in both the semimajor axis 
and the eccentricity can be made simultaneously with a total 
velocity increment which is equal to that for the larger cor
rection alone. The total characteristic velocity required for 
a maneuver always lies between the algebraic sum and the 
vector sum of the planar and nonplanar velocity impulses. 
For cases where the line of nodes is not coincident with the 
lines of apsides, it should be possible to improve these results 
by allowing for some variation of the planar maneuver. 

Low Thrust: The optimum steering programs for combina
tions of changes in the semimajor axis, eccentricity and in
clination are derived in the Appendix. Changes in orbital 
position can also be made with these programs because such 
variations require an alternation of period, which is equiva
lent to changes in semimajor axis. Some special cases of this 
optimum steering program for planar maneuvers are illus
trated in Fig. 3. The figure shows the variation in the angle 
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180 
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Fig. 3 Some optimum steering programs with low thrust 

HIGH / 
THRUST-7 

LOW ^ V 
THRUST-7 ~ 

Fig. 4 Characteristic velocity requirements for planar 
maneuvers 

- » 

— • 

Si \v 
^ 1 

60 

;+ 6 - DEG 

between the thrust vector and the velocity vector required 
for optimum combinations of changes in semimajor axis and 
eccentricity. The particular programs shown in this figure 
maximize the semimajor axis; the eccentricity, and the apogee 
radius, or minimize the perigee radius. The results of these 
programs are shown in Fig. 4, where they are compared with 
the corresponding high thrust results. As in Fig. 2, the 
curves represent the changes that can be obtained with given 
characteristic velocities. The intersection of the curves 
with the axis represents individual maneuvers while all other 
points on the curves represent combination maneuvers. The 
steering program that maximizes semimajor axis produces no 
change in eccentricity while the steering program that maxi
mizes eccentricity produces no change in semimajor axis. 
If the size of the changes that can be obtained with low thrust 
is compared to those obtainable with high thrust, it can be 
seen that the disparity is greater for combination maneuvers 
than for the individual maneuvers. This shows that planar 
maneuvers with high thrust can be combined more efficiently 
than planar maneuvers with low thrust. 

The steering programs for a number of different combina
tions of changes in semimajor axis and inclination are shown 
in Fig. 5. The angle (3 is the angle between the thrust vector 
and the plane of the orbit. The results of these programs are 
illustrated in Fig. 6, where they are compared with the results 
for high thrust systems. Also shown is the result of keeping 
the angle between the thrust line and the orbit plane con
stant in magnitude. This latter steering program gives near-
optimum results which can be analyzed simply in terms of 
trigonometric functions rather than in terms of the elliptic 
integrals that result from the optimum program. In con
trast with the planar results, nonplanar combination maneu
vers with low thrust can be combined at least as efficiently 
as can the maneuver with high thrust. In many cases the 
characteristic velocity advantage of the high thrust system 
will be smaller for nonplanar combination maneuvers than for 
individual maneuvers. 

AV/V„ 

Fig. 5 Optimum steering programs for changing semimajor 
axis and inclination 
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Fig. 6 Characteristic velocity requirements for changes in 
semimajor axis and inclination 
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Modification of Circular Orbits 

Large changes in the individual elements of circular satel
lite orbits are considered in this section. The small-change 
assumption of the last section is dropped, but the quasi-
circular assumption is retained. Because of this latter as
sumption, large changes in eccentricity are not considered, 
although changes in orbit altitude and inclination are con
sidered. The allowance of large changes complicates the 
analysis because the possible fuel savings of various inter
mediate orbits may be larger than the amount of fuel re
quired to enter the intermediate orbits. It becomes necessary 
to consider manjr different possibilities. 

Changes in Radius 

In 1925 Hohmann (2) demonstrated his now classic result 
that the optimum way to transfer from one circular orbit to 
another is via an ellipse which is tangent to both orbits. 
This two-impulse maneuver represents the absolute minimum 
fuel consumption for most cases of practical interest (5). 
However, for transfer to circular orbits which are more than 
twelve times larger (or smaller) than the original orbit, it is 
possible to save fuel by going to a three-impulse transfer. 
The three-impulse bi-elliptic transfer is illustrated in Fig. 7. 
It starts as a conventional Hohmann transfer except that a 
larger initial impulse is used to transfer beyond the radius of 
the final orbit. At the apogee of this transfer orbit a second 
impulse is used to bring the perigee of the transfer ellipse to 
the radius of the final orbit. The final circular orbit is then 
entered at the perigee of this second ellipse by means of a 
third impulse. The farther away the apogee of the transfer 
ellipse is located, the greater is the fuel saving. The absolute 
minimum fuel consumption represents going to infinity and 
applying an infinitesimal impulse there to return along a 
parabola which is tangent to the final orbit. The character
istic velocity savings of this high thrust maneuver are shown 
in Fig. 8. Going to twice the radius of the final orbit pro
duces about half the characteristic velocity savings of going 
to infinity. Since the maximum possible saving in character
istic velocity is about 8%, these savings probably do not 
justify the increased complexity and transfer times of these 
maneuvers. This maneuver was apparently first derived 
by Shternfeld (8). Independent descriptions of this maneu
ver appear in (9) and (10). A comparison of the Hohmann 
transfer and the bi-elliptic transfer for co-apsidal elliptic or
bits is contained in (6). 

Also shown in Fig. 8 are the characteristic velocity require
ments for low thrust transfer between circular orbits. It is 
demonstrated in (17) that the optimum thrust direction for 
escape with low thrust is halfway between the tangent to the 
orbit and the normal to the radius vector. This result is also 
largely applicable to transfer between circular orbits. For 
the purposes of this report, the difference between this pro
gram and tangential thrust can be considered negligible. 
In transferring between circular orbits with tangential 
thrust, the vehicle will quickly approach a mean path whose 
slope is twice the local thrust-weight ratio and whose velocity 
is equal to local circular velocity (18). As a result, the satel
lite will arrive at the final orbit with an eccentricity of twice 
the local thrust-weight ratio. This is a very small eccentricity 
and can be cancelled by a high thrust type maneuver after the 
final orbit radius has been reached, or it can be cancelled by 
a combination maneuver during the final cycle or cycles. 
In either case, the characteristic velocity requirement is very 
small. 

Changes in Inclination 

To change the inclination of a satellite orbit it is necessary 
to change the direction of the velocity vector. The smaller 
this velocity vector, the smaller the required characteristic 
velocity. This is a case in which it is desirable to use fuel to 

HOHMANN TRANSFER BI-ELLIPTIC TRANSFER 

Fig. 7 Minimum fuel transfers 

C O — ^ ~" ~~— 

~LOW THRUST 

HIGH THRUST 

Fig. 8 Characteristic velocities for transfer between circular 
orbits 

establish an intermediate orbit which will have a low velocity 
so that the change in inclination can be made economically. 
In (7), it is shown that for large changes in inclination, a 
tangential impulse which establishes an elliptic orbit, followed 
by a normal impulse at the apogee of this ellipse and a 
tangential impulse at perigee to re-establish a circular orbit, 
can produce fuel savings over a single normal impulse. In 
the Appendix it is shown that it is advantageous to do part 
of the change in inclination when entering and leaving the 
elliptic orbit. The optimum distribution of inclination 
changes has been treated in several papers (13,14,19,20). 
Distributing the inclination change produces a small saving 
in characteristic velocity, usually less than 5% of circular 
velocity (20), and makes the three-impulse maneuver opti
mum for all angles rather than for large angles only. The 
characteristic velocity requirements of these maneuvers are 
shown in Fig. 9. For small changes in inclination, there is 
an optimum period for each inclination, while for large 
changes, the optimum period is infinite. As a consequence, 
the theoretical optimum is to escape to infinity along a para
bolic orbit, change the inclination of the parabolic orbit with 
an infinitesimal impulse at infinity, and then return and re
enter a circular orbit. Although this maneuver is clearly 
impractical, it is possible to save fuel by taking longer and 
longer times to make the maneuver. The curves of Fig. 9 
show the maneuver times in terms of the initial orbital periods 
(P0) that are required for various characteristic velocities. 
Although not shown, the optimum three-impulse maneuvers 
for small changes produce only small improvements over the 
one-impulse maneuver. 
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With low thrust it is also advantageous to expend some 
fuel in reducing velocity as well as in changing inclination. 
For this case the inclination is changed continuously while 
the satellite revolves in its orbit, so that it is necessary to re
duce the velocity throughout the orbit rather than just at one 
point. This is done by maintaining the orbit as a circle and 
changing inclination while this circle is first expanded and 
then shrunk. Two optimum methods of doing this are dis
cussed in the Appendix. The first represents the true opti
mum where thrust angle is varied through each cycle and also 
as a function of the size of the orbit. In the second case, 
thrust angle is maintained constant through each cycle, al
though it is still varied as a function of the size of the orbit. 
For the latter case, all the results can be expressed in closed 
form. The difference in characteristic velocity between the 
two cases varies between zero and a maximum of 3%. If 
large changes in inclination are required, it is once again 
desirable to escape to "infinity," change the inclination at 

COW THRUST -v / / 

| / 
\ - HIG * THRUST 

> s— TIME RE< 

^ 0~~ 

2 

5 

10 

100 

JUIRED -IOOOP0 

0 30 60 90 120 150 180 

CHANGE IN INCLINATION-DE6 

Fig. 9 Minimum characteristic velocity for orbital plane rotation 
of a circular orbit 

02 0.4 0.6 0.8 1.0 

V/V 0 

Fig. 10 Characteristic velocities for transfer between inclined 
circular orbits 
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''infinity/' and then return. Because the motor is run 
continuously, this is a minimum-time as well as a minimum-
fuel maneuver. It is not possible to trade these two quan
tities by changing the maneuver as with the high thrust case. 

Changes in Inclination and Radius 

Rider has recently published an excellent survey of high 
thrust transfer between inclined circular orbits of different 
radii (20). He compares two- and three-impulse transfers 
with and without distribution of the change in inclination. 

The optimum low thrust transfer between inclined circular 
orbits of arbitrary radius is derived in the Appendix in the 
course of deriving the optimum maneuver for large changes 
in inclination only. The variational formulation of the 
inclination problem is necessarily identical to the variational 
formulation of the more general problem. Every one of the 
optimum trajectories for producing changes in inclination 
alone is also an optimum way of getting to every combination 
of radius and inclination along that trajectory. This is 
illustrated in Fig. 10 where the trajectories corresponding to 
various values of the initial steering angle /30 are plotted 
vs. inclination and velocity. Velocity can be used as a 
variable instead of radius because the orbit always remains 
quasi-circular so that the square of the velocity is inversely 
proportional to the radius. It is used in preference to radius 
because it does not become infinite. Fig. 10 also shows the 
characteristic velocity requirements for any desired change 
in both inclination and velocity. 

Orbit Maintenance 

The orbit of any real satellite will not be a precise Keplerian 
ellipse. Various natural forces will tend to perturb the orbit. 
For many applications these perturbations will be acceptable, 
but there are other applications for which it will be necessary 
to use propulsion to cancel the effects of perturbations. 
The most important of these perturbing forces are due to 
atmospheric drag, the gravitational field of the Earth's equa
torial bulge, and the gravitational field of the sun and 
moon. Radiation pressure will be important only if the 
satellite has an unusually low density. 

Atmospheric drag tends to decrease both the semimajor 
axis and the eccentricity of any elliptic orbit. The perigee 
altitude of the satellite will decrease at an increasing rate with 
time until the satellite re-enters the dense part of the at
mosphere and either burns up or impacts the surface of the 
Earth. For altitudes above approximately 300 miles this 
effect is negligible. However, thrust will be required to 
maintain satellites at altitudes of the order of 100 miles for 
more than a day or so. A satellite of standard density can 
be maintained at about this altitude by continuous application 
of thrusts of from 10~5 to 10~4 times the vehicle weight. 

The most important effects of the Earth's equatorial 
bulge are to cause a small change in the period of the satellite, 
a continuous rotation of the orbital plane around the polar 
axis of the Earth, and a continuous rotation of the line of 
apsides in the plane of the orbit. The sun and the moon 
cause similar effects except that in these cases the satellite 
orbital plane rotates with respect to the polar axis of the 
ecliptic and the moon's orbital plane. 

One mission for which these perturbations are important 
is the stationary 24-hr equatorial satellite. If such a satellite 
were put precisely over a given point on the Earth's Equator, 
the combined effect of the equatorial bulge, the sun, and the 
moon would be to cause a slow rotation of the plane of the 
orbit in space. As seen from Earth, the satellite would 
appear to gradually develop a figure 8 motion with a period 
of one day. This motion would grow in amplitude until it 
reached about 15 deg north and south of the equator after 
25 years. After another 25 years the amplitude would have 
decreased back to zero, and the cĵ cle would repeat itself. 
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In the first year the maximum excursion would be about a 
degree. This motion could be suppressed by changing the 
orbital inclination when i t grew too large or by continuous 
application of thrus t . A continuous th rus t of 2.5 times 10~7 

t imes the weight of the satellite would suppress the motion if 
the direction were changed by 180 deg every half day. Alter
nately, thrus ts of larger magni tude with characteristic ve
locities of 165 fps per year could be used. Because of the small 
amount of t h rus t required, even an ion rocket with a thrus t -
weight ratio as low as 10~5 could be considered a high th rus t 
system for this application. 

Appendix: Der ivat ion of O p t i m u m Maneuvers 

Equations of Motion of Orbit Elements 

The analyses of this appendix are carried out in terms of 
the elements of the elliptic orbit. The rates of change of 
each of these elements have been derived by following the 
techniques presented in (21). The thrust force is broken 
down into three mutually perpendicular components: a 
tangential component which is tangent to the velocity vector, 
an orthogonal component which is normal to the plane of the 
orbit, and a normal component which is normal to the other 
two. These components are expressed in terms of two 
angles, the angle between the velocity vector and the com
ponent of the thrust vector in the plane of the orbit a, and 
the angle between the thrust vector and the plane of the 
orbit 0 

FT = F cos /3 cos a Fx = F cos /3 sin a 
Fz = F s in (3 [1] 

For almost circular orbits where the eccentricity and in
clination are small, the equations of motion are 

radius is given by 

di 
dt 

dtt 
dt 

da 
dt 

cos (co + 6) Fz 

VQ m 

sin (to + 6) Fz 

iVo m 

2a FT 

Vo m 

de _ 2 cos 6 FT sin 6 FN 

dt Vo m Vo m 

dco _ 2 sin 6 F_r cos 6 FN 

dt eVo m eVo m 

sin (co + 0) Fz 

iVo m 
[2] 

O p t i m u m High T h r u s t M a n e u v e r s 

Large Changes in Inclination 

An efficient maneuver for effecting large changes in in
clination is discussed in (7). This maneuver consists of 
applying a tangential impulse to change the original circular 
orbit to an ellipse, changing inclination at the apogee of the 
ellipse, and re-establishing a circular orbit with a tangential 
retrothrust at perigee. The following analysis is intended 
to show that this maneuver can be improved slightly by 
combining part of the change in inclination with the initial 
and final impulses. 

The characteristic velocity required for finite changes in 
inclination with high thrust is simply the vector difference 
between the initial and final velocity vectors. For the present 
problem, the required characteristic velocit}^ is given by 

— = 2 — sin i/2 
Vo Vo 

[3] 

V, V 2Ra 

Ra + R0 
[4] 

The characteristic velocity required to produce an initial 
(or final) change in inclination is 

AV: 

Vo 
-1 - J-

IVo2 

2Vi 

Vo 
cos i\ + 1 

The total characteristic velocity for the maneuver is given by 

AV 

V If Vo2 Vo 
cos ii + 1 + 

2 (W " v)sin (2 - * ) m 
The t ime of the maneuver depends only upon the choice of 

apogee radius. The required characteristic velocity for a 
given maneuver t ime can be minimized by optimizing the 
initial change in inclination. An explicit expression for the 
opt imum value of this angle can be derived by assuming 
tha t this angle is small. More exact calculations have shown 
tha t this assumption is justified in all cases of interest 

AV 

Vo # - ) • 
-L 7 l • * J -

„ /2Fo VA/ . i . i\ ... 

Hvr~F.Asm2-t,cos2J [/] 

Differentiating Eq . 7 with respect to the initial change in 
inclination and sett ing the result equal to zero produces the 
following expression for the opt imum initial angle 

1 
Vo 

Vi 

The perigee velocity required to establish a specific apogee 

[S] 

This opt imum initial angle was used with Eq . 6 to draw up 
the curves of Fig. 9. The opt imum initial angle given by 
Eq . 8 approaches zero as the inclination becomes large. As 
this is the case considered in (7), the results of Fig. 9 become 
identical with the results in (7) for large changes in inclina
tion. 

Combination of Small Planar Maneuvers with Small 
Changes in Inclination 

As mentioned in the body of the report, the optimum com
bination maneuvers for high thrust systems are difficult to 
derive because of the large number of variables involved. 
A simplified approach will be considered herein, where a 
given planar maneuver is combined with a change in inclina
tion. The planar components of the initial and final im
pulses are assumed to be tangent to the velocity vector, 
applied at apogee or perigee, and fixed in magnitude. The 
magnitude of the orthogonal components of the initial and 
final impulses, and the magnitude and point of application of 
an intermediate orthogonal impulse, are allowed to vaiy. 
These four variables are interconnected so that only two 
may be considered as independent. The two independent 
variables are optimized to produce the results shown in 
Fig. 2. 

The derivation starts with the first and last of Eqs. 2. The 
first describes the rate of change of inclination due to an 
orthogonal force, while the last describes the rate of change of 
the angle between the line of apsides and the line of nodes. 
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Examination of these two equations shows that the rate 
of change of the angle between the line of nodes and the line 
of apsides depends upon the inclination and that the rate of 
change of inclination depends on this angle. These equations 
must be solved simultaneously to determine the effect of 
small finite impulses. This determination is simplified by 
the assumption of tangential impulses at the apsides, because 
such impulses have no effect on the position of the line of 
apsides. Using this assumption, the first and last of Eqs. 
2 can be combined to yield 

do* 

t an (co + 0) 

di 

i 
[9] 

This equation can be integrated directly 

i sin (o) + 0) — const. [10] 
, sin (co + 0)2 , ii 
In -7—z r-^r = In -

sin (co + 0)i 2̂ 

Eq . 10 has a simple physical interpretat ion: the dis
tance of the satellite from the reference plane does not change 
during the impulsive maneuver . This means t h a t the final 
impulse t h a t reduces the inclination of the satellite to zero 
must be given a t the line of nodes. Since i t has also been 
assumed t h a t the last impulse takes place a t the line of 
apsides, the second of the three impulses mus t make the line 
of apsides coincident with the line of nodes. The two re
maining independent variables which will be optimized are 
taken as the point of application of this second impulse (0) 
and the inclination after this second impulse (i). The im
pulse required to produce a given change in inclination or in 
position of the line of nodes is found b y combining Eq . 10 
with the last of Eqs . 2 and integrating 

do) = — 
sin2 (co + 0) Fzdt 

ii sin (co + d)i Votn 

1 f Fzdt . . . . „, f da> 

J m J si Vo J m s in 2 (co + 0) 

AVZ 

7o 
= ii sin (co + 0)i [cot (co + 0)2 — cot (co + 0)i 

The sum of the required velocity impulse is given by 

[11] 

Vo V( AVTIV 

Vo 
+ [io (cos co0 + sin co0 cot 0) — i]2 + 

. sm coo . 
ô -r—T + 

sm 0 V( Vo 
+ i2 [12] 

Differentiating this equation with respect to 0 and setting 
the result equal to zero results in the following expression for 
the optimum value of 0 

c o t 0o p t = 
_ %o cos coo — 

AVT 

7,I 

[13] 

— io sin coo 

Differentiating Eq. 12 with respect to i and setting the result 
equal to zero results in the following expression for the opti-

11" mum value of i 

A 7 T 2 
— — i0 (cos coo + sin co0 cot 0) 

" 0 
f'opt 

A7 n , ATT 

3 + Vo 

[14] 

Combining Eqs. 13 and 14 leads, after some reduction, to 

cot 0opt = 
AVj 

'Vo + 

ô cos coo 

AVT2 
[15] 

Vo 
i 0 s m coo 

'iopt 
AVi 

Vo 
- cot i0 [16] 

Introducing these, equations into Bq. 12 and simplifying 
leads to the final result 

AV = II 

7o ~ V 

v 
/iT7 ^o cos coo 

AVTI A 7 T 
+ Vo 

[17] 

\ Vo 
%o sm co0 

One of the interesting characteristics of this equation is 
t h a t the required velocity impulse depends only upon the 
tota l magni tude of the planar velocity impulse and not upon 
its distribution. This means t h a t in bo th the three-dimen
sional and two-dimensional cases, a change in eccentricity or 
orbital position can be obtained free if the required change 
in major axis is large enough. The velocity increment re
quired for the planar pa r t of the maneuver depends only 
upon the largest single planar correction t h a t mus t be made . 

O p t i m u m Low Thrust M a n e u v e r s 

Steering Programs for Small Changes in Elements of Orbit 

The opt imum steering program for small changes in the 
elements of almost circular orbits can be easily derived by 
using the ordinary theory of maxima and minima. The 
general theory of the calculus of variations can offer improve
ments over this simple theory only when the changes are 
large, as in the inclination problem considered a t the end of this 
appendix. 

The problem is to optimize the steering angles of the th rus t 
vector as a function of orbital position. Combinat ion of 
Eqs . 1 and 2 yields 

da/ao 

dt mV{ 
[2 cos a cos f3] 

de _ F 

dt mVo 
[2 cos 0 cos a cos (3 + sin 0 sin a cos /3] 

di _ J^_ 
dt rnVn 

[cos (co + 0) sin /5] 

[18] 

The opt imum steering program is found by combining Eqs . 
18 by means of Lagrange multipliers and setting the part ial 
derivatives of this expression with respect to the steering 
angles equal to zero 

d d V da/ao . de di 

da d/3 \~dT + * dt + 2 dt 
[19] 

Substi tut ing the expression of Eqs. 18 into Eqs . 19 and carry
ing out the indicated operations result in the following ex
pressions for the opt imum steering angles 

t an aovt = 
Xi sin 0 

o p t 2(1 + Xx cos uj 

X2 cos (co + 0) 
tan Apt = ^ T + ^ c o g e y + X i , r^=$ [20] 

Planar Maneuvers 

When the required maneuver is a planar one, the second 
Lagrange multiplier of Eqs. 19 and 20 becomes zero and the 
thrust line always lies in the plane of the orbit. Only the 
first of Eqs. 20 need then be considered. This section will 
consider some special cases of this equation. The first case 
is a change in major axis only. The Lagrange multiplier is 
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then zero and the thrust should always be tangent to the 
orbit 

da 
aQ 

F 
2~-~dt 

mVo 

AV 1 Aa 
VQ 2 a0 

[21] 

If it is desired to change the eccentricity without changing 
the major axis, then the Lagrange multiplier should be taken 
as infinite and the steering program is given by 

tan aovt = 1 / 2 tan 6 [22] 

This equation is plotted in Fig. 3. The thrust direction 
comes close to representing a constant direction in space and 
this latter program gives very close to optimum results. 

The characteristic velocity for changes in eccentricity is 
found by substituting Eq. 22 into the second of Eqs. 18 and 
integrating 

de _ F f 
dt mVo L 

4 cos 0 
•• + 

tan 6 sin 6 

V 4 + tan2 6 V 4 + tan2 0. 

d£ _ FR 4 cos2 6 + sin2 6 

dd mV0
2 V 4 cos2 6 + sin2 6 

de _ FR^ 
d6 ~ m7o2 2 V l - 3/4 sir 

The change in eccentricity per revolution is given by a 
complete elliptic integral of the second kind 

Ae = 
FR 

mVo2 • r^r 3/4 sin2 6 dd 

[23] 

The characteristic velocity for the change in eccentricity 
per cycle is given by 

AV _ F R± 
VQ m Vo' 

2TT 
AV 

Vo 
= 0.649 Ae [24] 

There are several other values of the Lagrange multiplier 
where the optimum steering program can be substituted in 
Eqs. 18 and integrated analytically. The details of these 
will not be given here as the integrations are straightforward 
and the results are shown as the low thrust curve in Fig. 4. 
The steering program for two of the more important cases, 
maximizing the rates of change of apogee or perigee radius, 
is shown in Fig. 3. For these cases the values of the La
grange multipliers are plus and minus one, respectively. 

Nonplanar Maneuvers 

Nonplanar maneuvers can be treated exactly as were the 
planar maneuvers of the last section. For simplicity, only 
the cases where the eccentricity does not change will be con
sidered. With this assumption, Eq. 20 reduces to 

tan aOPt = 0 tan ' cos (a + 0) [25] 

The second equation is plotted in Fig. 5 for various values of 
the Lagrange multiplier. Changing the notation of the 
second of Eqs. 25 and substituting into Eq. 18 yields 

dd 
mVo2 _. 

mVo2 da 
FRo ao 

AUGUST 

tan fi = kf cos 6 

k' cos2 e _ kr - k' sin2 0 

V l + k'2 cos2 e V l + k'2 - k'2 sin2 e 

2 2 
- de V l + k'2 cos2 e V l + k'2 - k'2 sin2 0 

P 

1961 

dd 

[26] 

The following standard substitution 

Vi + k'2 [27] 

changes Eqs. 26 to 

?nVo' 

~FRo 
de 

k — k sin2 6 

V l - k2 sin2 6 

k2 - 1 

& V 1 - k2 sin2 e ' + 
mVo2 da 
FRo ao 

2 V l - k2 

V l - k2 sin2 6 

V l - k2 sin2 e 
k 

de 

de 

[28] 

Integrating Eqs. 28 over a complete cycle results in complete 
elliptic integrals of the first and second kind 

mVo2 

Ai 
FRo 

mVo2 Aa 
FRo ao 

'k2 

r'+f 
= 8 V l - W K 

[29] 

Expressing these in terms of required characteristic velocity 
results in 

A7 

Vo 

Ai 

p^*+f] 
AV 
Vo 

Aa/a 

Vl-k2K 
[30] 

The characteristic velocity requirements given by Eqs. 30 
are plotted in Fig. 6. Also shown in Fig. 6 is the result of 
keeping the thrust angle ft constant. This can be seen to give 
near optimum results. 

Where only a change in inclination is desired, k should be 
taken as unity, and where only a change in major axis is de
sired k should be taken as zero. The results of these two 
cases are given by 

AV TT A . 

7 o - = 2 A * 
AV 
Vo 

l A o 
2 a0 

[31] 

The second of these equations checks with Eq. 21,: as it should. 

Changes in Position in Orbit 

The only method of producing changes in orbital position 
with a continuous small thrust is to change the period of the 
orbit. The most economical way of doing this is to use tan
gential thrust in one direction until half the desired change 
in position is accomplished, and then to reverse the thrust 
direction until the original orbit is re-established. 

For small changes in period, the change in period for a 
given change in major axis is given by 

AP 3 Aa 
2 a0 

[32] 

The change in period produced by a given characteristic ve
locity is found by substituting Eq. 21 into Eq. 32, as follows 

AP _ AV _ SFPo 
Po ~ Vo mVo U 

The change in position per cycle is given by 

A0' • AP a FPo 
— = 2?r — = 6?r -==- n 
An Po mVo 

[33] 

[34] 
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Integrating Eq. 34 over n cycles yields 

A0 
FP0 AV 

37r -^r- n2 = Sir -r— n 
mVo VQ 

[35] 

Eq. 35 applies to only one segment of the maneuver. For 
the total maneuver where the period is first increased (or 
decreased) and then decreased (or increased), the change in 
d' is given by 

Ad' [̂ l] 
The required characteristic velocity is 

A7 
7o 

4 Ad^ 
3 27rn 

[36] 

[37] 

Eq. 37 agrees with the result obtained in (1). 

Large Changes in Inclination 

This section will consider the derivation of the optimum 
steering program for producing large changes in inclination 
with low thrust devices. This is a problem which can be 
solved exactly by the general methods of the calculus of vari
ations. However this solution cannot be carried out in a 
closed form and would require very extensive numerical 
calculations. The problem will be simplified by making 
two assumptions which allow a closed form solution within 
the framework of the general theory of the calculus of varia
tions. The first assumption is that the orbits always remain 
quasi-circular. It can be shown that this should be the case 
for very small changes, as well as for very large changes in 
inclination. It will be assumed that the orbits should re
main quasi-circular for all intermediate changes as well. 
This assumption allows the use of the previous results on 
small changes in inclination and major axis for the individual 
revolutions of the satellite. The problem is basically one of 
how rapidly the orbit should enlarge and shrink while the 
inclination is being changed. 

The second assumption is that the thrust angle will be held 
constant during each revolution. Fig. 6 shows that there is 
little difference between this case and the true optimum for 
each cycle. The more general case can be developed in 
exactly the manner presented here, but it leads to complicated 
expressions having no closed form solution. The present 
solution produces near optimum results having a surprisingly 
simple form. 

When the thrust angle is kept constant, the change in 
inclination can be expressed by 

,. 2 F sin 0 
d% ~ —- dt 

T mV 
[38] 

As the orbits will remain quasi-circular if the thrust angle 
is held constant over each revolution, the velocity will de
crease as the major axis increases 

dV = cos /3 dt 
m 

[39] 

The variational problem is formulated using velocity as the 
independent variable. This is merely an artifice to simplify 
the analysis and does not affect the results. The variational 
integral to be optimized is given by 

-/(£+»£)"-/(' tan j8 
+ 

\m 
V ^ cos ft 

dV 

[40] 

The Euler equation of this problem is simply that the partial 
derivative of the integrand with respect to the thrust angle 

should be zero 

j > / 2 to 
5/3 \7T 

tan jS 
7 ~ + 

Xm 
F cos (3 . ) . . 

This reduces to 

2F 
V sin $ = — r = const = 7 0 sin ft [41] 

mirX 

Eqs. 39 and 38 can now be integrated with this steering pro
gram 

dV dV 
cos 

P 7 

-dt = 
•in V - sin2 (3 

Vo2 

F d t = - dV 

m 2 v V 2 - TV sin ft 

ft = AV = Vo cos ft - VV 2 - 70
2 sin2 ft 

V = V l V - 27oA7 cos ft + A72 

[42] 

di = 
2 tanff 
T V 

dV di 
Vo sin (3dV 

i = - sin" 
7T 

*- y \/V2 - Vo2 sin2 ft 

1 VQ sin ft _ 2ft 
V T 

[43] 

Eqs. 42 and 43 can be combined to give: 

AV 
(a) For — < cos ft: 

Vo 

Vo sin ft 2ft 
V T V - 270AF cos ft + AF2 

[44a] 

(b) F o r ^ > cos ft: 
Vo 

m co 2 • i Fos inf t 
% = 114.5 — - s in - 1

 y 

* W - 27 0 A7 cos ft + AV2 

2ft 
[44b] 

Eqs. 42 and 44 represent the changes in velocity and in
clination that can be obtained with a given characteristic ve
locity as the initial steering angle is changed. These equa
tions may be solved simultaneously to determine the char
acteristic velocity requirements directly in terms of the orbital 
velocities and the inclination 

AV = ^ 7 , . 2VVa cos - i + F 2 [45] 

N o m e n c l a ture 

a — semimajor axis of orbit 
e = eccentricity of orbit 
E = energy per unit mass, complete elliptic integral of the 

second kind 
F = thrust force 
i = inclination of orbit to a reference plane 
k, k' — constants which represent the moduli of elliptic integrals 
K = complete elliptic integral of the first kind 
L = angular momentum per unit mass 
m = mass 
n = number of revolutions 
P = period of orbit 
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R 
t 
V 
AV 
Q 

6 
B' = 

X 

CO = 

= radius 
= time 
== velocity 
= characteristic velocity 
= position angle of the line of nodes (see Fig. 1) 
= angle between the velocity vector and the component 

of the thrust vector in the plane of the orbit 
= angle between the thrust line and the plane of the orbit 
= position angle in the orbit measured from perigee 
= position angle in the orbit measured from a fixed refer

ence 
= Lagrange multiplier 
= flight path angle with the horizontal 

angle between the line of nodes and the line of apsides 

Subscripts 

a = apogee 
N = normal component 
opt = optimum 
p = perigee 
T = tangential component 
z — orthogonal component 
0 = initial; circular 
1 = intermediate 
2 a final 
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Effects of Plane Librations on the 
Orbital Motion of a Dumbbell Satellite JOHN P. MORAN1 

THERM, Inc. 
Ithaca, N. Y. 

The equations of mot ion of a dumbbel l satell ite oscillating or tumbl ing in the plane of its orbit 
are treated by a perturbation technique which assumes the satellite's l ength to be small with respect 
to its orbital radius. The unperturbed orbital mot ion is tha t of a point mass at the mass center of 
the satell ite, while the equations for the perturbed mot ion are essentially decoupled. Analytic 
solutions are obtained under initial condit ions which would have yielded a circular orbit were the 
satell ite a point mass . Although the disturbances induced in the orbital mot ion by the librations 
are usually quite small , for certain frequencies of the librations a resonance phenomenon occurs; 
i .e. , t h e perturbation quantit ies contain secular terms, so that they grow indefinitely with increas
ing t ime . 

THE MOTION of a satellite about its mass center is a 
problem of prime importance in connection with man}^ 

satellite missions, the more exciting of which necessitate the 
directional stabilization of the vehicle. An important factor 
in this motion is the variation of the gravitational force on a 

Presented at the ARS 15th Annual Meeting, Washington, 
D. C, Dec. 5-8,1960. 

1 Associate Research Scientist, Therm Advanced Research. 
Member ARS. 

mass particle in the satellite with its distance from the 
body about which the vehicle is orbiting. As a result, the 
point at which the net force acts—the center of gravity of the 
satellite—does not, in general, coincide with its center of 
mass. It is then possible for the line between the gravita
tional and mass centers to be noncoincident with the line 
of action of the gravitational force, so that a torque is exerted 
about the mass center of the satellite. 

The existence of a gravitational torque was first noted over 
150 years ago in connection with the longitudinal oscillations 
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