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Edelbaum’s approach to the optimization of low-thrust transfers is revisited and some simplifications are

removed. The variation of the spacecraftmass due to the propellant consumption is considered in the case of constant

thrust, and the corresponding numerical result is compared with Edelbaum’s solution. The approach is then

extended to consider variable specific impulse and thrust magnitude with constant power level. The payload

increment is first computed maintaining Edelbaum’s suboptimal control strategy (i.e., constant-thrust direction

during each half-revolution). An analytical solution of the quasi-circular one-revolution transfer is then found using

the optimal control of both the thrust direction and magnitude. The very-low-thrust multirevolution problem is

easily solved by assembling many one-revolution basic trajectories; in particular, the transfer from a 28.5 deg

inclined low Earth orbit to the equatorial geostationary orbit is considered. Exact numerical solutions for both

constant and variable specific impulse have also been obtained using an indirect optimization method: the accuracy

of the solution based on the quasi-circular approximation has been verified.

I. Introduction

T HE velocity increment, which can be obtained using a given
propellant mass, is proportional to the specific impulse Isp.

Electric propulsion (EP) provides a specific impulse which can be up
to 10 times larger when compared with chemical propulsion, and
therefore allows great propellant savings. On the other hand, the
necessity of a power generator limits the thrust level that can be
provided by EP and low-thrust trajectories must be flown, whereas
the large thrust of chemical propulsion allows the spacecraft to fly
more efficient ballistic trajectories with impulsive velocity changes.
Gravitational and misalignment losses arise when low-thrust
trajectories are considered; continuous thrusting is usually adopted,
but the task of optimizing the trajectory to perform a minimum-time
mission (i.e., of determining the thrust directionwhichminimizes the
propellant consumption) is usually complex. Moreover, variable Isp
EP systems will probably be available soon [1] and an additional
control, the thrust magnitude, must be considered in the optimization
problem; in fact, when the available power is given, either a large
specific impulse or a large thrust level may be advisable, depending
on the position of the spacecraft along its trajectory.

The acceleration, which is provided by the propulsion system,
must be compared with the gravitational acceleration of the main
body. In the case of interplanetary trajectories, the thrust of EP
systems is usually comparable to the solar gravity (at least if the
spacecraft does not move very close to the sun) and the optimal
trajectories perform a limited number of revolutions around the sun.
In this case, direct and indirect methods are effective in the
optimization of EP transfers between the Earth and other bodies of
the solar system, also in the case of complex trajectories exploiting
multiple gravity assists. For instance, the authors have applied an
indirect optimization method to trajectories toward inner and outer

planets, and near-Earth and main-belt asteroids, either with constant
or variable specific impulse [2–5].

Inside the Earth’s sphere of influence, the thrust acceleration,
which is provided by EP, is several orders of magnitude lower than
the gravitational acceleration and a large number of revolutions
around themain bodymust be performed. For instance, the lowEarth
orbit–geostationary orbit (LEO–GEO) transfer typically requires
several days (more than 100) and revolutions (several hundreds).
When a large number of revolutions is performed, the control
variables, namely the thrust angles, exhibit oscillations during each
revolution; it is extremely difficult to obtain the convergence to the
exact solution, when numerical optimization methods are used, even
for the simpler planar case. Direct methods require a very large
number of parameters; the initial guess at the adjoint variables, and
the solution of the boundary value problem, are often very difficult to
obtain if indirect methods are used. Good results have sometimes
been provided by recasting the problem in terms of suitable state
variables [6,7] or by using approximate expressions for the adjoint
variables [8,9].

During a very-low-thrust transfer from circular LEO to GEO, the
eccentricity is always quite small and the inclination change,which is
obtained during one revolution, is also small. The optimization of the
trajectory can be carried out by assuming simplified models and
searching for quasi-optimal trajectories. The solution provided by
Edelbaum [10] is the classical guideline; it assumes quasi-circular
orbits and constant-thrust acceleration. In particular, Edelbaum finds
the steering law that minimizes the characteristic velocity �V to
achieve an assigned circular inclined orbit after a complete
revolution around themain body. The out-of-plane component of the
thrust obeys a sinusoidal law with the maximum in correspondence
of the nodes, where the thrust is effective in rotating the orbit plane.
An elegant analytical solution for the multirevolution transfer
between circular orbits with plane change (e.g., the LEO–GEO
transfer) is obtained by joining many one-revolution transfers, but a
constant out-of-plane thrust component must be assumed for each
half-revolution. The resulting optimal share of the propulsive effort
privileges the radius increment in the initial part of the maneuver,
whereas the plane rotation is mainly sought in the final phases.
Kechichian [11] has reformulated the problem by using the
formalism of optimal control theory and the time as the independent
variable, thus eliminating the ambiguities caused by double-valued
functions in Edelbaum’s solution.

In the present paper, the authors look again at Edelbaum’s
approach but some improvements are introduced, while maintaining
the assumption of quasi-circular orbits. The propellant consumption
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may be significant, in particular when the specific impulse is low; the
variation of the spacecraft mass (and consequently of the thrust
acceleration) is therefore first considered. Trajectories with variable
thrust and specific impulse at constant power are then analyzed, as an
improved management of the available power will be permitted by
variable-Isp thrusters. It iswell known that a progressive increment of
the specific impulse is convenient as the propellant is consumed and
the spacecraft mass diminishes. Oscillatory variations are
superimposed to this trend, because higher Isp and lower thrust is
preferable far from the nodes, where the spacecraft cannot efficiently
use the thrust to rotate the orbit plane.

The classical constant-mass constant-Isp Edelbaum’s approach is
presented in Sec. II. The basic one-revolution transfer between
inclined orbits is analyzed in Sec. III, retaining the approximation of
a quasi-circular trajectory. Edelbaum’s analysis is extended to
consider variable specific impulse and thrust magnitude with
constant power level. In the constant-Isp case, closed-form
expressions for the radius and inclination increments after one
revolution can only be obtained using a suboptimal control law (that
is, constant-thrust angle). A closed-form solution is instead found
using the optimal thrust direction and magnitude in the variable-Isp
case. A large number of one-revolution transfers using either the
approximate or the exact control law are patched together in Sec. IV
to obtain the optimal constant-Isp and variable-Isp transfers between
circular noncoplanar orbits with a large change in radius and
inclination. Numerical results concerning the transfer from a
28.5 deg inclined circular LEO to the equatorial GEO are presented
and discussed in Sec. V. The solutions based on the quasi-circular
approximation are also comparedwith exact numerical solutions that
are obtained using an indirect optimization method.

II. Edelbaum’s Approach to Low-Thrust Trajectories

In his famous paper [10], Edelbaum uses the classical orbital
elements as the problemvariables. The relevant equations [12,13] for
the orbital parameters are written under the approximation of almost
circular orbits (i.e., small eccentricity) and small inclination:

d a=dt� 2aAv=V0 (1)

d e=dt� �2 cos �Av � sin �Au�=V0 (2)

d i=dt� cos�!� ��Aw=V0 (3)

d�=dt� sin�!� ��Aw=�iV0� (4)

d!=dt� �2 sin �Av=e� cos �Au=e � sin�!� ��Aw=i�=V0 (5)

where � is the true anomaly.
The thrust acceleration A is assumed to be constant. It is described

by three components in a local reference frame, which is based on the
orbit plane: the component in the orbital plane and perpendicular to
the velocity vector, toward the exterior of the orbit Au�
A sin� cos�, the component along the velocity vector Av�
A cos� cos�, and the component out of the orbit plane in the
direction of the orbital momentum vector Aw � A sin�. This set of
equations is, however, troublesome to be handled, because of the
singularities which occur when either e� 0 or i� 0. Even though
Edelbaum considers low-thrust nonplanar maneuvers, and both
eccentricity and inclination are small, he assumes � and ! as
constants and neglects the corresponding equations. Actually, both
� and ! vary during the maneuver, but Edelbaum’s approach
considers one complete revolution, after which � and ! assume
again their initial values. In this case, the optimization determines
Au � 0 (that is, �� 0) and the thrust angle � from

tan�� Aw=Av � C cos�!� �� (6)

where Edelbaum replaces the argument of longitude !� � with the
angular distance from the initial (and also final) node.

The solution of the equations of motion using the optimal control
law involves elliptic integrals. Edelbaum assumes an approximate
control law to obtain a closed-form solution of the single-revolution
problem, which is a more suitable basis to deal with large changes in
radius and inclination, which require many revolutions of the
spacecraft around the main body. In fact, when � is kept constant
during one revolution (to be precise, � has a constant absolute value
but is kept positive during half-revolution and negative during the
other half), the equations of motion can be recast to provide the
change in inclination and time as a function of the velocity V, which,
on a quasi-circular trajectory, is uniquely related to the orbit radius:

d i=dV � 2 tan�=��V� (7)

d t=dV � 1=�A cos�� (8)

A simple optimization provides the optimal value of sin� during
each revolution, which results to be inversely proportional to the
velocity: V sin�� constant. This result is used to determine the
characteristic velocity of a transfer between circular orbits with
inclination change �i, expressed by the well-known relation

�V �
��������������������������������������������������������������
V2
0 � 2V0Vf cos���i=2� � V2

f

q
(9)

III. One-Revolution Transfer

The authors look again at Edelbaum’s problem but use a different
set of equations. The spacecraft position (described in spherical
coordinates, namely, radius r, longitude #, and latitude �), the
velocity (described in a local reference frame by means of the radial
component u, the tangential component parallel to the equatorial
plane v, and the tangential component perpendicular to the equatorial
planew), and the massm, when required, are the state variables. The
true longitude # (measured on the initial orbit plane, which is
assumed to be the equatorial plane) is chosen as the independent
variable. This section deals with the one-revolution transfer between
circular orbits, which maximizes the final radius for an assigned
small change of inclination. All variables are made nondimensional
by assuming the radius, the corresponding circular velocity, and the
spacecraft mass at the beginning of the revolution as reference
values. The velocity component v is replaced by v0 � v � 1=�rv� to
simplify the calculations.

A. Equations of Motion and Optimization

An electric propulsion system with assigned thrust power P�
Tc=2 is used to perform the maneuver. The thrust and the effective
exhaust velocity, which is proportional to the specific impulse,
assume constant nominal values �TN; cN� when a constant-Isp
thruster is considered. They can be varied and c is an additional
control when a variable-Isp thruster is employed.

The time derivative of the state variables are

d r=dt� u (10)

d#=dt� v=�r cos�� (11)

d�=dt� w=r (12)

d u=dt� ��1=r� v2 � w2�=r� Tu=m (13)

d v=dt� ��uv� vw tan��=r� Tv=m (14)

dw=dt���uw � v2 tan��=r� Tw=m (15)
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dm=dt��T=c (16)

where the mass equation has been introduced; however, if a single
revolution is performed, the mass variation is small because of the
low-thrust assumption, and can be neglected when the thrust
acceleration is computed. Therefore the thrust acceleration is
A� T � 2P=c, as the mass is unit, and, under the assumptions of
almost circular orbit and small inclination, one obtains the system of
differential equations

d r=d#� u (17)

d u=d#� v0 � Tu (18)

d v0=d#��u� 2Tv (19)

d�=d#� w (20)

dw=d#���� Tw (21)

dm=d#��T=c (22)

For low-eccentricity, low-inclination orbits, the thrust acceleration
components coincide with those that have been introduced in the
preceding section, and one has again Tu � T sin� cos�,
Tv � T cos� cos�, and Tw � T sin�.

An adjoint variable is associated to each differential equation and
the Hamiltonian is defined

H � ��r � �0v�u� �uv0 � ��w � �w�� ��u sin� cos�
� 2�0v cos� cos�� �w sin� � �m=c�2P=c (23)

The optimal thrust direction is obtained by imposing @H=@��
@H=@�� 0, which provide Tu � T�u=�, Tv � 2T�0v=�, Tw�
T�w=�, where ��

�������������������������������������
�2u � �2�0v�2 � �2w

p
is the magnitude of the

primer vector. The optimal values of the thrust angles � and � are
inserted into Eq. (23) which becomes

H � ��r � �0v�u� �uv0 � ��w � �w�� �� � �m=c�2P=c (24)

The boundary conditions at departure (#0 � 0) are r0 � 1, u0 � 0,
v00 � 0, �0 � 0, w0 � 0, and m0 � 1. The final radius is maximized

for prescribed final inclination �i, assuming �f � 0 deg (it will be
shown that the results are independent of�f). The final mass is also
assigned; this constraint is unnecessary when constant specific
impulse is assumed (the propellantmassflow rateTN=cN and transfer
time 2� are fixed), but it is required to obtain meaningful results
when variable specific impulse is considered. Therefore, at the final
point (#f � 2�), for small final inclination and by considering that

the nondimensional final velocity is unit, uf � 0, v0f � 0, wf � �i,
�f � 0, and mf � �m� 1 � 2�TN=cN .

The problem is completed by the boundary conditions for
optimality which can be easily derived [14]. For radiusmaximization
one has �rf � 1. The problem is homogeneous in the adjoint
variables, which can be arbitrarily scaled to simplify the solution:
�mf � 1=2 is used to replace �rf � 1.

The Euler–Lagrange equations provide the differential equations
for the adjoint variables

d�r=d#��@H=@r� 0 (25)

d�u=d#��@H=@u� �0v � �r (26)

d�0v=d#��@H=@v0 � ��u (27)

d��=d#��@H=@�� �w (28)

d�w=d#��@H=@w���� (29)

d�m=d#��@H=@m� 0 (30)

which can be easily integrated to obtain

�r � K1 (31)

�u � K2 sin�# � C1� (32)

�0v � K1 � K2 cos�# � C1� (33)

�� � K3 sin�# � C2� (34)

�w � K3 cos�# � C2� (35)

�m � 1=2 (36)

B. Constant-Specific-Impulse Thruster

The equations of motion cannot be integrated analytically if the
optimal thrust direction is adopted, and the radius and inclination
change is expressed by elliptic integrals [10]. However, the
integration constants, which satisfy the boundary conditions at the
final point, can be determined when one complete revolution
(#f � 2�) is performed. The problem is autonomous, i.e., the
independent variable # does not appear in H, therefore, the
Hamiltonian is constant and, in particular, Hf �H0; the adjoint
variables assume the same values at the initial and final points,
because of their periodicity, and, using the boundary conditions, one
deduces ��f � 0, which determines C2 � 0 (C2 � �would produce
a symmetrical trajectory with�f � 180 deg). Moreover, one easily
recognizes thatK2 � 0 (that is, the acceleration in the radial direction
is null, Tu � 0, or, equivalently, �� 0), and thatC1 is indeterminate.
The optimal thrust angle is then obtained from

tan�� Tw=Tv � �K3=�2K1�� cos# (37)

in agreement with the solution assumed by Edelbaum. Note that this
solution only holds when a complete revolution is performed. The
value for the constant K3=K1 is determined by the required
inclination change.

The choice of a different value for �f would simply require
different boundary conditions; because of the small inclination,

�f ���i sin�f and wf � �i cos�f replace �f � 0 and wf � �i.
These different conditions modify the value of the integration
constant, which becomes C2 ��f , thus maintaining the relation
between the thrust angle and the angular distance from the node. The
results of the integration over one revolution do not change.

The suboptimal control law with constant-thrust angle � is
adopted to obtain a closed-form solution (more precisely, the
absolute value of � is constant, and the thrust angle is kept positive
during the 180 deg arc centered around the ascending node, and
negative during the other half-revolution; for instance, � is switched
to negative values at #� 90 deg and back to positive values at
#� 270 deg to obtain�f � 0). The equations of motion are readily
integrated over one revolution to obtain the variation of radius and
inclination; the transfer time and the mass variation, which is
negligible over one revolution but will be important for
multirevolution trajectories, are also computed. A constant exhaust
velocity c� cN is assumed, and the thrust power P� TNcN=2 is
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introduced to obtain

�r� 4�TN cos�� 8�P cos�=cN (38)

�i� 4TN sin�� 8P sin�=cN (39)

�t� 2� (40)

�m��2�TN=cN ��4�P=c2N (41)

C. Variable-Specific-Impulse Thruster

The additional control c is obtained by setting the partial
derivative of Eq. (24) with respect to the same control to zero. One
easily obtains

c� 2�m=�� 1=�� 1=
���������������������������������
4K2

1 � K2
3cos

2#
q

(42)

as K2 � 0 and C2 � 0 still hold, and �2 � 4K2
1 � K2

3cos
2#. The

equations of motion are now integrated over one revolution with the
exact optimal control law (Tu � 0, Tv � 4PK1, i.e., the thrust
component parallel to the spacecraft velocity is constant,
Tw � 2PK3 cos#), to obtain

�r� 16�PK1 (43)

�i� 2�PK3 (44)

�t� 2� (45)

�m��2�P
�
8K2

1 � K2
3

�
(46)

The parameters K1 and K3 are determined to accomplish the
prescribed change in mass and inclination. The planar case (�i� 0
and K3 � 0) prescribes constant specific impulse and thrust, and
provides the same results as in the preceding subsection for
K1 � 0:5=cN , which is obtained fromEqs. (41) and (46) for the same
propellant consumption �m. On the other hand, the pure plane
change maneuver (�r� 0) requires K1 � 0 and the exhaust
velocity, provided by Eq. (42), varies according to c� 1=jK3 cos#j.
The inclination change can be compared with that of the constant-
thrust case for the same thrust power and propellant consumption;

fromEqs. (41) and (46), one getsK3 �
���
2
p
=cN � TN=�

���
2
p
P�, which

is inserted in Eq. (44) and provides�i�
���
2
p
�TN � 4:44TN , which

is larger than the value 4TN of the constant-thrust case.
Figure 1 compares the results obtained in this subsection to

Edelbaum’s results (Sec. III.B), by presenting the radius increment as
a function of the plane rotation, assuming the same propellant
consumption. In particular, two control strategies with constant
exhaust velocity are considered: the optimal steering law (variable�)
and the suboptimal strategy employing a constant-thrust angle �,
whose value can be directly read in Fig. 1 as tan�� ��i=�r. The
constant-� operation implies a constant out-of-plane component of
the thrust, which is useful to change the inclination only in the
proximity of the nodes, but is wasted elsewhere. The thrust vector
control improves the performance compared with the constant-�
maneuver; the difference is greater for � close to 45 deg, whereas it
vanishes for the coplanar transfer and the simple plane rotation. The
third strategy exploits the capability of controlling both the thrust
direction and magnitude. The additional control of the thrust
magnitude allows an improved management of the available
propellant, by using large thrust at the nodes and by increasing the
specific impulse where the thrust cannot be usefully exploited to
rotate the orbit plane. The improvement provided by the variation of
the thrust magnitude is small for moderate plane rotations, but is

significant when a large inclination change is sought and the thrust
vector control provides modest benefits with respect to the constant-
�maneuver. The larger inclination change of the variable-thrust case
is obtained with total impulse It �

R
Tdt, which is lower than in the

constant-thrust case (e.g., 4
���
2
p
TN vs 2�TN for �r� 0), because a

large thrust is used only near the nodes (#� 0 deg), where it is
effective to the plane change, but the thrust is reduced elsewhere.

IV. Multirevolution Transfer

Multirevolution trajectories between inclined circular orbits are
considered in the present section, focusing the attention on an LEO–
GEO transfer. The optimal trajectory is obtained by combining a
large number of one-revolution trajectories with small radius and
inclination increments. The solutions of the preceding section have
been obtained, and are immediately applicable, when dealing with
the first revolution (r� 1, m� 1). During the maneuver, the
spacecraft moves farther from the Earth and its mass diminishes
because of the propellant consumption. Equations (38–41) and (43–
46) must be rescaled to take the radius increment and the mass
reduction into account. In particular, the radius, time, and mass

variations on the left-hand side are divided by r,
�����
r3
p

, and m,
respectively; the thrust, exhaust velocity, and power on the right-

hand side are divided by m=r2,
��������
1=r

p
, and m=

�����
r5
p

, respectively.
When multiple revolutions are considered, the relevant equations

are therefore rewritten in the form

�r� 4�r3 cos�T=m (47)

�i� 4r2 sin�T=m (48)

�t� 2�
�����
r3
p

(49)

�m��2�
�����
r3
p

T=c (50)

if both the thrust direction � and the exhaust velocity c are kept
constant during each revolution, and

�r� 16�Pr3K1=m (51)

�i� 2�Pr2K3=m (52)

�t� 2�
�����
r3
p

(53)

0

1

2
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5

0 1 2 3 4 5√2 π
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r
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π
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∆

Fig. 1 Radius increment and plane rotation achievable using different
control strategies with the same propellant consumption.
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�m��2�P
�����
r3
p �

8K2
1 � K2

3

�
(54)

if the steering angle and the specific impulse are continuously
adjusted according to Eqs. (37) and (42). One should note that 1=K1

and 1=K3 are velocities, and K1 and K3 have therefore been divided
by

���
r
p

.
Discrete changes are used to approximate a continuous variation

of the relevant variables. The radius is assumed as the independent
variable and the derivative of the generic variable dx=dr is
approximated by �x=�r.

A. Constant Specific Impulse and Mass

The constancy of the spacecraft mass implies infinite specific
impulse and Eq. (50) can be neglected. By combining Eqs. (47–49)
one obtains (m� 1)

d i=dr� tan�=��r� (55)

d t=dr�m=�2
�����
r3
p

T cos�� (56)

which are equivalent to Eqs. (7) and (8), as dV=V ��dr=�2r� for
quasi-circular trajectories.

The thrust angle � is the control variable. Without loss of
generality, the initial orbit is fixed on the equatorial plane. The
boundary conditions prescribe i0 � 0 and t0 � 0 at the initial point

(r0 � 1), and if � �i at the final point (rf � �r). The Hamiltonian is
defined as

H� �i tan�=��r� � �tm=�2
�����
r3
p

T cos�� (57)

and one easily deduces that the adjoint variables are constant
(d�i=dr� d�t=dr� 0), and the optimal steering law is

sin��� 2�iT

��tm

���
r
p
� K

���
r
p
� K=V (58)

which obviously coincides with Edelbaum’s solution. The constant
K is the only problem parameter and is numerically determined [15]
to obtain the prescribed inclination when the final radius is reached,
according to Eq. (55), which becomes

d i=dr� K=��
���
r
p �����������������

1 � K2r
p

� (59)

Equation (59) is integrated to obtain the algebraic equation

�if � sin�1�1 � 2K2� � sin�1�1 � 2K2rf� (60)

which can be solved numerically for K.

B. Constant Specific Impulse and Variable Mass

The equation, which takes the mass variation into account, is
added by combining Eqs. (38) and (41):

dm=dr��m=�2c
�����
r3
p

cos�� (61)

The Hamiltonian is now

H � �i tan�=��r� � �tm=�2
�����
r3
p

T cos�� � �mm=�2c
�����
r3
p

cos��
(62)

and one again obtains d�i=dr� d�t=dr� 0 but

d�m=dr� ��m=c� �t=T�=�2
�����
r3
p

cos�� (63)

The optimal steering law becomes

sin�� 2�i
�m��m=c � �t=T�

���
r
p

(64)

The maximization of the final mass is considered (this problem is
equivalent to the minimization of the transfer time, as the propellant
flow rate is constant). The boundary conditions for optimality
prescribe �t � �tf � 0 and �mf � 1; the latter is replaced by
�m0 � 1, because the problem is homogeneous in the adjoint
variables. One easily recognizes thatm�m � 1 is constant and again
sin�� K=V, in which K � 2c�i=� is the parameter to be
determined to obtain the prescribed plane change. Note that K
assumes the same value for both constant and variable mass, if the
same values of rf and if are sought, because Eq. (60) holds in both
cases.

C. Variable Specific Impulse and Mass

A constraint on the final time tf � �tmust be imposed and added to
the boundary conditions to obtain meaningful results, and �tf is now
free. However, �t0 � �tf ��1 replaces �m0 � 1 to scale the adjoint
variables. Two different strategies of increasing complexity can be
envisaged for the thrust power management.

1) Exhaust velocity and thrust magnitude are kept constant during
each revolution but are varied as the trajectory proceeds.
Equations (55), (56), and (61) and the Hamiltonian Eq. (62) are
still valid, but c is an additional control variable and T � 2P=c. The

optimal controls are then obtained; @H=@c� 0 provides c�������������
2P�m

p
(which determines T �

���������������
2P=�m

p
), whereas

sin�� 2�i
�m��m=c� 1=T�

���
r
p
�

������
2P
p

�i

�m
������
�m

p ���
r
p

(65)

The two parameters �i and �m0 are numerically determined to obtain
the prescribed plane change and trip time. In this casem2�m � �m0 is
found to be constant, as it usually occurs when variable specific
impulse is considered [5]. The specific impulse is therefore

proportional to
����
P
p

=m and the thrust to m
����
P
p

(that is, the
acceleration is constant), and Eq. (65) is again equivalent to

sin�� K=V, in whichK �
����������������
2P=�mo

p
�i=� assumes the same value

of the previous cases, if the same rf and if are sought.
2) The specific impulse can be varied also during each revolution.

By using Eqs. (51–54) one obtains

d i=dr� K3=�8rK1� (66)

d t=dr�m=�8P
�����
r3
p

K1� (67)

dm=dr��m
�
8K2

1 � K2
3

�
=�8

�����
r3
p

K1� (68)

and the Hamiltonian is now

H � �iK3=�8rK1� � �tm=�8P
�����
r3
p

K1�

� �mm
�
8K2

1 � K2
3

�
=�8

�����
r3
p

K1� (69)

One again has d�i=dr� d�t=dr� 0, but

d�m
dr
�
��t=P� �m

�
8K2

1 � K2
3

�
8

�����
r3
p

K1

(70)

The optimal control law is obtained by enforcing @H=@K1�
@H=@K3 � 0, which are combined to provide

K3 �
�i

���
r
p

2m�m
(71)

K1 �

�������������������������������
1

8

�
1

�mP
� K2

3

�s
(72)

The parameters �i and �m0 are found by integrating Eqs. (66–68) and
(70) to obtain the required trip time and plane change. The
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instantaneous values of the thrust angle and exhaust velocity,
depending on radius and longitude, are expressed by Eqs. (37) and
(42).

V. Results

The transfer from a 7000 km LEO to the geostationary orbit is
considered; the plane change is fixed at 28.5 deg. The initial thrust
acceleration is TN=m0 � 0:35 mm=s2. Edelbaum’s solution
(c�1) is first compared with transfers that use the same
suboptimal control law but different constant values of the specific
impulse, which are typical of available electric propulsion systems.
The results presented in Table 1 show that the trip time and the
number of revolutions remarkably decrease with the specific
impulse. A larger acceleration is obtained when the spacecraft mass
diminishes and the influence of the variable mass due to the
propellant consumption cannot be neglected. Nevertheless, the
velocity increment �V � g0Is ln �1=mf� is constant and coincides
with the value provided by Edelbaum’s solution, i.e., 5:784 km=s,
according to Eq. (9). The rocket equation could be used to determine
the final mass, and the trip time would immediately follow.

A Hall thruster with nominal Isp � 1500 s, which corresponds to
nondimensional cN � 1:95, is considered throughout. The constant-
thrust transfer (case B) is compared with the two strategies of thrust
power management: the specific impulse is kept constant during a
whole revolution but is changed in the following one, as the
spacecraft mass diminishes (case C1); the specific impulse is
continuously adjusted (case C2). Cases B and C1 assume the
suboptimal control law (constant � during each revolution), whereas
� varies continuously according to the optimal control law for
case C2. The same trip time as that of case B (158.15 days) is
enforced for cases C1 and C2.

Figures 2–4, and Table 2 summarize the results of the analysis.
Figure 2 compares the thrust angle histories; � varies as shown for
cases B andC1 (the thrust angles�0 and�f during the initial andfinal
revolution are shown in Fig. 1); � oscillates between 	�max �
	tan�1�K3=�2K1�� during each revolution of case C2, according to
Eq. (37). The inclination (Fig. 3) growsmore rapidly in the initial part
of the trajectory C2 with respect to cases B and C1, whereas the
opposite occurs in the final phases. Figure 4 compares the exhaust

velocities; c varies between cmin � 1=
���������������������
4K2

1 � K2
3

p
and cmax �

1=�2K1� during each half-revolution of case C2, with the average
value

cavg �
R
2�
0 Td#R

2�
0 �T=c�d#

�
R
2�
0 �2P=c�d#R
2�
0 �2P=c2�d#

�
R
2�
0 �1=c�d#R
2�
0 �1=c2�d#

(73)

that closely follows the exhaust velocity of case C1. In comparison
with case B, both the variable-Isp trajectories use a lower specific
impulse, i.e., a larger thrust, in the initial phases of the transfer,
whereas c grows and T diminishes in the final phases. The larger
initial thrust provides a faster increment of the orbit radius and each
revolution requires more time. Therefore, the number of revolutions
of cases C1 and C2 is lower than in case B. In the final phases of the
mission, cmax grows to very large values; however, in these
circumstances the thruster could be turned off without changing the
trajectory appreciably, as the corresponding thrust is very low.
Table 2 also shows the overall velocity increment

�V �
Z
tf

0

�T=m�dt (74)

and the average specific impulse of the whole mission, which is
defined according to the rocket equation �Isp�avg ��V=
�g0 ln �1=mf��. The improvement in terms of final mass, which is
obtained in case C1, is only related to the management of the
propellant in accordance with the variable spacecraft mass, which

Table 1 Performance of LEO–GEO transfers using Edelbaum’s

suboptimal control law and constant-thrust magnitude

Type Specific
impulse, s

Trip time,
days

Revolutions Final mass

Edelbaum 1 191 1048 1
Ion thruster 3000 174 989 0.822
Hall thruster 1500 158 936 0.675
Arcjet 600 122 802 0.374
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allows a larger �Isp�avg. The benefit is significantly greater in case C2
and is mainly related to the �V reduction due to the control of both
the thrust magnitude and direction, which improves the rotation of
the orbit plane. The results are consistent with those presented by
Kluever [16], who optimized the passage from geostationary transfer
orbit to GEO by means of a direct method.

The control laws that have been used in this section had been
derived assuming quasi-circular orbits and neglecting the mass
variation over one revolution. Errors arise when these laws are used
to integrate the exact equations of motion [2–5]. However, the
integration constants are two available parameters that can be
redetermined to fulfill two boundary conditions which prescribe the

final radius and inclination, namely rf � �r and cos �i�
cos�f sin�wf=

�����������������
w2
f � v2f

q
� at t� tf. The final eccentricity cannot

be set to zero, but it is always less than 0.1%; the longitude of the
ascending node, which actually does not matter on arrival to GEO, is
also lower than 0.1 deg. The resulting differences in the control laws
are negligible; the thrust angle and the specific impulse differ always
less than 0.01 deg and 1 s, respectively, at the same distance from the
main body. The final mass obtained by integrating the exact
equations of motion is roughly 0.01% larger than using the
approximate equations.

A final step has been carried out to testify to the accuracy of the
whole procedure. Using concepts and hints provided by the present
analysis, the authors succeeded in obtaining the numerical solution
of the rigorous optimization problem with either constant or variable
specific impulse (corresponding to cases B and C2, respectively).
The indirect optimization method is the same as the one that was
adopted for interplanetarymissions [2–5], but uses the true longitude
# as the independent variable. The final mass of the exact solution
presents a noticeable increment (0.6819 vs 0.6750) when constant
specific impulse is considered, because the constant-� assumption of
the approximate solution has been removed; the other features of the
trajectories do not change, except the number of revolutions which
grows to 938. On the other hand, when variable specific impulse is
adopted, the final mass is almost the same (0.6942 vs 0.6941) but the
number of revolutions has a significant growth to 899.

VI. Conclusions

The authors have developed a simple and easily implemented
method, which is based on the extension of Edelbaum’s approach,
for the solution of themultirevolution transfer from lowEarth orbit to
geostationary orbit with very low thrust, which is usually very
difficult to be obtained with traditional optimization methods; only
one or two parameters (depending on the problem) define the optimal
trajectory, and can be easily determined with numerical methods.
Edelbaum’s analysis of the low-thrust transfer between noncoplanar
circular orbits has been first extended to take the mass variation into
account; the reduction of the spacecraft mass, which is due to the
propellant consumption, has a remarkable effect on the trip time of
the multirevolution transfer from a low Earth orbit with 28.5 deg
inclination to the equatorial geostationary orbit. The mass of the
exhausted propellant is significant and improved performance is
provided by variable-specific-impulse propulsion, even though
Edelbaum’s suboptimal steering law (that is, constant-thrust
direction during each half-revolution around the main body) is
maintained. The characteristic �V is the same as for operation with
constant nominal thrust and exhaust velocity, but the propellant
consumption is reduced by exploiting the available power with more
thrust and lower exhaust velocity at the beginning of the transfer, and
vice versa at the end of the mission.

Amore important result is that the availability of variable-specific-
impulse thrusters allows an improved use of the thrust during the
basic one-revolution maneuver. A more efficient plane rotation is
obtained by controlling not only the thrust direction but also its
magnitude, which is purposely increased in the proximity of the
nodes. The thrust vector control is more useful when the plane
rotation is modest, in comparison with the radius increment, but
becomes less efficient when the plane rotation is predominant; in this
case, the control of the exhaust velocity is almost mandatory for
improved performance. From a theoretical point of view, if the
specific impulse is an additional control, an analytical solution of the
optimal single-revolution transfer can be obtained and used to carry
out an approximate but very accurate analysis of the multirevolution
transfer.

The theoretical analysis of the one-revolution transfer has also
provided the authors with useful suggestions to obtain the
convergence of their indirect numerical procedure to the solution of
the complete Edelbaum’s problem in both cases of constant and
variable specific impulse. The exact solution of the former case
shows that the variation of the specific impulse and thrust magnitude
during each revolution ismore effective than the rotation of the thrust
to improve the complete transfer from low to geostationary orbit. The
exact numerical solution of the variable-specific-impulse problem
proves the accuracy of the approximate solution outlined in this
paper.
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Table 2 Trajectory performance using different control strategies

Case Revolutions �V, km=s �Isp�avg, s Final mass

B 936 5.784 1500 0.6750
C1 867 5.784 1516 0.6778
C2 884 5.469 1527 0.6941
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