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Abstract 

The objective of this work was to develop a free and open-source software to support the tasks of space 

mission analysis and orbital mechanics calculations. It is comprised of two modules – a trajectory 

propagator and a three-dimensional Solar System simulator. The software was developed for Windows 

7, and programmed in C++11. The distribution is made through a website, under the EUPL v.1.1. 

The propagator uses the initial conditions provided by the user, either through the graphical interface, 

or XML input files, and propagates the trajectory aided by a Runge-Kutta-Fehlberg 7(8) numerical 

integrator. The propagator uses a list of force systems, based on several central bodies, and selects the 

most adequate during the computation. The force model includes the central body’s gravity field and the 

perturbation introduced by its 𝐽2 coefficient, third bodies’ gravity fields, and the solar radiation pressure. 

The propagator generates plain-text and NASA SPK output files. 

The simulator is a three-dimensional rendering of the Solar system and allows the user to visualize the 

trajectory and attitude of celestial bodies and spacecraft. The 3D models of the Sun and planets, with 

day and night textures, atmosphere, clouds, and planetary rings, are procedurally generated. It is also 

possible to load 3D models for more complex geometries. A manual camera controlled by the keyboard 

and mouse was implemented, along with a system of automatic cameras parametrized by the user. The 

simulator is also capable of exporting movies. 
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Resumo 

O objectivo deste trabalho foi desenvolver um software gratuito e de código aberto para auxiliar as 

tarefas de análise de missões espaciais e cálculos de mecânica orbital. Este é composto por dois 

módulos – um propagador de trajectória e um simulador tridimensional do Sistema Solar. O software 

foi desenvolvido para Windows 7, e foi programado em C++11. A distribuição é feita através de um 

website, ao abrigo da EUPL v.1.1. 

O propagador utiliza condições iniciais fornecidas pelo utilizador através do interface gráfico, ou de 

ficheiros de entrada XML, e propaga a trajectória com recurso ao integrador numérico Runge-Kutta-

Fehlberg 7(8). O propagador utiliza uma lista de sistemas de força, baseado em vários corpos centrais, 

e selecciona automaticamente o adequado durante o cálculo. O modelo de forças inclui o campo 

gravítico do corpo central e perturbação introduzida pelo seu coeficiente 𝐽2 , o campo gravítico de 

terceiros corpos e a pressão de radiação solar. O propagador gera ficheiros de saída em texto simples 

e no formato SPK da NASA. 

O simulador é uma representação tridimensional realística do Sistema Solar e permite ao utilizador 

visualizar a trajectória e atitude de corpos celestes e naves espaciais. Os modelos 3D do Sol e dos 

planetas, com texturas de dia e noite, atmosfera, nuvens e anéis planetários, são gerados 

automaticamente. É também possível carregar modelos 3D para geometrias mais complexas. Foi 

implementada uma câmara manual controlada pelo teclado e rato, e um sistema de câmaras 

automáticas parametrizadas pelo utilizador. O simulador é também capaz de exportar filmes. 

  

Palavras-chave: Mecânica orbital, Software, Propagador orbital, Ferramenta de visualização 
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Chapter 1 

INTRODUCTION 

The objective of this work is to develop a free and open-source (FOSS) software package, comprising 

a three-dimensional visualization tool for enhanced data analysis and an orbital propagator for data 

generation. 

1.1 Context 

The simulation and analysis of trajectories is required throughout the entire lifecycle of every space 

mission. Designing a space mission trajectory requires precise ephemerides, reliable physical models, 

and robust propagation algorithms. Furthermore, the calculated trajectory needs to be optimized and 

analysed for viability. This analysis must take into account fuel consumption, illumination and radio-

contact conditions, objects in the flight path, among many other factors. 

Computers have aided space mission design since the beginning of the space era and their increasing 

capabilities allow for novel mission analysis and design methods [1]. Currently, it is possible to take into 

account many more factors when propagating trajectories and do so in any ordinary household 

computer, instead of a supercomputer. These advances in computer technology allowed for the 

development of general mission design software solutions. 

The birth of three-dimensional computer graphics and its ensuing staggering improvement, largely 

driven by the videogame industry, contributed to the creation of brand new visualization tools. Long data 

tables and plots are no longer the only data analysis tools available. Orbital mechanics problems can 

now be viewed in fully realistic three-dimensional scenarios. 

Combining accurate trajectory propagation and visualization capabilities within the same software suite 

provides mission designers a fully-featured solution, greatly supporting their work. 

1.2 Modern Software for Mission Analysis and Design 

There are two types of software for mission analysis and design – mission-specific and general. The 

mission specific software is usually developed by a space agency or a contractor with a single mission 

in mind. It is highly specific and difficult to adapt to other missions. On the other hand, the general 

software is a flexible solution that supports several mission types. Typically, it comes in the form of a 

costly commercial solution or a free and collaborative open-source project led by a space agency. In 

addition to these integrated solutions, there are several other tools that serve specific purposes, such 

as visualization of trajectories. 
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In the next sections the leading commercial off-the-shelf (COTS) software suites and open-source 

projects are reviewed, along with the most popular space visualization tool, to establish a standard of 

comparison. 

1.2.1 Systems Tool Kit (STK)1 

Developer: Analytical Graphics, Inc. 

Version: 10.1.1 (February 2014) 

Operating system: Windows XP; Windows Vista; Windows 7 (32-bit and 64-bit) 

License: Proprietary 

The Systems Tool Kit (STK) [2] is a COTS 2D and 3D modelling and visualization environment for 

complex mission systems on land, sea, air, and space, as demonstrated in Figure 1.1. STK is a mature 

product with over 40,000 installations worldwide. The STK basic version is free; however, the modules 

required for most applications are not. Hence, STK is widely regarded as a costly solution and is typically 

negotiated under a firm-fixed price contract in a per-client basis [3]. 

 

Figure 1.1 – The STK graphical user interface [2]. 

The free STK version is mostly an analysis and visualization tool. It is able to import data (such as 

vehicle position and orientation), evaluate the system performance, and convey results through custom 

reports, graphs, and mission simulation. Added functionality is provided by the 19 available paid 

modules, two of which relevant in the orbital mechanics context: 

 The STK Pro module features high-precision, long-term and real-time satellite orbit propagators, 

the ability to simulate satellite attitude, and movie-making capabilities; 

 The SatPro module adds specialized satellite propagators, attitude profiles, and satellite 

engineering tools. 

                                                      
1 Formerly Satellite Tool Kit. 
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1.2.2 FreeFlyer 

Developer: a.i. solutions, Inc. 

Version: 6.10 (February 2014) 

Operating system: Windows 

License: Proprietary 

FreeFlyer [4] is another COTS software application for use in satellite mission analysis, design, and 

operations. It is also a widely used and mature product having supported over 225 missions. Unlike 

STK, it is not modular-based and is provided as a single package at an initial network license cost of 

approximately USD 57,000 with annual maintenance costs of USD 10,000 [3]. 

FreeFlyer adopts a tiered approach with increasing functionality (each tier adding to the previous): 

 Design tier is an analysis tool for mission concept development and preliminary design, 

performing tasks such as orbit design, ground station location and coverage times, and sensor 

modelling; 

 Engineer tier offers comprehensive mission analysis and design functionality, with more 

complex modelling and analysis, and a scripting language which allows users to implement 

mission logic; 

 Mission tier provides complete spacecraft mission design and operations functionality, with 

automation, orbit determination, and integration with any ground system or other third party 

software. 

1.2.3 General Mission Analysis Tool (GMAT) 

Developers: NASA; Others 

Version: R2014a (July 2014) 

Operating system: Windows; Linux; Mac OS 

License: Apache License, Version 2.0 

The General Mission Analysis Tool (GMAT) [5] is a platform independent, free and open-source, space 

trajectory optimization and mission analysis system. It is developed by NASA, private industry, 

academia, government agencies, and the open source community. GMAT is currently used for real-

world engineering studies and as an educational and public engagement tool. It is also currently 

undergoing significant testing to prepare it for operational use. 
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Figure 1.2 – The GMAT graphical user interface [6]. 

GMAT propagates and optimizes spacecraft trajectories in a variety of flight regimes ranging from low 

Earth orbit to deep space missions. The system is also able to produce fully interactive 3D graphics, 

customizable plots, and reports for data analysis. 

Users create and configure resources, such as spacecraft, propagators, and optimizers, which are later 

used in the mission sequence to model the spacecraft motion. This can be accomplished by using either 

the graphical user interface (GUI) illustrated in Figure 1.2 or a scripting language. Scripts can be 

generated and viewed within the software or written by the user and loaded. 

1.2.4 Space Trajectory Analysis (STA) 

Developers: European Space Agency (ESA); Academia 

Version: No longer available  

Operating system: Windows; Linux; Mac OS 

License: European Union Public Licence (EUPL) v.1.1 

The Space Trajectory Analysis (STA) [7] was a project initiated in 2005 by the European Space Agency 

(ESA) in collaboration with universities and research institutions. Its aim was to develop a free and open-

source astrodynamics software suite for space trajectory simulation and analysis. STA was developed 

in a modular fashion by undergraduate and postgraduate students with module integration and 

validation performed by ESA. The project was discontinued in the end of 2012. 

STA adopted the same scenario-based interface used by STK (cf. section 1.2.1), as shown in Figure 

1.3, and its three-dimensional rendering engine was imported from Celestia (cf. section 1.2.5). 
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Figure 1.3 – The STA graphical user interface [7]. 

1.2.5 Celestia 

Developers: Chris Laurel; Celestia Development Team 

Version: 1.6.1 (10/06/2011) 

Operating system: Windows; Linux; Mac OS 

License: GNU General Public License version 2.0 (GPLv2) 

Celestia [8] is a platform independent, free and open-source, three-dimensional visualization tool. It is 

mostly used by astronomy enthusiasts at home and educators in schools, museums, and planetariums. 

Lately, it has also been used in mission design for spaceflight visualization, with its rendering engine 

being integrated into STA (cf. section 1.2.4) 

Celestia’s primary goal is visual realism. It has the ability to load complex 3D models and simulate a 

variety of natural phenomena, namely eclipses, atmospheric scattering, and planetary surface 

reflectance. The trajectory and attitude of loaded objects can be defined in several ways, including via 

NASA's Navigation and Ancillary Information Facility (NAIF) SPICE kernels (cf. section 3.2.2). Despite 

its advanced rendering features, Celestia lacks data generation capabilities, severely limiting its 

functionality for the purpose of mission analysis and design. 

1.3 Objectives 

After reviewing the available software and identifying both their advantages and disadvantages, a series 

of objectives were defined. In order to have standalone mission analysis and design capabilities the 

software will include a trajectory propagator and a three-dimensional simulation module. The trajectory 

propagator module will be able to calculate the trajectory of a spacecraft within the Solar System and 

the simulation module will display it in a three-dimensional realistic environment. These modules are to 

be integrated, nevertheless, retaining the ability to be used on their own and in conjunction with existing 

industry tools. From the user perspective the software should be intuitive and easy to use.  
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Chapter 2 

DEFINITION OF REQUIREMENTS 

To achieve the objectives (cf. section 1.3) a series of requirements were defined. These take into 

account not only the mission analysis and design objectives but also usability, technical feasibility, and 

the available time for development. 

2.1 General 

The most basic requirement is that software should be usable by the widest possible audience. In 

programming terms, this means targeting as many operating systems and hardware configurations as 

feasible. The software package will therefore be designed for Microsoft Windows 7, since this is 

currently, and in the foreseeable future, the most used operation system worldwide [9]. Nevertheless, 

the core features should be compatible with older versions of the Windows operating system, ensuring 

basic functionality on legacy systems. The software will also be central processing unit (CPU) 

independent and delivered in binary form for 32 and 64 bit architectures. It is, however, desirable to 

include specific optimizations for the common modern CPUs, in order to enhance computational 

performance. 

The spacecraft mission analysis and design process is extremely complex, and requires the usage of 

multiple software tools. To allow the integration of the software being developed in this process it is 

necessary to ensure its upstream and downstream compatibility, which hinges on many factors. Firstly, 

the definitions used in the software (e.g. systems of units and frames of reference) must match those 

used in the industry, and be well documented to avoid any possible confusion. Secondly, the software 

must use globally accepted constant values and ephemerides data. This implies using a widely used 

and unified data source – such as SPICE kernels (cf. section 3.2.2). Lastly, both the input and output of 

the software need either be industry-standard, or easily convertible to and from other formats. 

A common problem found in general mission analysis and design software are their shallow learning 

curves, requiring months of experience to master features. Addressing this issue is one of the main 

design concerns, since the software is meant to be intuitive, allowing its use by anyone with minimal 

amount of training. To achieve this usability goal it is necessary to simplify the set up process of common 

tasks, minimize the number of controls without compromising functionality, validate all input, and 

document use cases. The simplification of the set up process can be accomplished by pre-filling dialog 

controls with common default values and options, and using simple understandable formats for input 

files, such as extensible markup language (XML) documents. Minimizing the number of controls requires 

dynamically altering the dialog’s contents based on previous input, a technique commonly used in 

website forms, where selecting an option can show, or hide, a group of controls. Input validation should 

be done immediately, to prevent the propagation of errors, and an explanation must be provided 
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explaining what the problem is. Finally, the user manual must include step-by-step examples of how to 

perform common tasks, thus steepening the learning curve. 

2.1.1 Software Development 

Since this will be a large open-source software package, the source code must be standard-compliant, 

maintainable, and well documented, thus ensuring that anyone that needs or wants to modify the source 

code to suit their needs can understand it. The strategy to produce quality code is twofold. Firstly, the 

programming will strive to produce low-complexity functions and methods, which can be modified having 

little understanding of the codebase. Secondly, a detailed programming manual is to be auto-generated 

from the code structure and comments. Having an auto-generated programming manual is very effective 

since it can be compiled at the same time as the software, guaranteeing it is always up to date. 

Possible future software development (i.e. the inclusion of new features) must also be taken into account 

while defining the architecture. The software needs to be able to accommodate completely new 

components that use the underlying base functionality. Therefore, the software will be designed in a 

modular interface-based fashion that allows a future developer to effortlessly integrate a new module in 

the package. 

2.2 Trajectory Propagation 

One of the components to be implemented is a trajectory propagator. This component, which has the 

sole purpose of data generation, should be able to calculate the trajectory of a single spacecraft within 

the Solar System. 

In this context, trajectory propagation is usually done by integrating the equations that describe the 

motion of the spacecraft, starting from a set initial conditions. This approach requires the definition of 

the aforementioned equations, or force model, and the implementation of a numerical integrator. The 

force model must take into account the fundamental forces that influence the trajectory of a spacecraft 

travelling through the Solar system, and the effect of any engine the spacecraft may be equipped with. 

The numerical integrator needs to have adequate precision to keep the truncation error within 

acceptable limits, while having a reasonable time step. 

Trajectory propagation is a computationally intensive task, meaning the propagator algorithm should be 

highly optimized and make use of all possible performance increase methods. To achieve this goal it is 

necessary to both carefully design the algorithms minimizing unnecessary computations and to 

implement them keeping in mind the CPU cost of the operations at play. 

2.2.1 Force Model 

The fundamental forces that influence the trajectory of a spacecraft travelling through the Solar System 

are very well known [10] and have been extensively studied. The challenge of the force model definition 

lies in selecting which of those forces are relevant for inclusion, and where, since it is infeasible to 

include them all. Several possible space mission scenarios, presented below, were studied. 
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Earth Satellite 

This is by far the most common space mission scenario, consisting on launching a satellite that will orbit 

the Earth and perform trajectory corrections using short engine bursts. From the analysis of the various 

perturbations shown in Figure 2.1, it is concluded that: 

 The gravity field of the Earth has the most significant contribution; 

 The non-sphericity of the gravity field has a very important contribution, especially its zonal 

harmonic coefficient 𝐽2; 

 The Moon and the Sun have lesser contributions, though surpassing the 𝐽2 perturbation for 

orbits higher than the Geosynchronous Equatorial Orbit (GEO); 

 The atmospheric drag has a very high influence for very low orbits inside the thermosphere, and 

quickly decays with altitude. 

The engine bursts that the spacecraft may possibly require for trajectory corrections can be reduced to 

instantaneous changes in its velocity vector, commonly known as delta-V. 

 

Figure 2.1 – Order of magnitude of various perturbations of a satellite orbiting Earth [10] 
(adapted). 
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Interplanetary Mission 

Extrapolating Figure 2.1 for very high altitudes it can be inferred that the only forces of interest in 

interplanetary space are those related to the Sun – the gravity field and the solar radiation pressure. 

The solar radiation pressure is especially important for spacecraft with a very large area and a very low 

mass, such as solar sails. If, however, a spacecraft passes near a planetary system its gravity field is 

also worth taking into account. Interplanetary missions also feature a multitude of engines, namely 

constant acceleration engines, which are not ideally simulated by delta-V impulses. 

Upon arrival at the destination planetary system it is necessary to start taking into account the planet 

and its moons, like in the Earth satellite case. The only difference to the Earth case is that the 

atmospheric density profile of other planets, with the exception of Mars, is not very well known. 

Asteroid/Comet Rendezvous 

Several past, current, and planned space missions (e.g. Deep Impact, Rosetta, Hayabusa) involve 

rendezvous with asteroids or comets. Although these mission have the same deep space profile as the 

interplanetary missions, they require taking into account their target’s gravity field and ephemerides for 

the rendezvous. These are gravity fields which would be irrelevant, and never considered, in any other 

type of mission. 

The immediate conclusion of studying these three mission scenarios is that different missions require 

different forces to be taken into account. Since this meant to be a general mission analysis and design 

software, a way of generalizing the problem needs to be developed. Firstly, due to only being relevant 

for low orbiting satellites, the atmospheric drag effect is not to be included at this stage. All the other 

forces described are to be included (i.e. central body’s gravity field and 𝐽2 perturbation, third bodies’ 

gravity field, solar radiation pressure). The concept of force system, as a collection of bodies whose 

gravitational force is relevant in a region of space, needs to be implemented. The software needs to be 

capable of switching between the available force systems automatically, such as in the case of an 

interplanetary mission approaching its target planet. The force systems should be easy to edit in order 

to include another body, like an asteroid or comet. Lastly, an engine must be implemented with support 

for an unspecified number of delta-V and continuous acceleration inputs.  

2.2.2 Numerical Integrator 

The choice of the numerical integrator used for the integration of the equations of motion has to be made 

taking into account not only its precision, but also its computational performance. Additionally, due to 

the nature of the software, and the proposed force systems implementation, it is highly desirable that 

the numerical integrator has an adaptive step size. The adaptive step size will enable the propagator to 

accelerate when in interplanetary space where the forces remain fairly constant, and use a finer step 

when near celestial bodies, thus keeping the precision constant. Furthermore, an adaptive step size 

reduces the computation time and the size of the output files. 
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Following a brief analysis of commonly used numerical integrators for orbital mechanics problems [10], 

the Runge-Kutta-Fehlberg 7(8) (RFK7(8)) [11] was chosen. This integrator is adequate since it is mature, 

widely used, fast, and sufficiently accurate for the task. Furthermore, it has local truncation error 

evaluation and self-adjusts the step sized based on it. There are, however, instances where it is 

necessary to have added control of the step size, so the algorithm will be modified to include minimum, 

maximum, and fixed step size constraints. 

2.2.3 Input and Output 

The trajectory propagation requires the user to provide a set of initial conditions, and configure the force 

model and numerical integrator. To facilitate the task a GUI is to be developed, where the user can 

directly input values and set options. The GUI controls should also allow the user to input data in several 

different formats, such as providing either a state vector or the orbital elements for the spacecraft’s initial 

conditions. Furthermore, the user should be able input values in different unit of the International System 

of Units (SI) and the International Astronomical Union (IAU) (2009) System of Astronomical Constants 

[12], where applicable. This prevents the user from having to perform unit conversions outside of the 

software, and possibly make a mistake. 

Since a propagator setup can be modified as the mission definition changes, or may need to be shared 

between several people working on the project, a way of storing it for later usage is required. There is 

no pre-defined industry-standard for this task, so the XML format was chosen, as it is both human 

readable and machine friendly. Additionally, for Earth satellites it is common to use two-line element 

(TLE) sets to describe the initial conditions, so being able to use them as input is also desirable. 

The propagator output needs to ensure maximum compatibility with third party tools. NAIF’s SPK format 

(cf. section 3.2.2) is the de facto standard for planetary and spacecraft ephemerides, hence the software 

will use it for output. This format, however, is not easily convertible to others, so an additional plain-text 

output will also be generated. 

2.3 Three-Dimensional Simulation 

The second component to be implemented, the simulator module, is a three-dimensional realistic 

rendering of the Solar System. This component’s primary purpose is spacecraft trajectory, position, and 

attitude visualization. 

Most mission analysis and design tools that include 3D visualization features only provide very basic 

renderings of the Solar System bodies and spacecraft of interest. Although this is often enough for a 

preliminary trajectory analysis, it is insufficient to fully understand the scene. To ensure the success of 

a space mission it is necessary to know if a spacecraft’s solar panels are illuminated, if its instruments 

and antennas are pointed correctly, if a feature being photographed is illuminated, if a lander is in view, 

if there are objects in its path that were not taken into account while propagating the trajectory, etc… 

For all these purposes it is necessary to have a rendering of the 3D environment which strives to match 

the reality. 
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2.3.1 Visual Realism 

The main development goal for the simulator module is to maximize visual realism. In order to achieve 

this goal, it is necessary to: 

 Generate or load the geometry for simple objects (i.e. ellipsoidal celestial bodies); 

 Load 3D models for more complex objects, such as spacecraft, asteroids, and comets; 

 Place the models on their correct positions and attitudes; 

 Render the scene using physically-based shading techniques. 

To generate the geometry for ellipsoidal celestial bodies a procedural generator will be developed. This 

generator must be able to generate the ellipsoidal shape of the body, including features such as 

atmosphere, clouds, and planetary rings. Since 3D models come in a variety of formats, and converting 

between them is not trivial and requires additional software, it is desirable to include a unified model 

loaded that supports a wide variety of formats. 

In order to correctly place the generated or loaded objects it is necessary to have their ephemerides 

and orientation data. Similarly to the trajectory propagator, the data is provided by SPICE kernels. 

Additionally, the ability to load custom SPK kernels, such as the ones generated by the propagator 

model will also be implemented, thus ensuring full compatibility between the propagator output and the 

simulator input. 

Physically-based shading techniques are algorithms that take into account the physical properties of the 

materials and the lighting in order to render images that resemble reality. The downside of these 

algorithms is that they are computationally intensive and cannot always be rendered in real time. It is 

necessary to study the algorithms, access their performance, and decide what needs to be simplified in 

order to provide smooth real-time rendering of the highest possible quality. 

2.3.2 Auxiliary Features and Simulation Control 

Besides rendering a realistic scene, it is also necessary to include auxiliary features for scientific 

purposes. Firstly, to analyse the evolution of the position of a spacecraft as it travels through the Solar 

System it is necessary to draw its trajectory. Secondly, to monitor its attitude it is necessary to render 

local frames of reference (cf. Appendix A). Lastly, to know the position of distant objects whose apparent 

size is too small to discern, markers need to be placed, along with labels with the object’s name. 

The module must implement methods to control the simulation. A user must be able to load kernels 

containing ephemerides and orientation information for objects of interest, and load 3D models as 

desired. Additionally, for each object, it is necessary to have the ability to configure and toggle the 

display of auxiliary features. Time control is also necessary for controlling the simulation, namely the 

ability to jump to a specific date, and to slow down or fast forward the simulation as desired. These 

features should be controlled via a non-intrusive GUI which can be hidden when not in use. 
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2.3.3 Cameras and Movie Making 

Controlling the point-of-view of the simulation (i.e. the camera position and orientation) is essential to 

evaluate all aspects of a scene. Often it is necessary to have a camera near a spacecraft, in other 

occasions it is ideal to have it on the surface of a planet, or even the top or an orbital plane. To allow 

the user full control over the camera, two control modes are to be implemented – manual and automatic. 

The manual control provides a first-person keyboard and mouse controlled camera, which allows the 

user to freely explore the scene. This camera is ideally suited to quickly navigate to between objects 

and evaluate their status. 

The automatic mode is a “must have” for presentations and directing high-quality movies. In this mode 

the point-of-view is controlled automatically throughout the simulation, based on a list of parametrized 

cameras. In order to fully control the point-of-view it is necessary to specify at least the camera position 

and look at points. Additionally, if a user desires to rotate the camera, the direction of the camera “up” 

vector also needs to be specified. Since this control mode is intended to be fully automatic, it is also 

desirable to be able to specify the timescale at which the camera operated, a task that would normally 

be done via the GUI. 

As with any other software tool, it is necessary to have a way of “saving” the work done. Since the 

simulator module only renders the scene on the screen, the only possible output is a movie. Hence, the 

module needs to be able to output movies captured from the rendering surface. The GUI is the only part 

that should be omitted from the movie as it will serve no purpose. 

To avoid having to post-process the movie, for example to reduce its size for internet distribution, it is 

desirable to have the ability to control its resolution, and bitrate. Finally, the exported movies should be 

in a format which can be natively played on the operating systems supported by the software without 

requiring the user to install third-party codecs or players. 
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Chapter 3 

SOFTWARE DESIGN 

The software was designed using the waterfall model [13] which proposes a sequential development 

process as shown in Figure 3.1. The first step is the requirements specification; these describe the 

behaviour of the program and its user interactions. The design stage is where the architecture of the 

program is defined. The coding stage refers to the actual development of the software. The testing 

stage, found in Chapter 6, is where the code is visually inspected for errors and all its logical paths are 

tested. Additionally, product assurance techniques are used to ensure the requirements are met. Finally, 

after final software acceptance, the operations stage is reached, where maintenance and future updates 

are performed. 

 

Figure 3.1 – Waterfall model. Implementation steps to develop the software. 

Following the definition of the requirements in Chapter 2, this chapter is dedicated to the software 

design, including the choice of programing language and third party components, and the definition of 

the architecture. The documentation and the licensing and distribution strategy for the software are also 

defined. 

The software was named SimOrbit, since it is, in its essence, an orbital simulator, and SimOrbit is not a 

registered trademark according to TMview. The adopted logo, shown in Figure 3.2, consists of the text 

“SimOrbit” written in Titilllium Web Bold Italic font in white over a black background. 

 

Figure 3.2 – The SimOrbit logo. 
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3.1 Programming Language and Development Environment 

The chosen programming language was C++ as defined in its most recent standard from the 

International Organization for Standardization (ISO) and the International Electrotechnical Commission 

(IEC), ISO/IEC 14882:2011 [14]. This choice took into account several factors, including the stability and 

maturity of the programming language, familiarity with the standard, and availability of third party 

components. 

In order to facilitate the programming, deliver a more feature-rich product, and for compliance with 

industry standards the software needs to use several third party components. Most third party 

components do not limit the programming language choice, since they either have bindings for multiple 

languages or there are suitable alternatives which do. However, NAIF’s SPICE Toolkit (cf. section 3.2.2), 

which is the source of ephemerides and planetary constants, is only available for FORTRAN, C, IDL, 

and MATLAB, thus limiting the programming language choice. Out of these variants the easiest to 

integrate with the remaining third party components was the C version, requiring only the development 

of a C++ interface library. 

Microsoft Visual Studio 2013 was the selected integrated development environment (IDE). The selection 

was based on previous experience using this and past versions of the IDE and the fact that it is available 

free of charge to Instituto Superior Técnico (IST) faculty and students via the Microsoft DreamSpark 

program2. 

The software was developed under Apache Subversion (SVN) revision control. The SVN server is 

located in Roubaix, France, with an off-site backup. 

3.2 Third Party Components 

Several third party components were integrated in the software in order to increase its functionality and 

reduce the development time: 

 A graphics application programming interface (API) was required to render the GUI and the 

three-dimensional environment; 

 A source of spacecraft and planetary data was needed for accurate propagation of spacecraft 

trajectories and determination of the position and orientation of the objects to render; 

 A high performance multi-precision library was useful to both accelerate and provide a finer 

control over time vs. precision in calculations; 

 A three-dimensional model loader was necessary to greatly expand the variety formats the 

software can load without increasing the development time. 

In the following sections the choices of third party components for the listed tasks are discussed along 

with a brief overview of the component. 

                                                      
2 Formerly MSDN Academic Alliance (MSDNAA). 
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3.2.1 Graphics API (Direct3D) 

Two graphics APIs were considered – Microsoft Direct3D and OpenGL – which are very similar in terms 

of features, performance, and ease of use. 

Direct3D is designed for, and exclusively compatible, with the Windows operating system. The 

development headers and libraries are provided either as part of the Microsoft DirectX Software 

Development Toolkit (SDK) or more recently the Microsoft Windows SDK, along with several other 

media-related APIs. Also part of the DirectX SDK is the DirectX Utility Toolkit (DXUT), which allows for 

the fast development of a Direct3D application. DXUT is able to manage window and device creation 

and maintenance, and features callback driven event processing. It also implements two types of 

cameras – first-person and arc-ball – both controlled via user input. Finally, it provides a basic GUI 

implementation featuring a dialog class, and several types of controls. DXUT is open-source and free 

to modify. 

OpenGL is a cross-platform graphics API, originally developed by Silicon Graphics, Inc. (SGI). The 

OpenGL 1.1 development headers and libraries are included in the Windows SDK. Using more recent 

features requires the manual retrieval of the function addresses from the dynamic link libraries (DLL) or 

the usage of an extension library such as the OpenGL Easy Extension library (Glee) or the OpenGL 

Extension Wrangler library (GLEW). OpenGL also has a utility toolkit – GLUT – however it is no longer 

maintained. There are alternatives, such as FreeGLUT, but none providing a GUI implementation similar 

to that of DXUT. 

Direct3D was the selected graphics API, mostly due to the DXUT GUI implementation which greatly 

reduces development time, and also due to previous experience using it. Additionally, DXUT simplifies 

the development of an application supporting both Direct3D 9 and Direct3D 10, allowing the software to 

be backwards compatible with Windows XP. The choice has some drawbacks, however. Direct3D is not 

cross-platform, meaning a future port of the software to another operating system would require a 

complete rewrite of the rendering engine. Also, Direct3D uses a left-handed coordinate system, requiring 

a coordinate transformation before rendering. 

3.2.2 SPICE Toolkit 

NAIF built an information system named SPICE [15] to assist scientists and engineers from the mission 

concept development to the post-mission data analysis phase. The SPICE system includes the SPICE 

Toolkit which provides library of APIs to read/write data files and calculate observation geometry 

parameters. The toolkit was originally implemented in ANSI FORTRAN 77, as defined by the American 

National Standards Institute (ANSI), but is now also available in ANSI C, IDL and MATLAB. 

The primary SPICE data sets are called "kernels", whose types are shown in Table 3.1. These are 

composed of navigation and other ancillary information, and are produced by the most knowledgeable 

sources of information. NAIF also serves as the "Navigation Node" of NASA Planetary Data System, 

archiving and providing public access to the SPICE data sets. 
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The SPICE Toolkit APIs are very helpful in developing the software, since spacecraft and planetary 

ephemerides, planetary constants, and orientation data are required to both propagate spacecraft 

trajectories and render a realistic simulation of the Solar System. Furthermore, the usage of SPICE 

kernels as the source of information provides an easy means to keep the software accurate and up-to-

date. The ANSI C version N65 of the SPICE Toolkit (July 23, 2014) was integrated in the software, via 

a C++ interface. 

Table 3.1 – SPICE kernel types and their respective contents (in red the origin of the SPICE acronym). 

Type Contents 
SPK Spacecraft and planet ephemeris. 
PCK Planetary constants for natural bodies. 
IK Instrument descriptive data. 
CK Pointing (“C-matrix”). Orientation angles for a spacecraft bus. 
EK Events summarizing mission activities. 
FK Frame of reference frame specifications. 
SCLK Spacecraft clock correlation data. 
LSK Leap seconds data. 
DSK Digital shape model (under development). 
MK Mechanism for aggregating and loading a collection of kernels. 

3.2.3 Multiple-precision Libraries and Interface (MPFR, MPFRC++, and MPIR) 

The trajectory propagator is computationally intensive, and its accuracy depends on the bit precision of 

the underlying floating-point number formats used. Therefore, it is desirable to incorporate reliable 

libraries to speed up the computations and allow control over the bit precision. 

The MPFR library [16] is a C library for multiple-precision floating-point computations with correct 

rounding. It is developed mainly by researchers from the Laboratoire Lorrain de Recherche en 

Informatique et ses Applications (Loria) and the Laboratoire de l'Informatique du Parallélisme (LIP), and 

had been continuously supported by the Institut National de Recherche en Informatique et en 

Automatique (Inria). MPFR is based and depends on the GNU Multiple Precision Arithmetic Library 

(GMP), and extends the Institute of Electrical and Electronics Engineers (IEEE) 754 standard for 

floating-point arithmetic [17], providing correct rounding and exceptions. The library is portable, efficient, 

and has well defined semantics. 

However, MPFR lacks a C++ interface, resulting in extensive code length, lengthy development, and 

error susceptibility, to program complex operations. MPFR C++ [18] is an interface class for MPFR, 

written by Pavel Holoborodko, which aims to solve this issue. Among other features, MPFR C++ allows 

usage of human-friendly notation for MPFR mathematical expressions, and implements MPFR 

conversion operators for built-in types.  

The GMP library, which MPFR depends on, has no support for using native development tools in a 

Windows environment. The Multiple Precision Integers and Rationals (MPIR) library [19] is a Windows 

friendly fork from the GMP project, supporting the Visual Studio development environment. MPIR has a 

fully compatible interface with GMP, and can be used as a drop-in replacement for it. Like GMP, MPIR 

is portable, written in C, and provides arbitrary precision arithmetic on integers, rational, and floating-
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point numbers. It aims to provide the fastest possible arithmetic, including optimized assembly code for 

a variety of CPUs. 

The MPFR version 3.1.2 (March 13, 2013) and the MPIR version 2.6.0 (November 8, 2012) libraries are 

dynamically linked in the software and the MPFR C++ version 3.5.9 (July 15, 2014), modified for wide 

character support, was incorporated within the source code. 

3.2.4 Open Asset Import Library (Assimp) 

In order to improve the visual realism, the three-dimensional visualization tool relies on models for the 

spacecraft. These models are usually created by the designers and may come in a variety of 3D formats. 

Therefore, a 3D model loader was desired to ensure compatibility with multiple formats without 

lengthening the development process. 

The Open Asset Import Library (Assimp) [20] is a portable open source library, written in C+, to import 

many well-known 3D model formats in a uniform method. Assimp loads the different 3D models into an 

identical data structure for further processing and rendering. Additionally, it includes a set of post-

processing tools to perform a variety of tasks, such as mesh optimization, normal vector generation, and 

tangent space calculation. 

Assimp version 3.1.1 (June 14, 2014) was dynamically linked in the software. 

3.3 Architecture 

The software is comprises a main application – SimOrbit – and two dynamic link libraries (DLL) – 

SimOrbit Library (SOLib) and SPICE C++. The complete high level layer diagram can be found on 

Appendix B, and a simplified version is shown in Figure 3.3. 

SimOrbit is a modular application controlled by the Module Manager, and includes three modules – Main 

Menu, Propagator, and Simulator. The Main Menu allows the user to navigate through all available 

modules and view general information, such as general help and author information. The Propagator 

module is able to calculate the trajectory of a spacecraft. It uses a combination of XML and GUI input to 

set up the initial spacecraft conditions, available force systems, and engine parameters. A numerical 

integrator is then used in conjunction with a force model to generate the output. The propagator relies 

on the high performance multiple-precision libraries and interfaces, through the incorporation of the 

MPFR C++ interface and the dynamic linking of the MPFR and MPIR libraries (cf. section 3.2.3). The 

Simulator is three-dimensional Solar System renderer and trajectory visualizer, which uses procedural 

generators to create the Solar System and a three-dimensional model loader to load spacecraft models. 

The model loader is powered by Assimp, which is dynamically linked (cf. section 3.2.4). The simulator 

is able to load and display spacecraft trajectories using two types of cameras – first-person and scripted. 

The simulations can also be recorded in movies. 

The SimOrbit Library is part of a framework which harmonizes and simplifies the development of 

modules. The framework is comprises a set of headers and the library itself. The headers define and 
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implement data types, validation policies, GUI controls, and callback methods. The library provides 

common DirectX interfaces for textures, materials, and effects, supporting both DirectX 9 and DirectX 

10, and a Windows Media Video (WMV) movie maker. 

The SPICE C++ is a C++ wrapper for the SPICE Toolkit (cf. section 3.2.2) which takes advantage of 

C++ features, such as function overloading, exceptions, vectors and strings to interface with the SPICE 

routines. Although it does not fully implement the entire SPICE library routines it includes the most used 

ones, namely, kernel management, object code translation, date and time conversion, constants and 

ephemerides retrieval, frame and conics transformation, coverage intervals determination, TLE 

interpretation, and SPK writing. The SPICE Toolkit is statically linked in the SPICE C++ library. 

Lastly, both SimOrbit and the SimOrbit Library depend on the DXUT and DirectX, which are statically 

linked. 

 

Figure 3.3 – Very high level layer diagram of the software architecture showing the relations between 
components (third party components displayed in orange). 

3.4 Coding Standards 

Producing high quality C++ code requires the use of coding standards which restrict the use of the ISO 

C++ in order to improve software reliability and maintenance. There are several C++ coding standards 

publically available, most of them being industry-specific. The High Integrity C++ (HIC++) Coding 

Standard Version 4.0 [21], as created by the PRQA, was chosen for this project since it is a mature 

standard, with over ten years of development, widely accepted, and not industry-specific. It defines a 

set of 155 rules and best practices for the production of high quality C++ code. 

The changes and additions to third-party components (i.e. MPFR C++ and DirectX Utility Toolkit) follow 

the coding practices of the original source code. 
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Static code analysis was performed automatically using the Visual Studio 2013 C/C++ Code Analysis 

tool. The HIC++ rules compliance, however, was checked manually due to the very high cost of the 

automated tools supporting it. 

3.5 Documentation 

The C++ code was documented using XML documentation comments with the help of Atomineer Pro 

Documentation for Visual Studio [22]. The comments present in file, class, and method headers detail 

their purpose, input and output, possible exceptions thrown, and academic source where applicable. 

Additional comments are present throughout key algorithms explaining their flow. 

The XML documentation comments served as input in the creation of the reference manual. Doxygen 

[23] was the selected tool for this task since it allows for the generation of both Portable Document 

Format (PDF) and HyperText Markup Language (HTML) versions of the reference manual, the latter to 

be integrated in the website (cf. section 3.6). Additionally, Doxygen is also responsible for the creation 

of the include dependency graphs and class inheritance diagrams. 

The software uses several XML files for input and output, such as storage of propagator parameters, 

procedural planet generator instructions, and scripted camera actions. Each XML file structure is 

described in a XML Schema Definition (XSD) file, which is annotated for the purpose of documentation 

generation. The FiForms Solutions xs3p XSD documentation generator [24] was used since Doxygen 

does not provide support for XSD documentation. 

Finally, a user manual was written, describing the general operation of the software. The user manual 

also includes the definitions used throughout the software, such as frames of reference and units of 

measurement. 

3.6 Licensing and Distribution 

3.6.1 Licensing 

Since SimOrbit is a free and open-source software it was necessary to select a license that ensured the 

original authors retained full ownership, and that any derivative works would be distributed in a similar 

fashion. Furthermore it was necessary to review the third party component licenses in order to respect 

the upstream compatibility. 

Several FOSS licenses were considered, namely the GNU Public License v3 (GPLv3) [25] and the 

European Union Public Licence (EUPL) v.1.1 [26]. Both licenses are very similar in all aspects, granting 

the same rights and obligations, barring a few exceptions which are not relevant in the context of this 

software. The EUPL was created by the European Commission, has 15 articles and 22 linguistic 

versions of identical value. The GPLv3 was created by the Free Software Foundation, has 17 articles 

and is only provided in English. The EUPL has advantages over the GPLv3. Firstly, it ensures 

interoperability with a downstream compatibility list, whereas the GPLv3 requires derivative work to also 
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be licensed under the GPLv3. Additionally, the EUPL explicitly designates the applicable law and court 

as the “law of the European Union country of the Licensor” and “where the Licensor resides”, 

respectively. The GPLv3 does not explicitly designate either applicable law or court. 

Upstream Compatibility Analysis 

The software must respect the licenses of the components in relies upon, hence, an upstream 

compatibility analysis must be performed. The European Commission provides a compatibility matrix 

between Open Source Initiative (OSI) approved licenses and the EUPL, the relevant part of which is 

shown Table 3.2. 

Table 3.2 – Compatibility Matrix between component’s OSI-approved licenses and the EUPL [27] 
(adapted). 

License of existing FOSS 
Component 

FOSS 
Component(s) 

Distribution of the larger application under 
the EUPL 

  Incorporation Static link Dynamic link 

BSD license (all versions) Assimp 
 

OK OK OK 

GNU GPL v3.0 MPFR C++ NO 
(exceptions exist) 

NO OK 

GNU LGPL v3.0 MPIR 
MPFR 

OK 
(object) 

OK OK 

The MPFR C++ interface presents a licensing problem – since it is a header the only choice is 

incorporation, which is prohibited under the terms of the GNU GPL v3.0. However, it is still possible to 

incorporate the component if the original author includes the EUPL in a FOSS exception list. Therefore 

the original author was contacted, and an agreement was reached in order to allow the incorporation of 

MPFR C++ into SimOrbit under the terms of a FOSS exception list. 

NAIF provides a set of “Rules Regarding Use of SPICE”, which were analysed for compatibility. Firstly, 

the acknowledgement of use of SPICE is encouraged and a reference is provided for doing so. The 

redistribution of the complete Toolkit is prohibited, but the inclusion of the library modules “is entirely 

appropriate”. The redistribution of unmodified SPICE kernels distributed by NAIF, and the creation of 

user kernels using appropriate methods, is permitted. Hence, there are no obstacles preventing the 

static linking of the SPICE Toolkit and redistribution of unmodified SPICE kernels with SimOrbit. 

The DirectX SDK is licensed under the terms of an End-User License Agreement (EULA) which permits 

the distribution of the DirectX Runtime and the modification, copy, and distribution of the source and 

object code of the DXUT, among others. 

3.6.2 Distribution 

The software and source code will be distributed via a website under the domain “simorbit.eu”. The 

website also details the software’s features, along with screenshots, and provides a means to contact 

the authors. The server-side scripting language is PHP and the output markup is valid HTML5 and 

Cascading Style Sheets (CSS) 3, ensuring compatibility with all modern browsers. 
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Figure 3.4 – The SimOrbit website home page. 
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Chapter 4 

SOFTWARE OVERVIEW 

4.1 General 

The software is designed in a modular architecture so that new features can be easily added. Initially, it 

ships with two modules – a propagator and a simulator. The propagator module is a spacecraft trajectory 

propagator based on a numerical integrator, and the simulator module is a 3D realistic rendering of the 

Solar System with support for the visualization and tracking of spacecraft trajectories. 

The main menu, shown in Figure 4.1, is the entry point of the software. The dialog allows the users to 

access the loaded modules, the user guide, the settings dialog, and general software information. 

 

Figure 4.1 – Screenshot of the SimOrbit main menu. 

One of the main design concerns regarding the software was making it very simple and intuitive, 

ensuring it can be used with minimum amount of training. For this purpose, care was given towards 

reducing the number of available user controls to the bare minimum, without loss of functionality, and 

also towards the logical placement of tabs and controls within dialogs. 

Data input is made through a combination of XML files and GUI controls. The software validates all input 

against the set of policies, as defined in Appendix C. These policies detail the valid range and units of 

a value, their defaults, and the error messages to display should validation fail. Additionally the structure 

of the XML files used for input and output is formally described in their respective XSD files. The XSDs 

were written using the venetian blinds design [28], a design intended to maximize reuse, exceptionally 

well suited to the validation policies.  

In order to provide backwards compatibility with older operating systems and graphics cards, the 

software has a dual rendering system supporting both Direct3D 9 and Direct3D 10. 
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SPICE kernels were chosen as the main data source for constants and ephemerides, and several 

kernels, listed on Table 4.1, are shipped with the software to ensure adequate functionality. 

Nevertheless, the user can load additional kernels via the kernels.furnsh file. This file is a meta-kernel 

whose structure is explained on the SPICE Toolkit documentation. 

Table 4.1 – SPICE kernels that the software loads by default, listed in ascending priority, and their 
usage. 

Type Filename Usage 

LSK naif0011.tls Leap seconds information. 

PCK geophysical.ker NORAD two-line elements constants. 

pck00010.tpc Orientation data for natural bodies. 

Gravity.tpc J₂ values. 

gm_de431.tpc "GM" values. 

SPK de430.bsp Planetary ephemerides. 

mar097.bsp Mars system ephemerides. 

jup310.bsp Jupiter system ephemerides. 

sat375.bsp Saturn system ephemerides. 

ura111.bsp Uranus system ephemerides. 

nep081.bsp Neptune system ephemerides. 

plu043.bsp Pluto system ephemerides. 

 

4.2 Propagator Module 

The propagator module is responsible for generating a spacecraft trajectory from its initial conditions. It 

takes into account the major forces at play in the Solar System and the spacecraft’s engine events. 

4.2.1 Graphical User Interface 

The propagator GUI consists of a tabbed dialog, divided in general, force model, integrator, and output 

sections, and two pop-up dialogs for configuring force systems, and adding and editing engine inputs. 

Figure 4.2 shows the general tab of the propagator GUI, filled with valid values. 

The general tab is where the initial conditions of the propagation are set. The user needs to input the 

initial state, either via state vector or classical orbital elements, and specify the propagation stop date. 

The force model tab is where the physical properties of the spacecraft (mass, area, and reflectivity) and 

its engine inputs are set. The engine inputs are added and edited via pop-up dialog and support both 

delta-V (i.e. instant velocity change) and constant acceleration events. The force model tab also lists 

the available force systems, and allows the user to configure them via pop-up dialog. The integrator tab 

is used to configure the integrator time step, its position and velocity truncation error tolerances, and the 

bit precision of the computation. Finally, the output tab allows the user to select and configure the output 

files the propagator generates. 
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Figure 4.2 – Screenshot of the propagator module general tab filled with valid values. 

The propagator GUI validates all input values and flags input errors as soon as the affected control loses 

focus. Hovering the control with the mouse displays a tooltip indicating what the error is, as shown in 

Figure 4.3. 

 

Figure 4.3 – Example of a tooltip indicating an error on the spacecraft mass control. 

After the user fills all the required input and presses the “Run” button, the propagator progress dialog is 

exhibited. This dialog, shown in Figure 4.5, displays the current progress of the task, both in percentage, 

and via a progress bar, the abbreviated current information, and the event log. The current information 

lists the active force system, current Julian date of the propagator, and the integrator time step. The 

event log displays the messages generated by the propagator that may be of relevance to the user. 

Among other events, the messages inform the user of: 

 Propagator start, pause, resume, stop, and end; 

 Segment start and end; 

 Force system switch; 

 Application of an engine delta-V input, and start/stop of a constant acceleration input; 

 Spacecraft crash. 

The progress dialog also features buttons for the user to pause/resume or stop the operation of the 

propagator. 
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In addition to the progress dialog, the SimOrbit taskbar icon reflects the status of the operation, 

emulating a colour coded progress bar, as shown in Figure 4.4. This allows the user to work on other 

applications while still monitoring the status of the SimOrbit propagator. 

 

Figure 4.4 – SimOrbit taskbar icon status during propagator operation. From left to right – running, 
paused, stopped. 

 

Figure 4.5 – Propagator progress dialog. 

4.2.2 Force Model 

The force model components were modelled in accordance with the conclusions drawn from the study 

presented in section 2.2.1. The mathematical formulae used for the implementation, for an arbitrary 

spacecraft under the main influence of an arbitrary central body, are presented in this section. 

Assuming the position of a spacecraft relative to a central body in the J2000 frame is 

 
𝒓 = [

𝑥
𝑦
𝑧
], 

(4.1) 

then its acceleration �̈� due to the presence of the central body point mass 𝑀 is given by the gravitational 

law 

 
�̈� = −

𝐺𝑀 ∙ 𝒓

|𝒓|3
, 

(4.2) 

where 𝐺 represents the gravitational constant. 
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In order to build a more accurate force model, it is necessary to take into account the actual mass 

distribution of the central body, which causes the gravity field to be non-spherical. Modelling this 

perturbation requires the expansion of the gravity potential in a series of Legendre polynomials. For the 

purpose of this software it is sufficient to only take into account the zonal harmonic coefficient 𝐽2 , 

resulting in a perturbation, in the body-fixed frame of the main body, given by 

 

�̈�𝑩𝑶𝑫𝒀 = −
3 ∙ 𝐺𝑀 ∙ 𝐽2 ∙ 𝑅𝐸

2 ∙ 𝒓𝑩𝑶𝑫𝒀
2 ∙ |𝒓𝑩𝑶𝑫𝒀|

5
∘

[
 
 
 
 
 
 1 −

5 ∙ 𝑧𝐵𝑂𝐷𝑌
2

|𝒓𝑩𝑶𝑫𝒀|
2

1 −
5 ∙ 𝑧𝐵𝑂𝐷𝑌

2

|𝒓𝑩𝑶𝑫𝒀|
2

3 −
5 ∙ 𝑧𝐵𝑂𝐷𝑌

2

|𝒓𝑩𝑶𝑫𝒀|
2]
 
 
 
 
 
 

, 
(4.3) 

where 𝒓𝑩𝑶𝑫𝒀 is the position of the spacecraft relative to the main body in the body-fixed frame, 𝑅𝐸 is the 

equatorial radius of the main body, and ∘ denotes the Hadamard product. Converting the perturbation 

to the J2000 frame yields 

 �̈� = 𝑈𝑇(𝑡) ∙ �̈�𝑩𝑶𝑫𝒀, (4.4) 

with 𝑈(𝑡) being the time-dependent matrix that describes the planet’s rotation in the J2000 frame. 

The trajectory of a spacecraft is also influenced by third bodies such as moons, the sun, or other planets. 

The perturbation due to a third body, represented by the point mass 𝑀𝑠 is given, in the central body 

frame of reference, by 

 �̈� = 𝐺𝑀𝑠 ∙ (
𝒓𝒔 − 𝒓

|𝒓𝒔 − 𝒓|
3
−

𝒓𝒔
|𝒓𝒔|

3
), 

(4.5) 

where 𝒓𝒔 is the position of 𝑀𝑠 relative to the central body. 

The trajectories of spacecraft travelling through the solar system are also influenced by the solar 

radiation pressure. The perturbation can be described by 

 
�̈� = −𝜈𝑃⨀ 𝐶𝑅

𝐴

𝑚

𝒓 − 𝒓⨀

|𝒓 − 𝒓⨀ |
3 𝐴𝑈

2, 
(4.6) 

where: 

 𝑃⨀ = 4.560 × 10
−6𝑁 ∙ 𝑚−1 is the solar radiation pressure in the vicinity of the Earth (i.e. at a 

distance of 1𝐴𝑈 from the Sun); 

 𝐶𝑅 is the radiation pressure coefficient; 

 𝐴 is the cross-sectional area of the spacecraft perpendicular to 𝒓 − 𝒓⨀; 

 𝑚 is the mass of the spacecraft; 

 𝒓⨀ is the position of the Sun relative to the central body; 

 𝜈 represents the fraction of sunlight received by the spacecraft. 
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The fraction of sunlight received by the spacecraft is determined using the conical shadow model 

illustrated on Figure 4.6, such that: 

 𝜈 = 0 if the spacecraft is in umbra; 

 𝜈 = 1 if the spacecraft is in sunlight; 

 0 < 𝜈 < 1 if the spacecraft is in penumbra. 

 

Figure 4.6 – Conical shadow model [10]. 

The umbra region, to the right of 𝑉2, also called antumbra, was not considered since 𝑉2 is outside the 

sphere of influence of any planet on the Solar System, thus whenever the spacecraft enters this region 

shadows are no longer being considered. 

The radiation pressure coefficient is obtained from the reflectivity 𝜀 using 

 𝐶𝑅 = 1 + 𝜀. (4.7) 

The acceleration experienced by a spacecraft due to the fundamental forces is the sum of Equations 

(4.2), (4.4), (4.5), and (4.6). 

The propagator has a list of force system definitions which can be edited by the user, either via the GUI 

or a XML input file, that list which forces are to be considered on each system. Each system is valid 

within the sphere of influence of the central body and for the coverage interval of the ephemerides of all 

its components. A force system is comprises a central body, a list of third bodies, and flags to indicate 

if the perturbations due to the central body 𝐽2 coefficient, the Sun as a third body, and the solar radiation 

pressure, should be included in the calculations. By default all options are enabled, with the exception 

of third bodies whose 

 
𝑀𝑆 ≤ 2 × 10

−9𝑀. (4.8) 
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This limit was obtained by analysing all planetary systems to make sure the major moons were included, 

and the small moons and rocks excluded. The transition between force systems is done automatically 

using the algorithm found in section 5.1.1. 

4.2.3 Engine 

Two types of engine inputs are implemented – delta-V and constant acceleration over time. The delta-V 

engine input is an instantaneous change of the velocity of the spacecraft in a specific direction. It is 

represented in the equations of motion by 

 
�̇� = {

𝐸(𝑡) ∙ 𝒗 , 𝑡 = 𝑇
0 , 𝑡 ≠ 𝑇

 , 
(4.9) 

where 𝒗 is the engine input velocity vector, 𝑇 is the time of the delta-V and 𝐸(𝑡) the time-dependent 

matrix that transforms coordinates in the engine frame to the J2000 frame. The constant acceleration 

simulates a thrust force applied over an interval of time in a time-dependent direction, and is represented 

by 

 
�̈� = {

0 , 𝑡 < 𝑇1
𝐸(𝑡) ∙ 𝒂 , 𝑇1 ≤ 𝑡 < 𝑇2
0 , 𝑡 ≥  𝑇2

 , 
(4.10) 

where 𝒂 is engine input acceleration vector, 𝑇1 is the thrust start time, and 𝑇2 the end time. Since the 

software does not propagate the mass of the spacecraft and assumes it is constant, then the constant 

acceleration is equivalent to a constant thrust. 

The direction of the engine inputs can be given as a 3-component direction vector or an azimuth and 

elevation, both relative to any implemented frame of reference (cf. Appendix A). 

4.2.4 Numerical Integrator 

The chosen numerical integration method is the Runge-Kutta-Fehlberg 7(8) [3], widely considered 

adequate for a general purpose trajectory propagator. It is, nevertheless, fairly simple to implement any 

other integrator in case it is required. 

The readily available FORTRAN algorithm was ported to C++ and modified to provide full time step 

control. The self-adjusting time step algorithm differentiates the position and the velocity truncation error 

and compares it to the tolerance specified by the user. The error factors for the position and velocity are 

 
𝜀𝑝𝑜𝑠𝑖 =

𝜏𝑝𝑜𝑠𝑖
𝑡𝑜𝑙𝑝𝑜𝑠

,  𝜀𝑣𝑒𝑙𝑖 =
𝜏𝑣𝑒𝑙𝑖
𝑡𝑜𝑙𝑣𝑒𝑙

, 
(4.11) 

where 𝜏 represents a truncation error, and 𝑡𝑜𝑙 the user-defined tolerance. The final error factor for the 

step 𝑖 is set to the maximum 

 𝜀𝑖 = max (𝜀𝑝𝑜𝑠𝑖 , 𝜀𝑣𝑒𝑙𝑖). (4.12) 

The error factor is used to determine the next step size 
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ℎ𝑖+1 = 0.8 × (
1

max (𝜀𝑝𝑜𝑠𝑖 , 𝜀𝑣𝑒𝑙𝑖)
)

1
8

× ℎ𝑖 , (4.13) 

where ℎ𝑖 is the current step size. A safety factor of 0.8 was used as it is the most common used for 

Runge-Kutta-Fehlberg methods. If the truncation error is above the tolerance (𝜀𝑖 > 1) the step is 

revaluated using the new step size until the error is tolerable. In order to make the method more feature-

rich the time step control was also modified to include options for fixed time step, and minimum and 

maximum step boundaries. 

The integrator makes use of the MPIR and MPFR libraries to both take advantage of CPU specific 

instruction sets leading to performance increases as well as give the user a fine-control of the bit-

precision. This grants flexibility to the integrator, allowing for its use in both time-critical and precision-

critical environments. 

4.2.5 Input and Output Files 

A save and load mechanism for the user input parameters was implemented. This ensures that a 

simulation state can be saved for later use or modification. The chosen file format for this purpose is 

XML. Due to the flexibility of this file format it is possible to have multiple XML files for different simulation 

parameters and load them independently and incrementally. 

The XML input file schema is divided into four sections – <general>, <forceModel>, <integrator>, and 

<output> – each corresponding to the tabs found in the propagator GUI. An example of a propagator 

setup input XML file can be found on Appendix D. 

It is also possible to load the initial conditions from a TLE set, which is commonly used for satellites 

orbiting the Earth. 

The propagator is able to simultaneously generate two output files – a binary SPK (cf. section 3.2.2) 

and a raw plain text file. The binary SPK can have Hermite or Lagrange interpolation of a variable 

degree, specified by the user. The only raw plain text file configuration is its comment line start character. 

Table 4.2 shows a plain text output sample line. 

Table 4.2 – Propagator plain text output sample (truncated values). 

 

# Trajectory generated by SimOrbit v1.3.0.372M 
# 
# Legend: 
# JED      Julian ephemeris date (days past 1 Jan 2000 12:00:00 (TDB)) 
# X        x component of position vector (km) 
# Y        y component of position vector (km) 
# Z        z component of position vector (km) 
# VX       x component of velocity vector (km/s) 
# VY       y component of velocity vector (km/s) 
# VZ       z component of velocity vector (km/s) 
# CENTRAL  Central body NAIF code 
# FRAME    Frame of reference label 
# 
# JED         X           Y            Z           VX          VY          VZ         CENTRAL   FRAME 
2440419.18209 +6.38508e+3 +1.71602e+3 +1.15646e+3 -1.98714e+0 +9.10852e+0 +5.51966e+0 399       J2000 
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4.3 Simulator Module 

The simulator module provides a realistic rendering of the Solar System which allows the user to track 

the position, attitude, and trajectory of one or more spacecraft. 

To enhance the realism of the simulation the module includes a procedural planet generator which can 

generate a planet’s geometry, includes features such as atmosphere scattering, clouds, and rings. 

Additionally the Sun is also automatically generated, and the Tycho star map [29] is used as background. 

For more complex geometries, such as spacecraft and some asteroids and comets, a 3D model loader 

is provided, supporting most common interchange formats. Having the ability to support multiple formats 

is very useful to a user, since 3D models can be found in a variety of major formats. The conversion 

process between 3D formats is not always a simple task, and requires additional software. 

Additionally, the visualizer is able to render auxiliary feature such as trajectories, frames of reference, 

labels, and markers for distant objects. 

To ensure compatibility with pre-existing data and readily available propagators the simulator module 

trajectory input format is a binary SPK file (cf. section 3.2.2). This method has the advantage of allowing 

the usage of the SPICE routines for both the planetary and the spacecraft ephemerides. 

The camera can be controlled manually using the keyboard and mouse to move the camera or 

automatically by defining a list of parametrized cameras. The latter being ideal to use in conjunction with 

the movie-making feature in order to generate high-quality movies. 

4.3.1 Graphical User Interface 

The simulator GUI was designed to be as unobtrusive as possible, and consists of a semi-transparent, 

auto-hiding dialog on the bottom of the window, with tabs to control the scene, camera, and movie-

making. 

The scene tab allows the user to control all the objects being rendered. The user can load SPK files 

containing ephemerides of objects of interest, associate 3D models, and select which auxiliary features 

should be rendered and under what conditions. For example, it is possible to specify if a marker for a 

distant body should be rendered always, when the camera is in the central body system, or never. 

The camera tab is used to toggle between the manual and automatic cameras. It also lists the loaded 

automatic cameras, and provides means to add, edit, and delete them. Additionally, it shows the diagram 

of the manual camera keyboard and mouse controls. 

Finally, the movie-making tab allows the user to configure the movie writer output filename, quality, and 

resolution and initiate or finish the capture of a movie. 
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4.3.2 Procedural Planet Generator 

The software features a procedural planet generator for planets and moons whose body radii are known. 

The generator creates an ellipsoid with the appropriate dimensions and sets the colours, textures, and 

atmosphere and ring parameters in accordance with the information present in the Planets.xml file, for 

which an example is presented on Appendix D. Figure 4.7 shows planet Earth rendered with the 

parameters present in the example file. 

 

Figure 4.7 – Screenshot of the Earth as rendered by SimOrbit. 

Surface 

The colour of the surface of the planet is a combination of diffuse and emissive colours and textures. 

The diffuse texture stores the daylight representation of the planet’s surface, whereas the emissive 

texture provides the night-time colours, such as city lights or auroras. The user can also provide a 

specular map, which controls the specular strength (i.e. the reflectivity of the surface), and a tangent-

space normal map which stores the per-pixel normal in order to give the illusion of terrain height. 

The specular lighting of planets is based on the Kelemen-Szirmay-Kalos bidirectional reflectance 

distribution function (BRDF) model [30]. This model closely approximates the Cook-Torrance model [31] 

but is significantly cheaper to evaluate. The classic Blinn-Phong model [32] was also tested, but proved 

too glossy and unrealistic. 

Atmosphere and Clouds 

There are numerous algorithms for atmospheric rendering. The simplest ones render a single colour 

semi-transparent sphere whose opacity varies with the angle between the surface normal and the 

direction of the incoming light. These algorithms, although very easy to implement, fail to take into 

account the atmosphere density variation with altitude, the atmospheric scattering, and its wavelength 
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dependency. The physically based algorithms, which take into account Rayleigh and Mie scattering, are 

computationally expensive, requiring the calculation of nested integrals for which no analytical solution 

exists. The simple algorithms were quickly discarded since they do not provide a realistic representation 

of the atmosphere and just create a coloured halo around the planet. 

Upon review of the available physically based algorithms [33], the method proposed by Sean O’Neal 

[34] was implemented. This model is very popular and widely used and has the advantage of not 

requiring the pre-computation of any integrals. Its only significant drawback is that it relies on a scale 

function which is dependent on the scale height and ratio between the atmosphere’s thickness and the 

planet’s radius. Since this scale function is obtained via polynomial curve fitting it is not trivial to 

recalculate for arbitrary atmosphere parameters, hence the atmosphere’s thickness of 2.5% of the 

planet’s radius and the scale height of 25% of the atmosphere’s thickness proposed by O’Neal are used 

in the software. 

It is also worth noting that the atmospheric scattering model was developed for Earth’s atmosphere, and 

requires coefficient adjustments in order to be used in other planets. These coefficients can be set in 

the Planets.xml file for each planet for which an atmosphere is rendered. The Martian atmosphere 

coefficients [35] have already been included. Figure 4.8 illustrates the Earth and Mars atmospheres as 

rendered by the software. 

  
Figure 4.8 – Atmospheric scattering examples. Sunrise over the Iberian Peninsula on Earth (left); 

sunset over Valles Marineris on Mars (right). 

The software also supports loading and rendering clouds texture maps. The clouds texture map is drawn 

over the planet at the altitude set in the Planets.xml file. For simplicity, and since it didn’t affect visual 

realism when seen from a moderate altitude, no cloud shadows are casted on the planet’s surface. 
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Rings 

Finally, the procedural planet generator supports the generation and rendering of planetary rings. The 

rings are a flat dual-sided anullus centred on the planet, laying on its equatorial plane. The inner and 

outer ring radius are set in the Planets.xml file, along with the rings texture, which stores both colour 

and transparency. 

The rings’ illumination presents a very complex problem, since these are illuminated by backscattered 

light from the planet and the neighbouring ring particles, and forward scattered light. A simple model 

was devised (cf. section 5.2.3) attempting to match Saturn’s rings renderings to the photos from the 

Voyager and Cassini missions. The model is not physically accurate but provides acceptable results. 

4.3.3 3D Models 

Spacecraft and other complex geometry models, such as some asteroids and comets, cannot be 

procedurally generated. For these it was necessary to implement a 3D model loader. Since there is a 

wide variety of common interchange formats, and it was desirable for the software to be compatible with 

as many as possible, the Assimp library (cf. section 3.2.4) was used as a 3D model loader. 

Assimp loads the models into one unified data structure, which the software processes to render the 

model. The model’s geometry is pretty straightforward to process but the material list is not. Materials 

range from just one colour to complex structures, which specify which shading model to use and have 

multiple textures, each with its own mapping and blending modes. For simplicity not all material 

properties are processed, and the software uses the Blinn-Phong shading model [32] to render all 

models. The supported material properties are: 

 Ambient, diffuse, specular, and emissive colours; 

 Shininess and specular colour scaling factor; 

 One texture per type (ambient, diffuse, specular, and emissive), with UV coordinates mapping; 

 Tangent-space normal maps. 

Figure 4.9 shows NASA’s Cassini spacecraft 3D model [29], as rendered by SimOrbit. 

Two ways were implemented for associating a 3D model with an object – static and dynamic. The static 

associations are listed in the Models.xml file, for which an example is presented on Appendix D. The 

user can also load a 3D model dynamically via the GUI. Additionally, since there is no guarantee the 

loaded models are correctly scaled, the software requires a scaling factor to be entered by the user (e.g. 

on an asteroid model units may represent kilometres, whereas on a spacecraft model they can represent 

inches). This factor is defined as the constant that converts model units to kilometres, and by omission 

it has the value of 1. 
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Figure 4.9 – Screenshot of the Cassini spacecraft model as rendered by SimOrbit. 

4.3.4 Auxiliary Features (Frames, Markers, Labels, and Trajectories) 

To analyse the 3D environment from a scientific point of view it is necessary to draw auxiliary features, 

such as local frames of reference, markers, labels, and trajectories. These features are all controllable 

on an object basis and can be turned on and off via GUI. Additionally, they are rendered with the light 

positioned at the camera, thus ensuring they are always lit, and in chartreuse colour since it is widely 

regarded as the most visible colour. 

Frames of Reference 

The frames of reference are invaluable to assess the orientation of an object, for example to determine 

its relative orientation to another, or to have a general idea of flight path and lighting angles. 

They are composed by three perpendicular vectors, labelled X, Y, and Z, according the orientation of 

the primary axis of the desired frame (cf. Appendix A). The frames of reference are scaled with the 

camera distance and have a minimum axis length of two times their associated object size. This ensures 

they are always visible regardless of the distance, and do not shrink inside the object when viewed from 

a close distance. 

The user can select which frame to draw, taking into account that the BODY frame needs SPICE body 

orientation data, and the spacecraft LVLH and TRAJECTORY frames require the user to specify the 

central body, since this information is not directly deducible from the ephemeris. 
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Figure 4.10 – Deimos BODY frame of reference and label. 

Markers 

Since the size of the bodies in the Solar System is extremely small when compared to the distance 

between bodies, it becomes necessary to place markers in the position of distant bodies in order to have 

an idea of their position. The implemented markers are four-point stars [36], and have a label with the 

name of their associated body, both with constant screen size. The markers are rendered for spacecraft 

that have no 3D model associated and procedurally generated bodies whose on-screen size is smaller 

than 10 pixels. An example of the implemented markers is show on Figure 4.11. 

 

Figure 4.11 – Sun, Mercury, and Venus markers and labels. 

Trajectories 

The most complex auxiliary feature is a trajectory, and several problems arise while trying to generate 

and render them. Firstly, neither Direct3D, nor any other graphics API, has the ability to draw curves, 

meaning all trajectories must be reduced to a set of points and line segments in between them. This 

means the trajectory needs to be sampled in order to determine a set of points that adequately represent 

it, and that can provide the illusion of a curve. Ideally the positions should match the points present in 

the input files, however not all SPK trajectories are defined via a collection of states, and even on those 

that are the API does not provide a way to retrieve them. 

The set of points that are used to define a trajectory are determined using an iterative method that 

divides each coverage window (i.e. contiguous time span for which ephemeris are known) in segments 

until a tolerance condition is met, or the maximum number of trajectory points is reached. The algorithm 

begins by retrieving the positions corresponding to the first, middle and last epoch times in the coverage 

window. Then it calculates the distance from the middle point to the line segment between the first and 

last points, if it is greater than the tolerance it adds the first-middle and middle-last line segments to an 

evaluation queue for further division. The algorithm keeps dividing the segments in the queue on their 
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middle time point until their tolerance condition is met, or it reaches the maximum trajectory points, set 

to 65537. The algorithm operation is represented graphically on Figure 4.12, for the first four iterations 

on the Mars Science Laboratory mission. This method is far from ideal, and is a point where future 

improvement is desirable. 

 

Figure 4.12 – Example of the first four iterations in the determination of the trajectory points of the 
Mars Science Laboratory mission. 

Since the trajectory retrieval is a costly process involving tens of thousands of ephemeris queries, it is 

not possible to do it in real time while rendering. To mitigate the issue, the trajectories are only generated 

for spacecraft, since this is the focus of the software. Furthermore, the loaded trajectory cannot be 

adjusted when changing reference body, meaning the trajectory is always drawn with reference to the 

Sun. For example, the trajectory of a satellite orbiting the Earth will not be rendered as a series of orbits 

around the Earth but rather as a perturbed orbit around the Sun. It is arguable if this is ideal or not, since 

it has the advantage of representing the actual trajectory of the satellite within the Solar System, but is 

inadequate for the determination of its relative position to the Earth. 

4.3.5 Cameras 

A first person camera, which attempts to replicate what a user would see if he was in space, was 

implemented. In order to provide maximum of flexibility two types of camera controls were developed, a 

manual control via direct keyboard and mouse input, and an automatic control with parametrized 

cameras. 

Manual Camera 

The manual camera is a five degrees of freedom (three-dimensional translation, pitch, and yaw) camera 

controlled in real time by the user using the keyboard for translation and the mouse for rotation as shown 

in Figure 4.13 (alternatively it is also possible to use the arrow keys instead of W, A, S, and D). The roll 

Actual Trajectory Iteration 1 Iteration 2 Iteration 3 Iteration 4

Earth
25/11/2011

Mars
02/08/2012
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movement was restricted since it would require either a third degree of freedom on the mouse, or adding 

rotation controls to the keyboard. The camera vertical direction was defined as the vertical direction of 

the J2000 frame of reference. 
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Figure 4.13 – Manual camera keyboard and mouse controls. 

Implementing the manual camera presented three major problems. Firstly, it was necessary to prevent 

the user from driving the camera inside solid bodies, namely planets. To resolve this issue, upon loading 

or generating a 3D model the software computes its bounding sphere, which is used by the camera to 

determine where to stop. The bounding sphere solution is very well suited for planets and other quasi-

spherical bodies, but has the disadvantage of preventing the camera getting close to non-spherical 

objects such as most spacecraft and some asteroids and comets. Other types of bounding volumes 

were considered but were ultimately disregarded due to either the computational cost, the complexity of 

the implementation, or causing erratic camera movement (as is the case of multiple bounding boxes, 

where the camera could easily become stuck on corners). 

Secondly, it was desirable to devise a way of quickly travelling to distant objects (i.e. celestial bodies 

and spacecraft) without overshooting them. From the tested methods the most promising were those 

that scaled the camera velocity with the distance to the nearest objects. Both linear and exponential 

velocity scaling were tested, but the latter was found to be uncontrollable. Additionally, in order to avoid 

abrupt stops when colliding with a bounding sphere the method was modified to scale the camera 

velocity linearly with the distance to the nearest object’s bounding sphere. 

Lastly, a method of assigning the camera reference object (i.e. the object whose relative position to the 

camera is constant) was required. The most natural method tried was determining the Hill sphere radius 

of all the objects being rendered, testing if the camera was inside, and selecting the object with the 

smallest Hill sphere for reference. This method, however, does not work for spacecraft which have 

negligible 𝐺𝑀. For spacecraft, if their screen size is larger than 10 pixels the closest one is selected as 

the camera reference object. 
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Automatic Camera 

The automatic camera is actually a collection of parametrized cameras which are selected based on 

their valid time span. The cameras can be added, edited, and deleted via the GUI or loaded from one 

or more XML files. An example of an automatic camera XML input file can be found in Appendix D. 

An automatic camera is defined by: 

 Time span – The time interval in which the camera should be active, defined by a start epoch 

and optionally a stop epoch or duration; 

 Time scale – The time that passes within the simulation for every second; 

 Eye position – The position of the camera; 

 Look at position –The position the camera is looking at; 

 Up direction – The direction of the camera vertical (optional, by default the vertical direction of 

the J2000 frame of reference). 

To facilitate the parametrization of the camera the positions (eye and look at) are defined by an offset 

from a specific reference body in one of the implemented frames of reference (cf. Appendix A). The 

offsets can either be given in Cartesian or spherical coordinates. The up direction is defined in a similar 

manner except a direction vector or azimuth/elevation is required, instead of an offset. 

The software does not require the cameras time span to be contiguous or non-intersecting. Instead it 

selects the camera based on which cameras are valid for the current epoch and gives precedence to 

the one that has a later start epoch. If no camera is defined it stops updating the camera parameters 

until another valid camera is found. An example of this behaviour is shown in Table 4.3. 

Table 4.3 – Graphical representation of an example cameras timeline with the time spans highlighted 
and final usage sequence. 

 Jan Feb Mar Apr May Jun Jul Ago Set Oct Nov Dec 

Camera 1             

Camera 2             

Camera 3             

Camera 4             

Sequence             

 

4.3.6 Movie Making 

The software exports WMV movies. This format was selected since it is guaranteed to be compatible 

with the operating systems the software is compatible with. Using a different format would require 

shipping additional third party libraries and might require the user to install a codec or media player to 

be able to watch the rendered movie. The WMV3 codec, commercially known as Windows Media Video 

9, was chosen for video compression since it provides support for a wide range of bit rates, allowing the 

user to create high definition quality video, or low-bitrate internet video [37]. 
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The video encoding bitrate presented two possibilities – constant or variable. The constant bit rate 

encoding (CBR) strives to maintain the bitrate, whereas the variable bit rate (VBR) encoding strives to 

achieve the best possible quality. Since improving the quality is always desirable, the VBR encoding 

was chosen. There are several types of VBR encoding which determine how the instantaneous bitrate 

is determined. Quality-based VBR encoding seemed the most adequate since it is the easiest for the 

user to comprehend – a level of quality is selected, and then the codec encodes the content ensuring 

all frames are of comparable quality. The only disadvantage to this approach is that there is no way of 

determining the size of the movie prior to encoding. 

In order to capture a movie the user needs to first configure it, by selecting the output filename, the 

resolution, and the quality level. The resolution can be set to one of three options – Native (the current 

window resolution), HD720 (1280x720), or HD1080 (1920x1080). The quality level is a discrete value 1 

to 100, where 1 represents the lowest possible quality and 100 the highest. After the output is configured, 

capturing can be started and stopped by pressing the appropriate button on the GUI, or the C key on 

the keyboard. 

While rendering a movie at a non-native resolution it is likely that the image displayed in the program 

window is just a part of the one being captured, or vice-versa. This cropping is a consequence of the 

necessity of not having the ability to scale Direct3D texture resources while copying them. 

Finally, it is possible for the user to interact with the GUI while capturing a movie, for example to turn 

auxiliary features on and off, since the capturing occurs before the GUI is rendered to prevent it from 

being shown in the movie. The movie maker does, however, capture the on-screen text, namely the 

simulation epoch time. 

 

Figure 4.14 – Movie making cropping scenarios when capturing at fixed resolutions. 
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Chapter 5 

IMPLEMENTATION DETAILS 

SimOrbit was developed as single Visual Studio solution encompassing three projects – SimOrbit, 

SimOrbit Library and Framework (cf. section 5.3), and the SPICE C++ Wrapper Library (cf. section 5.4). 

All three projects were developed using modern and effective coding techniques, such as templates, 

containers, and safe pointers [38] [39]. 

In order to have a better insight into the code, and to ensure the low cyclomatic complexity and 

maintainability objectives were reached, it was necessary to determine its metrics. The C++ code 

metrics were generated using the SourceMonitor software [40] since Visual Studio 2013 does not 

provide code metrics functionality for native C++ code. A summary of the metrics for the main project – 

SimOrbit – is shown in Table 5.1. These include the module manager and both the propagator and 

simulator modules. The copyright notice header that is present on all files was excluded to avoid 

interference with the “lines” and “percent of lines with comments” values. 

Table 5.1 – Metrics summary for the SimOrbit project. 

Parameter Value 

Files 180 

Lines 42,664 

Statements 15,146 

Percent Branch Statements 12.7 

Percent Lines with Comments 30.6 

Classes Defined 129 

Methods Implemented per Class 11.61 

Average Statements per Method 7.3 

Maximum Complexity 36 

Maximum Block Depth 9+ 

Average Block Depth 1.28 

Average Complexity 2.25 

Functions 252 

Although the metrics summary provides a quick overview of the dimension of the project, it is inadequate 

to assess if the objectives were met, hence the Kiviat metrics graph (Figure 5.1) was generated. This 

graphic includes a highlighted region indicating the ideal value range for the different metrics. All average 

metrics were found to be within the ideal range; however the “percent of lines with comments”, 

“maximum complexity” and “maximum block depth” are too high. Since XML comments are present 

throughout the code in order to be able to automatically generate the reference manual an inflated value 

of lines with comments was to be expected. The exaggerated maximum cyclomatic complexity and block 

depth were traced to the trajectory propagator worker thread function. The algorithm behind this function 

is indeed very complex, and thus is explained in depth on section 5.1.1. Additionally, its flowcharts have 

been included in Appendix E, and also the software reference manual. 
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Figure 5.1 – Kiviat metrics graph for the SimOrbit project. 

5.1 Propagator Module 

The propagator module is the only multi-threaded component of the software. It consists of two main 

dialogs – setup and progress. The setup dialog is the module’s entry point and allows the user to fully 

configure every aspect of the trajectory propagator. When the trajectory propagator is active the 

progress dialog is shown instead, allowing the user to monitor and control its operation. 

The thread communication and information flow is shown in Figure 5.2. When the user issues the 

command to start the computation a worker thread is created. This thread is self-contained, creating 

instances of all the components it uses, and its outside communication is through a shared progress 

information class. This solution has the advantage of enabling a future extension of the propagator 

module where multiple input parameters can be used to simultaneously generate several trajectory 

alternatives, by creating several worker threads. 

Graphical User 

Interface

Trajectory Propagator 

Controller

Numerical Integrator Force Model

Force Systems 

Database

Engine

SPICE C++

Output File Writers

 

Figure 5.2 – Thread communication and information flow diagram during the operation of the 
propagator module. 
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5.1.1 Trajectory Propagator Operation 

The trajectory propagator controller is the most complex algorithm present in the software (cf. Appendix 

E). This controller runs on a separate thread, and is responsible for configuring and operating the 

numerical integrator, selecting the appropriate for systems and configuring the force model accordingly, 

pushing the computed spacecraft states to the output file writers, and reporting progress to the GUI on 

the main thread. 

The first task performed by the propagator controller is configuring all the components it operates – 

numerical integrator, force model and output file writers (SPK and plain text) – using the information 

previously provided by the user via the GUI or the propagator setup XML files. 

Once all the components are configured, the controller determines the best available force system for 

the initial spacecraft state and enters its main loop, which runs until the numerical integrator has reached 

the specified stop date, or duration. 

Inside the main loop the controller manages the segments, which are defined as a collection of states 

in which the central body does not change and the velocity is continuous. Firstly, the current segment 

stop time is set to the next delta-V engine input or the propagation stop date, whichever is the earliest. 

Secondly, any delta-V inputs coinciding with the segment start time are applied. Afterwards, the output 

file writers are instructed to initiate a new segment and the initial spacecraft state is pushed (i.e. written 

to the output). Finally, the controller enters its secondary loop, called the segment loop. 

The segment loop is where the actual trajectory propagation occurs. It starts by performing a numerical 

integration step, and pushing the updated state to the output file writers. Afterwards, it tests if the 

spacecraft has crashed inside the central body, by comparing its distance to the equatorial radius of the 

body. If it crashed, the segment and the trajectory propagation are immediately terminated and an error 

message is sent to the event log. In case a crash did not occur it checks if a manual stop command was 

issues by the user, and if so terminates the segment and the trajectory propagation. This is also where 

a user pause/resume command is processed. If no crash was detected and no stop command was 

issued the controller communicates its updated progress to the GUI. The last step in the segment loop 

consists in evaluating if the force system is still the most adequate, and in case it is not, the segment is 

terminated, and a new one is initiated using the best force system available. 

Force System Selection 

Since no Solar System planet is inside the sphere of influence of any other, the only force system 

changes that are necessary to test are between the planetary systems and the default force system – 

Sun. Hence, the force system selection algorithm is divided in two major paths. If the current force 

system is a planetary system, it evaluates if the spacecraft is still within 101% of its central body’s sphere 

of influence, switching to the Sun system if not. If the current force system is the Sun system, the 

algorithm iterates over all other available systems to determine is the spacecraft is inside 99% of their 

respective central body’s sphere of influence. If the spacecraft is found to be inside, the loop is 

terminated and that planetary system is set as current. 
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Numerical Integrator Step 

The numerical integrator is responsible for integrating the equations of motion of the spacecraft (i.e. the 

derivatives of the position and velocity). Firstly, it determines the new state using the RKF7(8) methods 

and the derivatives provided by the force model implementation. If the time step is fixed, no more 

operations are performed. If, however, the time step is variable it proceeds to estimate the truncation 

error and compare it with the user-defined tolerance. If the truncation error is within tolerance the step 

is considered valid, the time step is adjusted for the next iteration (taking into account any limits set by 

the user). In case of a failed tolerance check the time step is adjusted if possible, and the step calculation 

is repeated. If the time step is already at a user defined minimum it is not adjusted, and instead a 

“truncation error over tolerance” warning is issued. 

Calculate Derivatives 

The force model algorithm, i.e. the computation of the position and velocity derivatives, is fairly simple 

and follows the equation sequence discussed in section 4.2.2. The algorithm begins by calculating the 

acceleration due to the central body’s spherical gravity field (GM). If the 𝐽2 perturbation is enabled and 

the coefficient is known, its perturbation is added. This is done by converting the position to the body-

fixed frame of the central body, calculating the perturbation, and converting it back to the J2000 frame. 

Afterwards, the list of active third bodies present in the force system is iterated, and their perturbations 

are calculated and added. The Sun is external to the list of third bodies list as it shares code with the 

solar radiation pressure implementation, these contributions are calculated and added if enabled. 

Finally, the list of constant acceleration engine inputs is iterated and their contributions are also added. 

The derivative of the position is set to the state’s velocity and the derivative of the velocity to the 

calculated acceleration. 

5.2 Simulator Module 

The simulator module is a 3D rendering environment which uses a collection of High Level Shader 

Language (HLSL) files to program the vertex, geometry (Direct3D 10 only), and pixel shaders. These 

control how the vertices of the models are transformed into screen coordinates, and how each individual 

pixel colour is calculated. These files are embedded in the software executable as resource files, and 

are compiled at run-time. Since the software has a dual Direct3D 9 and 10 rendering engine, HLSL files 

are provided for both versions. The only exception is the Perlin noise implementation (cf. section 5.2.2) 

that is only available in Direct3D 10 mode, due to shader model limitations. 

5.2.1 Depth Buffering 

The rendering process converts the object’s 3D coordinates into 2D screen coordinates, thus eliminating 

the depth information. There are two techniques that can be used to determine which objects should be 

drawn, and which ones are hidden from view – the painter’s algorithm, and depth buffering. The painter’s 

algorithm consists in rendering the scene starting with the farthest object from the camera, and 

overlapping every other object in depth decreasing order. This algorithm, although simple, is inefficient 
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since the pixels are constantly being redrawn, and can also fail completely for objects which intersect 

others. Depth buffering, also known as z-buffering, stores the depth of the objects being rendered in a 

surface with the same dimensions as the render target. The depth values are then used to determine if 

a pixel should be drawn, or immediately discarded due to being hidden from view. Depth buffering is the 

technique used in most modern 3D computer graphics applications. 

 

Figure 5.3 – Illustration of the Direct3D viewing frustum. 

The depth buffer hardware implementation does have a major problem, since it uses 

 
𝑑𝑒𝑝𝑡ℎ(𝑧) ∝

1

𝑧
, (5.1) 

where 𝑧 is the object’s distance from the camera (cf. Figure 5.3). This causes the depth buffer to use 

half its resolution just in the distance from the near plane to twice that distance. Rendering the Solar 

System becomes very problematic. To be able to view spacecraft the near plane needs to be no farther 

than 1 meter from the camera, and to be able to view far away planets the far plane needs to be hundreds 

of millions of kilometres away from it. Using these viewing frustum limits makes the scene unrenderable. 

Brano Kemen addressed this issue [41] and proposed the usage of a logarithmic depth buffer to increase 

the precision (i.e. decrease the resolution) and bring it to a usable region, as shown in Figure 5.4. 

 

Figure 5.4 – Comparison of the precision of normal and logarithmic depth buffers for depths ranging 
from of 0.01m to 10,000,000m [42]. 
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The proposed modification suggests storing depth values as 

 
𝑑𝑒𝑝𝑡ℎ(𝑧) = 𝐾

ln(𝐶 ∙ 𝑧 + 1)

ln(𝐶 ∙ 𝑧𝑓 + 1)
, 

(5.2) 

where 𝐾 is the maximum value in the depth buffer, and 𝐶 is a tuning parameter controlling the width of 

the linear part of the function. Thatcher Ulrich made a slight variation to the formula, removing the 

dependency on the tuning parameter 

 
𝑑𝑒𝑝𝑡ℎ(𝑧) = (2𝑘 − 1)

ln(𝑧 𝑧𝑛⁄ )

ln(𝑧𝑓 𝑧𝑛⁄ )
, 

(5.3) 

where 𝑘 is the number of bits of the depth buffer, assuming an integer depth buffer. This method had 

the advantage of providing constant relative precision. Direct3D, however, has no support for integer 

depth buffers, which results requires the formula to be modified to 

 
𝑑𝑒𝑝𝑡ℎ(𝑧) =

ln(𝑧 𝑧𝑛⁄ )

ln(𝑧𝑓 𝑧𝑛⁄ )
, 

(5.4) 

resulting in a bit of instability in the precision due to the way floating-point numbers are stored in binary 

format. Nevertheless, the method performs far better than the standard Direct3D depth buffering 

implementation, and allows the rendering of very close objects with high level of detail, such as a 

spacecraft, and very far objects, such as the Sun seen from millions of kilometres away. 

Even using the modified depth buffering, it is still not possible to have a depth buffer than encompasses 

the entire Solar System and still allows a user to “zoom in” on a small spacecraft. To solve the issue the 

objects that are so far away that a marker has to be rendered to make them visible are rendered using 

the painter’s algorithm, instead of depth buffering. 

Hence, to render the scene: 

1. The star background is drawn; 

2. The far object markers are rendered from the farthest to the nearest with depth testing off; 

3. The near objects’ 3D models are rendered from the closest to the farthest with depth testing 

on. 

5.2.2 Noise Generator and Sun Shader 

In order to have elements like the Sun’s corona appear more natural it was necessary to implement a 

noise generator. Upon reviewing the state-of-the art [43], and the available implementations, the widely 

used improved Perlin noise [44] algorithm was chosen. 

Perlin noise “determines noise at a point in space by computing a pseudo-random gradient at each of 

the eight nearest vertices on the integer cubic lattice and then doing a splined interpolation” [43]. The 

noise results are usually scaled and summed together. One of the ways of doing this is via fractional 

Brownian motion (fBm).  
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Fractional Brownian motion was implemented as 

 
𝑓𝐵𝑚(𝑃) =

∑ 𝑛𝑜𝑖𝑠𝑒(𝑃 × 𝑓(𝑜𝑐𝑡𝑎𝑣𝑒)) × 𝐴(𝑜𝑐𝑡𝑎𝑣𝑒)𝑜𝑐𝑡𝑎𝑣𝑒

∑ 𝐴(𝑜𝑐𝑡𝑎𝑣𝑒)𝑜𝑐𝑡𝑎𝑣𝑒

, (5.5) 

where 𝑃 is the point at which the noise is being calculated. 

Octaves are how many noise layers are being putting together, the higher the number is, the higher the 

detail. The frequency, 𝑓, determines the width of the noise features, with each octave the frequency 

increases according to 

 𝑓(𝑜𝑐𝑡𝑎𝑣𝑒) = 𝜆𝑜𝑐𝑡𝑎𝑣𝑒−1|𝜆>1, (5.6) 

where 𝜆 is the lacunarity, i.e. the frequency multiplier between octaves. The amplitude, 𝐴, controls the 

height of the noise features, and changes with each octave through the relation 

 𝐴(𝑜𝑐𝑡𝑎𝑣𝑒) = 𝐺𝑜𝑐𝑡𝑎𝑣𝑒−1|0<𝐺<1, (5.7) 

where 𝐺  represents the gain, also called persistence. A graphical representation of the fractional 

Brownian algorithm, applied to the Perlin noise, is shown in Figure 5.5. 

 

→ 

 
Figure 5.5 - Graphical representation of the fractional Brownian motion algorithm applied to Perlin 

noise. 

The software uses the Perlin noise implementation proposed by NVIDIA [34], which computes noise 

directly in the pixel shader, differing from the typical methods that require the use of precomputed 3D 

textures. This has several advantages, namely it allows four-dimensional noise, enabling the usage of 

time as a fourth dimension to create three-dimensional effects with animations. The Perlin noise and 

fractional Brownian motion algorithms were placed in a separate HLSL include file to facilitate their 

usage across multiple effect files. 
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Sun Shader 

Currently the only application of the noise generator within the software is the rendering of the Sun’s 

corona. The developed algorithm is not physically based and is only meant to add some realism to the 

rendering of the Sun, as shown in Figure 5.6. 

 

Figure 5.6 – Comparison of the Sun with corona rendering enabled (left) and disabled (right). 

The corona is rendered has a double-sided, semi-transparent sphere, centred at the Sun, with a radius 

of 𝑅⊙ + 150,000𝑘𝑚 (𝑅⊙ being the radius of the Sun). For visible point 𝒑 on the the corona, the angle 

 𝜃 = ∠𝑁𝑉, 
(5.8) 

between its surface normal, 𝑁, and the direction to the camera position, 𝑉, is calculated. The angle is 

then used to determine the base intensity of the corona 

 𝐼𝑏𝑎𝑠𝑒 = 504 × cos(𝜃) + 84 × cos(3𝜃) − 36 × cos(5𝜃) + 9 × cos(7𝜃) − cos(9𝜃), 
(5.9) 

to which the fBm noise at the normalized point �̂� is added, obtaining the final intensity 

 𝐼 = 𝐼𝑏𝑎𝑠𝑒 + fBm(�̂�). (5.10) 

The fBm is calculated with 3 octaves, 𝜆 = 2.0 and 𝐺 = 0.5, making it a pink noise. 

The intensity is then converted to a RGB (red, green, blue) colour using the process described on 

equation (5.11), which produces the gradient shown in Figure 5.7 for intensities ranging from 0 to 1. 

 

Figure 5.7 – Sun intensity colour gradient. 

𝐼 
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 𝑟𝑒𝑑 = 3 × min(𝐼,  3−1)  

𝐼′ = max(𝐼 − 3−1,  0) 

𝑔𝑟𝑒𝑒𝑛 = 3 × min(𝐼′,  3−1)  

𝐼′′ = max(𝐼′ − 3−1,  0) 

𝑏𝑙𝑢𝑒 = 3 × min(𝐼′′,  3−1)  

(5.11) 

5.2.3 Planetary and Ring Shaders 

The planetary and ring shaders are responsible for performing the lighting calculations to determine the 

colour of every pixel in the visible geometry. 

Planetary Shader 

Rendering a photo-realistic representation of a planet requires understanding what happens to the light 

rays as they enter the planet’s atmosphere, are reflected on the surface, and travel back to the camera. 

The planet shader process, illustrated in Figure 5.8, splits this process into three stages. 

Firstly, the lighting reflection coefficients are calculated, assuming a flat homogeneous surface. The 

diffuse reflection coefficient 

 𝐶𝑑 = 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒(�̂� ∙ �̂�), (5.12) 

where �̂� is the direction to the light source and �̂� the surface normal, represents the light that is reflected 

in all angles. The saturate function clamps the values to the [0,1]  range. The specular reflection 

coefficient 

 
𝐶𝑠 = 𝑘𝑠 ∙ �̂� ∙ �̂� ∙ 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒 (

(1 + 𝑛)

8𝜋

(�̂� ∙ �̂�)
𝑛

(�̂� ∙ �̂�)
3), (5.13) 

where �̂� is the halfway versor between camera and light directions, 𝑘𝑠 is the material shininess strength, 

and 𝑛 its shininess exponent, represents the light that is perfectly reflected by the surface. If a tangent 

space normal map is provided, the geometric surface normal is disregarded in favour of 

 

{
 

 
𝑁𝑥 = 2 ∙ (𝑟𝑒𝑑 ∙ 𝑎𝑙𝑝ℎ𝑎) − 1
𝑁𝑦 = 2 ∙ 𝑔𝑟𝑒𝑒𝑛 − 1

𝑁𝑧 = √1 − 𝑁𝑥
2 + 𝑁𝑦

2

. 
(5.14) 

This creates the illusion of three-dimensional terrain on a per-pixel basis. The shader also supports 

specular mapping. Specular mapping stores the material specular colour, meaning the shininess 

strength 𝑘𝑠 can be controlled on a per-pixel basis to make features such as bodies of water and ice 

reflective while keeping terrain non-reflective. 
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Initial Lighting Normal Mapping Specular Mapping

Atmospheric Scattering Final Lighting

Diffuse and Emissive Mapping Final Colour (No Clouds) Final Rendering (Clouds)  

Figure 5.8 – Schematic representation of the planetary shader using planet Earth as an example. 

The second stage of the planetary shader is calculating the atmospheric light scattering, which is done 

in two passes. The first pass extrudes the planet’s geometry by a factor of 2.5% and traces the path of 

a light particle from the Sun to the camera passing through the atmosphere without hitting the planet’s 

surface. The second pass traces the light from the Sun to a position on the surface where it is reflected 

back to the camera, thus determining how the surface is perceived by the observer. The atmospheric 

scattering results are combined with the final lighting, resulting in the surface colour 

 𝒄𝒐𝒍𝒐𝒖𝒓 = 𝐶𝑑 + (1 + 𝐶𝑠) ∙ 𝒄𝒐𝒍𝒐𝒖𝒓𝑹𝒂𝒚𝒍𝒆𝒊𝒈𝒉 + (1 − 𝐼𝑀𝑖𝑒) ∙ 𝒄𝒐𝒍𝒐𝒖𝒓𝑴𝒊𝒆 , (5.15) 

where 𝒄𝒐𝒍𝒐𝒖𝒓𝑹𝒂𝒚𝒍𝒆𝒊𝒈𝒉 and 𝒄𝒐𝒍𝒐𝒖𝒓𝑴𝒊𝒆 correspond to the RGB colour vectors obtained for Rayleigh and 

Mie scattering using O’Neal’s implementation [34], and the Mie intensity is 
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𝐼𝑀𝑖𝑒 =

‖𝒄𝒐𝒍𝒐𝒖𝒓𝑴𝒊𝒆 ‖

√3
. 

(5.16) 

The third stage consists in modulating the surface colour maps with the computed lighting intensity and 

colour. The diffuse map stores the daytime representation of the planetary surface under isotropic 

lighting conditions, whereas the emissive map stores the colour and intensity of the light emitted by the 

planet (e.g. city lights) in the absence of sunlight. The diffuse map is modulated by the diffuse lighting 

coefficient 𝐶𝑑, and the emissive map by 

 
𝐶𝑒 =

𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒4(1 − 20 ∙ 𝐶𝑑)

2
, (5.17) 

when no atmosphere is present, or by 

 
𝐶𝑒 = {

0 , 𝐼𝑀𝑖𝑒 < 0.05

−�̂� ∙ �̂� − 𝐼𝑀𝑖𝑒 , 𝐼𝑀𝑖𝑒 ≥ 0.05
, 

(5.18) 

when an atmosphere is present. Both these coefficients were determined empirically by comparison of 

the obtained renderings to Earth’s photographs. 

Finally, the cloud cover is rendered by extruding the geometry to match the user-defined cloud height 

and rendering 𝒄𝒐𝒍𝒐𝒖𝒓𝑴𝒊𝒆 with the transparency values provided by the alpha channel of the clouds 

texture map. 

Rings Shader 

Illuminating planetary rings is a very complex optics problem. Rings are composed by small particles 

which are illuminated by direct light from the Sun (forward scattering), and light reflected by the planet 

and the neighbouring ring particles (backscattering). Accurately calculating all the contributions from all 

the light sources is possible, though technically infeasible. An approximate model was developed to 

simulate both the forward scattered and the backscattered light. The model provides satisfactory results 

for a wide range of phase angles, as shown in Figure 5.9, for the rings of Saturn. The forward scattered 

lighting coefficient is modelled by 

 
𝐶𝑓𝑠 = 0.1 ∙

(1 + �̂� ∙ �̂�)

2
, (5.19) 

where �̂� is the versor from the ring position being calculated to the camera position. The backscattered 

lighting coefficient is 

 
𝐶𝑏𝑠 = 0.75 ∙

(1 + 𝒓𝑹 ∙ �̂�)

2 ∙ ‖𝑹‖

(1 + �̂� ∙ �̂�𝑷)

2

‖𝒓𝑹‖ − 𝑅𝑃
𝑅𝑂𝑅

, (5.20) 

where: 

 𝒓𝑹 is the ring position; 

 �̂�𝑷 = 𝑅𝑃 ∙ �̂� − 𝒓𝑹 is the direction, from the ring position to planet surface position where the light 

hits at a normal angle; 
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 𝑅𝑃 is the equatorial radius of the planet; 

 𝑅𝑂𝑅 is the outer ring radius. 

  

  
Figure 5.9 – Saturn planetary rings illumination at different phase angles; false colour with red 

indicating forward scattering and green indicating backscattering (top); real colour (bottom) 

5.3 SimOrbit Library (SOLib) and Framework 

The SimOrbit Library (SOLib) and Framework is the foundation of the modules. It is a collection of 

template classes and interfaces that can, and should, be used as building blocks for the creation of GUI 

dialogs and controls, storage and validation of values, and interfacing with a skeleton graphics engine. 

Similarly to the SimOrbit project, the metrics were calculated (Table 5.2) and the Kiviat graph was 

generated (Figure 5.10). SOLib is also a large project, with a high percentage of lines with comments, 

again due to the XML documentation, and maintainable average metrics. There are a few local 

maximum cyclomatic complexity and depth issues but the values still ensure maintainability. The 

Framework is divided in Callbacks, Datatypes, Policies, GUI, DirectX, and Helpers sections. 

Table 5.2 – Metrics summary for the SimOrbit Library (SOLib) project. 

Parameter Value 

Files 150 

Lines 29,797 

Statements 8,271 

Percent Branch Statements 14.5 

Percent Lines with Comments 35.6 

Classes Defined 211 

Methods Implemented per Class 5.40 

Average Statements per Method 4.2 

Maximum Complexity 23 

Maximum Block Depth 7 

Average Block Depth 1.29 

Average Complexity 2,27 

Functions 109 
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Figure 5.10 – Kiviat metrics graph for the SimOrbit Library (SOLib) project. 

5.4 SPICE C++ Wrapper Library 

A C++ thread-safe wrapper library was developed for selected SPICE Toolkit routines (cf. section 3.2.2), 

namely those pertaining to kernel management, NAIF codes, conics, constants and ephemerides 

retrieval, frame transformations, and SPK file generation. The library allows the SPICE Toolkit to be 

used in a thread-safe environment by ensuring mutual exclusion on critical sections. It also implements 

an exception error system that is fully compatible with C++ exception specifications. Furthermore, it 

adds support for safe function calls by using template classes like vector and valarray to input and output 

data from functions, instead of the raw arrays the SPICE Toolkit uses. 

The code metrics were calculated (Table 5.3), and the Kiviat graph was generated (Figure 5.11). The 

SPICE C++ Wrapper Library is much smaller than the other two developed components, as it only 

encapsulates the functionality already present in the SPICE Toolkit, which is further confirmed by the 

low number of average statements per method. Nevertheless, it exports 149 functions, which 

correspond to the most used functions in the SPICE API. 

Table 5.3 – Metrics summary for the SPICE C++ wrapper project. 

Parameter Value 

Files 37 

Lines 5,464 

Statements 1,278 

Percent Branch Statements 7.7 

Percent Lines with Comments 38.4 

Classes Defined 10 

Methods Implemented per Class 4.43 

Average Statements per Method 2.9 

Maximum Complexity 22 

Maximum Block Depth 6 

Average Block Depth 1.32 

Average Complexity 1.49 

Functions 149 
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Figure 5.11 – Kiviat metrics graph for the SPICE C++ wrapper project. 
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Chapter 6 

VALIDATION AND TESTING 

6.1 Trajectory Propagator Validation 

In order to be able to use the trajectory propagator in an operational environment it is necessary to 

perform an extensive validation process to ensure there are no errors which can compromise a space 

mission. The validation presented in this section is preliminary, and its purpose is only to confirm that 

the force model is capable of accurately calculating simple trajectories for which there are analytical 

solutions. The precision of the floating-point significant used throughout the validation process was 53 

bits, conforming to the IEEE 754 double-precision floating point format [17]. 

6.1.1 Keplerian Orbit 

The most basic test of the trajectory propagator consists in verifying the orbital stability of a Keplerian 

orbit. To achieve this all perturbations were disabled, leaving only the spherical gravity field of the central 

body. A set of orbital elements, for an Earth orbit, was chosen: 

 Semi-major axis 𝑎 = 30000𝑘𝑚 

 Eccentricity 𝑒 = 0.05 

 Inclination 𝑖 = 15° 

 Longitude of ascending node Ω = 60° 

 Argument of periapsis ω = 30° 

 Mean anomaly at epoch 𝑀0 = 0° 

The trajectory was propagated for a duration of 100 days with a fixed time step of 10 minutes, and the 

force system was configured to disable all perturbations. The orbital elements residuals were calculated 

for each data point using 

 𝜀𝑖 = 𝑋0 − 𝑋𝑖 , (6.1) 

where 𝑋 represents an arbitrary orbital element, and 𝑖 is the index of the trajectory data point. 

Table 6.1 – Statistical analysis of the residuals of the classical orbital elements during a 100 days 
propagation of a Keplerian orbit. 

Element Mean (𝝁) Standard Deviation (𝝈) 

Semi-major axis 𝒂 -3.0337e-03 7.2842e-03 

Eccentricity 𝒆 -4.5622e-08 1.4529e-07 

Inclination 𝒊 2.5361e-07 1.3024e-06 

Longitude of ascending node 𝛀 2.2247e-06 4.7369e-06 

Argument of periapsis 𝛚 9.1730e-07 1.6502e-04 

Mean anomaly at epoch 𝑴𝟎 4.6052e-03 2.6692e-03 
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Figure 6.1 – Residuals of the classical orbital elements during a 100 days propagation of a Keplerian 
orbit. 

 

 

Figure 6.2 – Normal probability plots for the residuals of the classical orbital elements during a 100 
days propagation of a Keplerian orbit. 

The residuals were plotted, as illustrated on Figure 6.1, their mean and standard deviation were 

calculated (Table 6.1), and their normal probability plots were generated (Figure 6.2). Their analysis 

reveals minor, well-behaved, normally distributed residuals for all elements with the exception of the 

mean anomaly at epoch (𝑀0). This suggests the orbit is stable with near-constant orbital parameters, 
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as expected, but the mean motion of the spacecraft is higher than that of the analytical solution. 

Nevertheless, the accumulated error of the mean anomaly at epoch over the course of the 100 days is 

of only 9.2606 × 10−3°, well within an acceptable tolerance. 

6.1.2 J₂ Perturbation 

For a satellite orbiting a central body, the 𝐽2 perturbation causes a variation of the longitude of ascending 

node 

 
∆Ω = −

3

2

𝑛𝐽2𝑅𝐸
2

𝑎2(1 − 𝑒2)2
𝑐𝑜𝑠 𝑖, (6.2) 

and a variation of the argument of periapsis 

 
∆𝜔 =

3

2

𝑛𝐽2𝑅𝐸
2

𝑎2(1 − 𝑒2)2
(2 −

5

2
sin2 𝑖), (6.3) 

where the mean orbital velocity is 

 

𝑛 = √
𝐺𝑀

𝑎3
. (6.4) 

Two types of orbits were used to validate the 𝐽2 contribution – a sun-synchronous orbit, and a Molniya 

orbit. Sun-synchronous satellites orbit the Earth in a way that they appear to always orbit the same 

position from the perspective of the Sun, i.e. the orbital plane rotates at the rate of 0.9856° ∙ day−1. The 

Molniya satellites are placed in highly elliptical orbits with an inclination near 63.4°. At this inclination the 

argument of periapsis is not perturbed by the 𝐽2  coefficient of the Earth’s gravitational field, thus 

remaining constant. 

The sun-synchronous satellite AQUA was selected to test the variation of the longitude of ascending 

node. The TLE set describing the initial conditions (Table 6.2) was obtained from CelesTrak [45]. 

Table 6.2 – AQUA satellite TLE set used for validating the propagator. 

 

The TLE set was converted to the orbital elements: 

 Epoch 𝐸0 = 2457153.330050 𝐽𝐷 (10-05-2015 19:55:16 UTC) 

 Semi-major axis 𝑎 = 7068.6376𝑘𝑚 

 Eccentricity 𝑒 = 0.001448 

 Inclination 𝑖 = 98.1932° 

 Longitude of ascending node Ω = 72.3717° 

 Argument of periapsis ω = 53.4004° 

 Mean anomaly at epoch 𝑀0 = 32.2452° 

AQUA                     
1 27424U 02022A   15130.82927265  .00000847  00000-0  19781-3 0  9994 
2 27424  98.1932  72.3717 0001448  53.4004  32.2452 14.57133010692384 
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The trajectory was propagated for a duration of 100 days with a fixed time step of 10 minutes, which is 

sufficient to guarantee any significant errors are introduced by the force model, and not the numerical 

integrator (i.e. decreasing the time step does not change the output). The force system was configured 

to only include the Earth’s gravity field. Figure 6.3 shows the comparison of the solution given by the 

software to the analytical one. As expected the numerical solution diverges from the analytical one as it 

integrates errors over time, however these were considered to be within an acceptable tolerance. A 

linear regression of the numerical solution reveals a ∆Ω𝑆𝑖𝑚𝑂𝑟𝑏𝑖𝑡 = 0.9681°𝑑𝑎𝑦
−1  (coefficient of 

determination 𝑅2 = 1), whereas the analytical solution has a ∆Ω = 0.9915°𝑑𝑎𝑦−1 . The coefficient of 

correlation between the solutions is 𝑅 = 1.0000. 

 

Figure 6.3 – Comparison of the variation of the longitude of ascending node of the AQUA satellite orbit 
during a 100 days trajectory propagation and the analytic solution. 

The MOLNIYA 1-81 satellite was selected to test the variation of the argument of periapsis, since from 

all the operational Molniya satellites, its inclination was the one closest to 63.4°. Table 6.3 lists the TLE 

set used for the initial conditions of the propagator, also obtained from CelesTrak. 

Table 6.3 – MOLNIYA 1-81 satellite TLE set used for validating the propagator. 

 

The associated classical orbital elements are: 

 Epoch 𝐸0 = 2457151.982762 𝐽𝐷 (09-05-2015 11:35:11 UTC) 

 Semi-major axis 𝑎 = 26607.835𝑘𝑚 

 Eccentricity 𝑒 = 0.7218024 

 Inclination 𝑖 = 63.2998° 

MOLNIYA 1-81             
1 21426U 91043A   15129.48198403 -.00000182  00000-0 -58611-2 0  9993 
2 21426  63.2998 287.3923 7218024 283.8640  13.1449  2.00622014175072 
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 Longitude of ascending node Ω = 287.3923° 

 Argument of periapsis ω = 283.8640° 

 Mean anomaly at epoch 𝑀0 = 13.1449° 

The trajectory was propagated exactly as before, and Figure 6.4 shows the comparison of the solution 

given by the software with the analytical one. Here the error increases linearly over time, and the linear 

regression of the numerical solution reveals a ∆ω𝑆𝑖𝑚𝑂𝑟𝑏𝑖𝑡 = 0.0007°𝑑𝑎𝑦
−1  (𝑅2 = 0.9 ), whereas the 

analytical solution has a ∆ω = 0.0013°𝑑𝑎𝑦−1. The coefficient of correlation between the two solutions is 

𝑅 = 0.9487. 

 

Figure 6.4 – Comparison of the variation of the argument of periapsis of the MOLNIYA 1-81 satellite 
orbit during a 100 days trajectory propagation and the analytic solution. 

Taking into account the results obtained for both the AQUA and the MOLNIYA 1-81 satellites, the 𝐽2 

perturbation implementation was considered valid. 

6.1.3 Other Perturbations (Third Bodies and Solar Radiation Pressure) 

Testing the trajectory perturbations introduced by third bodies and the solar radiation pressure is a more 

complex problem, for which no analytical solution exists. Ideally, the software should be tested against 

previously validated software, such as those presented in Section 1.2. Unfortunately, due to time 

constraints that was not possible. Nevertheless, it was necessary to verify that at least the influence of 

third-bodies was being taken into account and reasonably calculated. 

To verify the influence of third-bodies a trans-lunar trajectory was propagated. This is a type of free 

return trajectory which takes a spacecraft from a circular parking orbit around the Earth, around the far 

side of the Moon, and back to Earth without requiring any propulsion, except that required to initially set 

the trajectory. This trajectory was widely used in the Apollo missions, as it allowed the astronauts to 
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return to Earth in case of a propulsion failure. The Apollo 11 was one of the missions where this type of 

trajectory was used, and is one for which an abundance of information is available, making it ideal for 

testing. 

The Apollo 11 trans-lunar injection (TLI) parameters [46] were converted to the orbital elements: 

 Epoch 𝐸0 = 2440419.182095 𝐽𝐷 (16-07-1969 16:22:13 UTC) 

 Semi-major axis 𝑎 = 286535.800𝑘𝑚 

 Eccentricity 𝑒 = 0.976965 

 Inclination 𝑖 = 31.383° 

 Longitude of ascending node Ω = 358.380° 

 Argument of periapsis ω = 4.410° 

 Time of periapsis 𝑇𝑝 = 2440419.180255 𝐽𝐷 (16-07-1969 16:19:34 UTC) 

The spacecraft was considered to have a mass of 𝑚 = 43866𝑘𝑔, corresponding to the mass of the 

Command and Service Module (CSM) and the mass of the Lunar Module (LM) combined, a projected 

area of 𝐴 = 27𝑚2 and a reflectivity of 𝜀 = 0.5. The numerical integrator was set up with an initial time 

step of 1 minute with lower and upper bounds of 1 second and 1 hour, respectively, and truncation error 

tolerances of 𝑡𝑜𝑙𝑝𝑜𝑠 = 1 × 10
−6𝑚  and 𝑡𝑜𝑙𝑣𝑒𝑙 = 1 × 10

−6𝑚 ∙ 𝑠−1 . The trajectory was propagated for a 

duration of duration of 5.8 days, with all Earth’s force system perturbations enabled. 

The propagated trajectory, shown in Figure 6.5, is as expected. The spacecraft leaves Earth, performs 

a swing-by at the Moon, and returns. Despite the lack of numerical validation of the trajectory, it is 

enough to verify that the third-body perturbation due to the presence of the Moon is being accurately 

taken into account. 

 

Figure 6.5 – Apollo 11 trans-lunar trajectory as propagated by SimOrbit. 
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6.1.4 Engine 

Lastly, it was necessary to test the engine implementation. Ideally, the two modes – delta-V and constant 

accelerations would have to be tested, however, there is no analytic method for testing constant 

acceleration inputs. Hence, only the delta-V inputs were tested by propagating a Hohmann transfer, 

which is a manoeuvre that takes a spacecraft from one circular orbit to another, on the same plane, 

using two delta-V impulses. 

The delta-V required to leave the initial circular orbit of radius 𝑟1 and enter the elliptical transfer orbit is 

 

∆𝑣1 = √
𝐺𝑀

𝑟1
(√

2𝑟2
𝑟1 + 𝑟2

− 1), 
(6.5) 

and the one required to leave the elliptical transfer orbit and enter the final circular orbit of radius 𝑟2 is 

 

∆𝑣2 = √
𝐺𝑀

𝑟2
(1 − √

2𝑟1
𝑟1 + 𝑟2

). 
(6.6) 

The time taken to perform the transfer is 

 

𝑡𝐻 = 𝜋√
(𝑟1 + 𝑟2)

3

8𝐺𝑀
. (6.7) 

From an initial circular Low Earth Orbit (LEO) described by: 

 Semi-major axis 𝑎 = 7378.1366𝑘𝑚 (altitude of 1000𝑘𝑚 above the equator) 

 Eccentricity 𝑒 = 0 

 Inclination 𝑖 = 0° 

 Longitude of ascending node Ω = 0° 

 Argument of periapsis ω = 90° 

It was decided to use the engine to transfer to a Geosynchronous Equatorial Orbit (GEO), which has an 

altitude of 35,786km  above the equator. This results in 𝑟1 = 7378.1366𝑘𝑚  and 𝑟2 = 42164.1366𝑘𝑚 . 

Using Equations (6.5), (6.6), and (6.7) the ∆𝑣1 = 2.23932𝑘𝑚 ∙ 𝑠−1 , ∆𝑣2 = 1.3966𝑘𝑚 ∙ 𝑠−1 , and 𝑡𝐻 =

19399.9178𝑠 were obtained. 

The engine was configured with the two delta-V, using the TRAJECTORY frame of reference, and the 

trajectory was propagated for the duration of 3 days, starting 1 day before the first delta-V. The time 

step was fixed to 10 minutes. The resulting trajectory is represented on Figure 6.6, and is exactly what 

was expected. 
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Figure 6.6 – Hohmann transfer orbit from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit 
(GEO). 

The final orbit has the parameters: 

 Semi-major axis 𝑎 = 42164.1365𝑘𝑚 (altitude of 35785,9999𝑘𝑚 above the equator) 

 Eccentricity 𝑒 = 1.4330 × 10−7 

 Inclination 𝑖 = 0° 

 Longitude of ascending node Ω = 0° 

 Argument of periapsis ω =  97.9235° 

The semi-major axis error is 𝜀𝑎 = 1 × 10
−4𝑘𝑚, and the eccentricity error is 𝜀𝑒 = −1.4330 × 10−7, were 

both considered to be well within an acceptable tolerance. This verifies the engine’s delta-V 

implementation is valid. 

6.2 Performance 

The SimOrbit performance was assessed on an Intel Core i7-5600U CPU @ 2.60GHz, with 8GB RAM, 

and an integrated Intel[ HD Graphics 5500 graphics processor, running the Windows 7 Professional 64-

bit operating system. The display resolution was 2560x1440 pixel and the desktop scaling factor, which 

controls the scaling of the GUI, was set to 125%. The executable used for testing was built with full 

program optimization and for a 64-bit system. 

The software was profiled and optimized using the Visual Studio Performance and Diagnostics tool. The 

CPU sampling method was used to discover “hot” paths and lines of code that reduced performance, 

and the resource contention data for concurrency analysis. 
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6.2.1 Propagator 

To assess the propagator module performance, a trajectory propagation of an Earth satellite with a 

duration of one sidereal year, was used. The force system was configured to account for all perturbations 

(i.e. Earth 𝐽2 coefficient, Moon and Sun as third bodies, and solar radiation pressure). Additionally, a 

very low-thrust constant acceleration engine input was added to be able to measure the performance of 

the engine. Delta-V inputs were not added since they have a negligible performance impact due to only 

being calculated at one specific time instance. The initial time step was set to 10 minutes and was left 

unbounded. 

Firstly, the results of the CPU sampling were analysed – one “hot path” was found. The propagator 

worker thread function was responsible for 96.9% of the CPU usage, with 73.0% corresponding to the 

RKF7(8) integrator and 22.6% to the dynamic force system change algorithm. Looking inside the 

integrator it was found that 64.3% of the total CPU usage came from that force model implementation 

(i.e. the code responsible for calculating the derivatives the numerical integrator uses), and that the asin 

and acos operations were extremely intensive on their own. 

To gain a better understanding of what force model components were more expensive to compute, 

several performance counters, based on the High Precision Event Timer (HPET), were added to the 

force model code. These are hardware-implemented timers present in most modern computers. The 

implemented counters measured how long it took to execute the code that calculates each component 

of the acceleration (central body gravity field and 𝐽2  perturbation, third bodies’ perturbations, solar 

radiation pressure perturbation, and engine). 

Both a generic and the Sandy Bridge microarchitecture optimized DLLs for the MPIR and MPFR libraries 

were used. The output of the performance counters is shown in Table 6.4. Through the analysis of the 

performance counter values it is obvious the most time consuming computations are the central body 𝐽2 

and solar radiation pressure perturbations. A possible reason behind this are the mathematical 

operations involved – the 𝐽2 perturbation requires two 3x3 matrix multiplications and five pow operations, 

and the solar radiation pressure perturbation as many as two asin and three acos operations. The usage 

of the microarchitecture optimized DLLs did not increase the performance significantly, and only 

revealed itself useful in the solar radiation pressure computation. This conclusion cannot however be 

extrapolated to other CPU microarchitectures where the performance gain may be greater. 

Table 6.4 – Force model performance counter results for the generic and Sandy Bridge DLLs and their 
respective improvement. 

Performance Counter Generic DLLs [s] Optimized DLLs [s] Difference [%] 

Central body GM 4.5101 4.3952 -2.5476 

Central body J₂ 38.6601 38.9222 +0.6780 

Third bodies GM 14.5795 14.6385 +0.4030 

Sun GM 14.1066 13.9925 -0.8088 

Solar radiation pressure 52.8765 49.4690 -6.4443 

Engine 6.7374 6.7632 +0.3829 

Total 133.7283 130.6471 -2.3041 
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6.2.2 Simulator 

The simulator module testing focused on measuring the frames per second (FPS) under different 

conditions to try and assess the individual performance of the shaders, and the influence movie 

capturing had on graphics performance. The Direct3D 10 mode was used in the tests, since it was 

supported by the graphics processor, and the FPS was measured using the Visual Studio Graphics 

Analyzer. 

Windowed Mode (1600x900 pixel) 

The first test was run on windowed mode at 1600x900 pixel, which is SimOrbit’s default window size 

under a desktop scaling factor of 125%. A sequence of six automated cameras that focused on objects 

being rendered by different types of shaders were defined. Each camera was set to be active for a total 

of 30 seconds. The sequence was ran twice, with native resolution movie capture off and on. Table 6.5 

lists the measured average FPS values and the influence of movie capturing. 

Table 6.5 – Average FPS measured for different types of shaders on a 1600x900 pixel window, with 
native resolution movie capturing off and on. 

Shader Normal Rendering [FPS] Movie Capturing 
[FPS] 

Difference 
[FPS] 

None (deep space) 319.4 125.4 -194.0 

Sun (Sun) 97.7 59.6 -38.1 

Planet (Venus) 247.7 95.7 -152.0 

Planet with atmosphere (Earth) 109.4 55.8 -53.6 

Rings (Saturn) 226.4 106.7 -119.7 

Model (Cassini) 265.7 100.4 -163.3 

The worst performance was found on the “Sun” (i.e. the Perlin noise implementation) and the “Planet 

with atmosphere” shaders, which is not surprising since both are computationally expensive algorithms. 

Nevertheless, the performance of all shaders is very good. Capturing a movie, even at the native 

resolution, causes a significant drop in FPS. In order to determine exactly how much of an influence the 

movie capture has, the average frame time (i.e. the time required to render the frame) 

 
𝑡𝑓𝑟𝑎𝑚𝑒 =

1

𝐹𝑃𝑆
, (6.8) 

was calculated. Averaging the frame time difference between both cases, a value of 6.29𝑚𝑠 was found 

for the time it takes to capture a single 1600x900 pixel frame to a movie, corresponding to 4.37𝑚𝑠 ∙ 𝑀𝑃−1 

(millisecond per megapixel). 

Full Screen Mode (2560x1440 pixel) 

Subsequently, full screen mode was tested at the 2560x1440 pixel, commonly known as Quad HD 

(QHD). This test was meant to put as much strain as possible on the graphics processor and determine 

the lower FPS limits at which a simulation would run. The camera sequence and methodology from the 

previous test were used, and the results are shown in Table 6.6. 
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As expected, due to the 2.56 times higher resolution, the FPS are lower than those of the previous test. 

The relative shader performance remains constant. Movie capture at this resolution was found to reduce 

the FPS to very low values, where camera movement causes noticeable flicker. The average increase 

in frame time due to movie capturing was of 20.29𝑚𝑠, corresponding to 5.56𝑚𝑠 ∙ 𝑀𝑃−1, a performance 

slightly lower than observed before, which suggests the encoding time varies non-linearly with the 

resolution. 

Table 6.6 – Average FPS measured for different types of shaders on a 2560x1440 pixel screen, with 
native resolution movie capturing off and on. 

Shader Normal Rendering [FPS] Movie Capturing 
[FPS] 

Difference 
[FPS] 

None (deep space) 208.7 39.3 -169.4 

Sun (Sun) 56.2 25.4 -30.8 

Planet (Venus) 167.9 36.9 -131.0 

Planet with atmosphere (Earth) 60.4 31.1 -26.6 

Rings (Saturn) 153.4 35.6 -117.8 

Model (Cassini) 175.6 37.2 -138.4 
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Chapter 7 

CONCLUSIONS 

This thesis was aimed at developing a free and open-source software package to support mission 

analysis and orbital mechanics calculations. In order to provide an integrated solution, enabling a user 

to generate and analyse data, two components were proposed – a trajectory propagator for data 

generation, and a 3D visualization component. The trajectory propagator was meant to be able to 

generate accurate spacecraft trajectory data based on a set of initial conditions describing its state (i.e. 

position and velocity) at a reference epoch. The 3D visualization component was envisioned as a 

visually realistic 3D rendering of the Solar System for spacecraft motion analysis. 

A review of modern software for mission analysis and design was performed, encompassing the major 

general tools available in the industry – STK, FreeFlyer, GMAT, and STA. Celestia, one of the most 

recognized software tools whose primary goal is a visually realistic rendering of the Solar System, was 

also reviewed. This review was extremely useful towards gaining an understanding of the current 

approach used by the industry in the development of this type of tool. Additionally, common problems 

that hinder mission analysis and design software usability were also identified. On a lesser extent, the 

review also facilitated the familiarization with the common terminology, standards, and file formats used 

in the industry. 

With the knowledge gained from the software review, and the initial goals in mind, a set of requirements 

for the software were defined. These outlined what was necessary to implement in order to provide 

adequate functionality, and what was desirable to have to further assist the user. Additionally, given the 

fact this was a large open source software project, the requirements also took into account the needs 

of third-party developers – low-complexity, maintainable, and well documented source code. For the 

definition of the trajectory propagator requirements, a brief study space missions mission scenarios (i.e. 

use cases) was conducted. This determined what fundamental forces and engine types needed to be 

included for accurate propagation of a trajectory. Additionally, the study also highlighted the necessity 

of defining a collection of different force systems, each valid within a region of space, and having the 

propagator switch between them automatically. The requirements for the visualization component were 

defined based on its primary goal of visual realism, and the necessity of also displaying auxiliary features 

to aid mission analysis. The need for controlling the point-of-view was also established, leading to the 

definition of two types of camera control modes – manual and automatic. Furthermore, a method of 

exporting the visualization component output in the form of a movie, was also proposed. 

The software was designed using the waterfall model, which proposes a sequential development 

process in which the software is designed (based on the requirements), coded, and tested before 

release. On the design stage the software’s name, programming language and development 

environment, third party components, architecture, coding standards, documentation, and licensing and 
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distribution method were discussed and chosen. It was decided to name the software SimOrbit, and 

release it under the European Union Public License (EUPL) v.1.1, via a website. 

Three software components were developed in C++ programming language – the SimOrbit application, 

the SimOrbit Library and Framework, and the SPICE C++ wrapper. The SimOrbit application is an 

executable that encompasses the trajectory propagator and 3D visualization modules. It is the 

implementation of the user-end requirements. The SimOrbit Library and Framework is the realization of 

the developer-requirements, providing an interface framework that allows future developer to effortlessly 

integrate new functions (i.e. modules) within SimOrbit. The SPICE C++ wrapper is a library that improves 

the NAIF’s SPICE Toolkit compatibility with the C++ programming language, and provides thread-safety. 

Finally, the trajectory propagator was validated and the software performance was tested. The trajectory 

propagator validation focused comparing its results with known analytic solutions for simple orbits. The 

algorithms for the central body’s gravity field, including the 𝐽2 perturbation, and the engine delta-V inputs 

were tested and found to be within acceptable limits. A tentative test of the influence of third bodies and 

the solar radiation pressure was also conducted. The test consisted in propagating the Apollo 11 trans-

lunar trajectory, and visually comparing it to the known profile. The propagator was considered valid, 

having successfully passed all tests. However, the validation process was not extensive, which 

precludes the trajectory propagator from being used operationally. 

In order to assess software performance, the propagator was instrumented with performance counters 

that measured the computational time taken calculating the different components of the force model. 

The solar radiation pressure and the 𝐽2  perturbation were found to be the most computationally 

expensive components, consuming 39.54% and 28.91% of the total computation time, respectively. The 

performance gain using optimized MPIR and MPFR DLLs was also measured and found to be negligible 

for the test environment. The performance of the simulator was also evaluated by measuring the FPS 

of the individual shaders under different rendering conditions. It was found that all shaders perform 

adequately, although the Perlin noise and atmospheric scattering perform considerably worse than any 

other shader. Movie making was found to reduce the FPS since it requires the render target data to be 

copied to the movie frame buffer and encoded. 

Although the developed software conforms to the specifications, performs adequately, and has been 

preliminary validated, it was found to have some flaws. On the propagator module, a very short constant 

acceleration engine input (i.e. with a time span with an order of magnitude similar or lower than that of 

the time step) can be leaped over and ignored by the numerical integrator. In order to mitigate this 

problem the software resets the initial time step at the start of the engine input, but this was found to be 

inadequate to solve the issue. A recommendation was included in the user manual to use delta-V inputs, 

instead of constant acceleration, in these cases. The propagator should also be modified to allow for 

the propagation of spacecraft attitude and mass in addition to the position and velocity. This would 

greatly improve the accuracy of the solar radiation pressure component, and allow for propellant 

calculations. On the simulator module, loading a spacecraft trajectory is a time consuming operation, 

and for very long or complex trajectories, limited by the maximum number of points, it does not always 
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produce an accurate representation of the reality. This issue needs further studying, possibly creating 

an algorithm that refines the trajectory depending on the camera position. Furthermore, also on the 

simulator module, the Sun’s corona shader has the lowest performance of all implemented shaders and 

is not physically-based. A study of the corona’s lighting properties needs to be performed in order to 

create a fast physically-based algorithm that improves both the visual realism and performance of this 

shader. 

In addition to correcting the flaws currently present in the implemented modules it is also desirable to 

add new functionality, in the form of new modules. Two modules were already considered for future 

development – trajectory optimization and ground track visualization. Trajectory optimization is a feature 

of most modern mission analysis and design tools, and is of the utmost necessity for the design of space 

missions. It determines the ideal launch window, and minimizes the engine thrust necessary to reach 

the mission objective, under a set of constraints. Ground track visualization is especially useful for 

satellites as it facilitates the determination of communication windows between the satellite and the 

surface tracking stations. 

The design and development of the software was a challenging endeavour, as it draws knowledge from 

several distinct areas – orbital mechanics, programming, computer graphics, optics, and media 

generation. The work also greatly contributed towards understanding the difficulties associated with 

large software projects, and their planning and time management requirements. Extensive computer 

programming knowledge, namely in the C++11 and HLSL programming languages, was also acquired. 

Furthermore, the importance of defining requirements, establishing standards, and producing 

appropriate documentation was learnt. 

The main challenge now lies in fully validating SimOrbit’s computations, approving it for operational 

usage, and gaining industry acceptance. An early version of SimOrbit was presented at the 4th 

International Conference on Astrodynamics Tools and Techniques (ICATT) [47], and since then its 

overall functionality and visual realism of the simulator module has greatly increased. 

Overall, the software is considered to successfully fulfil the proposed objective, allowing a user to 

accurately propagate and visualize the trajectory of spacecraft in a visually realistic environment. 
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Appendix A 

FRAMES OF REFERENCE 

A.1 Definitions 

𝐫𝐜𝐞𝐧𝐭𝐫𝐚𝐥 – Central body position in the inertial frame J2000; 

𝐯𝐜𝐞𝐧𝐭𝐫𝐚𝐥 – Central body velocity in the inertial frame J2000; 

𝐫𝐬𝐩𝐚𝐜𝐞𝐜𝐫𝐚𝐟𝐭 – Spacecraft position in the inertial frame J2000; 

𝐯𝐬𝐩𝐚𝐜𝐞𝐜𝐫𝐚𝐟𝐭 – Spacecraft velocity in the inertial frame J2000. 

 

Relative orbital position vector – position of the spacecraft with reference to the central body: 

𝐫 = 𝐫𝐬𝐩𝐚𝐜𝐞𝐜𝐫𝐚𝐟𝐭 − 𝐫𝐜𝐞𝐧𝐭𝐫𝐚𝐥 

 

Relative orbital velocity vector – velocity of the spacecraft with reference to the central body: 

𝐯 = 𝐯𝐬𝐩𝐚𝐜𝐞𝐜𝐫𝐚𝐟𝐭 − 𝐯𝐜𝐞𝐧𝐭𝐫𝐚𝐥 

 

Orbital plane – plane perpendicular to the orbital momentum vector: 

Πorbit ⊥ 𝐡 = 𝐫 × 𝐯 

Or, in case of a straight line trajectory, perpendicular to: 

Πorbit ⊥ 𝐫 × (𝐞𝒛
𝑱𝟐𝟎𝟎𝟎

× 𝐫) 

Or, in case of a straight line trajectory parallel to the J2000 frame z-axis, perpendicular to: 

Πorbit ⊥ 𝐞𝒚
𝑱𝟐𝟎𝟎𝟎

 

  



 

A.2 

A.2 J2000 – Earth mean equator and equinox of J2000 

 X-axis is pointed towards the mean vernal equinox on January 1, 2000 at 12:00 TDT; 

 Z-axis is parallel to the Earth’s mean rotational axis pointed towards its North pole; 

 Y-axis completes the right-handed coordinate frame. 

 

Figure A.1 – The local J2000 reference frame on the central body (CB). 

A.3 ECLIPJ2000 – Ecliptic and equinox of J2000 

 X-axis is pointed towards the mean vernal equinox on January 1, 2000 at 12:00 TDT; 

 Z-axis is perpendicular to the Earth’s orbital plane orientated with its angular momentum 

vector; 

 Y-axis completes the right-handed coordinate frame. 

 

Figure A.2 – The local ECLIPTJ2000 reference frame on the central body (CB). 



 

A.3 

A.4 BODY – Body-fixed frame 

On a planet: 

 X axis is pointed towards the body’s prime meridian; 

 Z axis is parallel to the body’s rotational axis and pointed towards its North pole; 

 Y axis completes the right-handed coordinate frame. 

On a spacecraft: 

 X, Y, and Z axes are parallel to the body’s principal axis of inertia; 

 Other definitions are possible, according to the loaded spacecraft orientation data. 

 

Figure A.3 – The local BODY reference frame on the central body (CB). 

A.5 LVLH – Local Vertical Local Horizontal 

 Z axis lies in the local vertical direction and points towards the planet (nadir); 

 Y axis is perpendicular to the orbital plane oriented opposite the angular momentum vector; 

 X axis is the projection of the velocity in the horizontal plane and completes the right-handed 

frame. 

𝐞𝐳 = −
𝐫

‖𝐫‖
𝐞𝐲 =

𝐯 × 𝐫

‖𝐯 × 𝐫‖
𝐞𝐱 = 𝐞𝐲 × 𝐞𝐳 



 

A.4 

 

Figure A.4 – The local LVLH reference frame on the spacecraft (SC). 

A.6 TRAJECTORY – X parallel to velocity and orbital plane 

 X axis is parallel to the velocity vector and is positive in the direction of motion; 

 Y axis is perpendicular to the orbital plane oriented opposite the angular momentum vector; 

 Z axis is the projection of the vertical in the orbital plane and completes the right-handed 

frame. 

𝐞𝐱 =
𝐯

‖𝐯‖
𝐞𝐲 =

𝐯 × 𝐫

‖𝐯 × 𝐫‖
𝐞𝐳 = 𝐞𝐱 × 𝐞𝐲 

 

 

Figure A.5 – The local TRAJECTORY reference frame on the spacecraft (SC).
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Appendix B 

COMPLETE LAYER DIAGRAM OF THE SOFTWARE ARCHITECTURE 

 

Figure B.1 – Complete layer diagram of the software architecture the showing relations between the various components (third party components displayed in orange) and their sub-architectures.
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Appendix C 

UNITS AND VALUE POLICIES 

To ensure reliable and consistent data input the software uses a single set of units and conversion 

factors, found on Table C.1, and a collection of policies to validate the input. 

Table C.1 – Units used in the software and respective conversion factors to the default unit. 

Type Unit Conversion Factor 

Time s 1.0 

min 60.0 

h 3600.0 

d 86400.0 

Length m 1.0 × 10−3 

km 1.0 

AU 149597870.7 

Velocity m/s 1.0 × 10−3 

m/min 1.0 × 10−3 60.0⁄  

m/h 1.0 × 10−3 3600.0⁄  

km/s 1.0 

km/min 1.0 60.0⁄  

km/h 1.0 3600.0⁄  

Acceleration m/s2 1.0 × 10−3 

m/min2 1.0 × 10−3 60.02⁄  

m/h2 1.0 × 10−3 3600.02⁄  

km/s2 1.0 

km/min2 1.0 60.02⁄  

km/h2 1.0 3600.02⁄  

Mass g 1.0 × 10−3 

kg 1.0 

t 1.0 × 10+3 

Area m2 1.0 

km2 1.0 × 10+6 

Angular deg 𝜋 180.0⁄  

rad 1.0 

 

The tables below detail the policies used for data input validation throughout the software. The type from 

which the policies derive is listed under the policy name (└) and any values in bold are defaults. 

Table C.2 – Date & Time policies. 

Policy Valid Range Valid Units 

JulianDate 
└NumericValue 

[2305813.5,  5373484.5] NIL 

Duration 
└NumericValue 

[0,  ∞[ s, min, h, d 
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Table C.3 – Motion-related (position, velocity, and acceleration) policies. 

Policy Valid Range Valid Units 

Position 
└NumericValue 

ℝ 

m, km, AU 
PositionError 
└ NumericValue 

ℝ>0 

PositionVector 
└ NumericVector(3) 

ℝ3 

Velocity 
└NumericValue 

ℝ 

m/s, m/min, m/h, 
km/s, km/min, km/h 

VelocityError 
└ NumericValue 

ℝ>0 

VelocityVector 
└ NumericVector(3) 

ℝ3 

Acceleration 
└NumericValue 

ℝ 

m/s2, m/min2, m/h2, 
km/s2, km/min2, km/h2 

AccelerationError 
└ NumericValue 

ℝ>0 

AccelerationVector 
└ NumericVector(3) 

ℝ3 

 

Table C.4 – Orbital elements policies. 

Policy Valid Range Valid Units 

SemimajorAxis 
└NumericValue 

ℝ>0 m, km, AU 

Eccentricity 
└NumericValue 

ℝ>0 NIL 

LongitudeOfAscendingNode 
└NumericValue 

[0,  360[ 𝑑𝑒𝑔 deg, rad 

Inclination 
└NumericValue 

[0,  180] 𝑑𝑒𝑔 deg, rad 

ArgumentOfPeriapsis 
└NumericValue 

[0,  360[ 𝑑𝑒𝑔 deg, rad 

 

Table C.5 – Physical constant policies. 

Policy Valid Range Valid Units 

Mass 
└NumericValue 

ℝ>0 g, kg, t 

Area 
└NumericValue 

ℝ>0 m2, km2 

Reflectivity 
└NumericValue 

[0,  1] NIL 

 

Table C.6 – Direction policies (Euclidean vector and Azimuth/Elevation). 

Policy Valid Range Valid Units 

DirectionVector 
└NumericVector(3) 

ℝ3\(0,  0,  0) NIL 

DirectionAzEl 
└NumericVector(2) {

(𝑎𝑧, 𝑒𝑙):

𝑎𝑧 ∈ [0,  360[ 𝑑𝑒𝑔,

𝑒𝑙 ∈ [−90,  90] 𝑑𝑒𝑔

} deg, rad 
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Table C.7 – Frames of reference policies (cf. Appendix A). 

Policy Validity Condition 

StandardFrame 
└TextValue 

J2000, ECLIPJ2000, BODY 

CustomFrame 
└TextValue 

LVLH, TRAJECTORY 

Frame 
└TextValue 

J2000, ECLIPJ2000, BODY, LVLH, TRAJECTORY 

 

Table C.8 – NAIF object name and code policies. 

Policy Validity Condition 

NAIFBodyName 
└TextValue 

As defined in the NAIF Integer ID Codes: 
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/naif_ids.html 

Policy Valid Range Valid Units 

NAIFSpacecraftCode 
└NumericValue 

ℤ<0 NIL 

 

Table C.9 – Interpolation polynomials policies. 

Policy Validity Condition 

InterpolationPolynomial 
└TextValue 

Lagrange, Hermite 

Policy Valid Range Valid Units 

InterpolationPolynomialDegree 
└NumericValue 

{1…15} NIL 

 

Table C.10 – Bit precision policy. 

Policy Valid Range Valid Units 

BitPrecision 
└NumericValue 

{24…𝟓𝟑…113} NIL 

 

Table C.11 – Filename policy. 

Policy Validity Condition 

ReadableFile 
└TextValue 

Filename must correspond to a readable file. 

 

Table C.12 – Color policy (red, green, blue). 

Policy Valid Range Valid Units 

Color 
└ NumericVector 

{(𝑟, 𝑔, 𝑏): 𝑟, 𝑔, 𝑏 ∈ [0,  1]} NIL 

http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/naif_ids.html
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Appendix D 

XML INPUT FILES EXAMPLES 

The software input files are in XML, with examples of each type presented below. 

D.1 Trajectory Propagator Module 

 

Listing D.1 – Procedural planet generator input XML file example. 

<?xml version="1.0" encoding="UTF-8"?> 
<propagatorSetup xmlns="urn:simorbit"> 
  <general> 
    <referenceEpoch>2440419.182095</referenceEpoch> 
    <referenceBody>EARTH</referenceBody> 
    <referenceFrame>J2000</referenceFrame> 
    <orbitalElements> 
      <semimajorAxis unit="km">286535.800</semimajorAxis> 
      <eccentricity>0.976965</eccentricity> 
      <periapsisTime>2440419.180255</periapsisTime> 
      <argumentOfPeriapsis unit="deg">4.4102</argumentOfPeriapsis> 
      <inclination unit="deg">31.383</inclination> 
      <longitudeOfAscendingNode unit="deg">358.380</longitudeOfAscendingNode> 
    </orbitalElements> 
    <stopEpoch>2440426.500000</stopEpoch> 
  </general> 
  <forceModel> 
    <mass unit="kg">28801</mass> 
    <area unit="m2">11.95</area> 
    <reflectivity>0.5</reflectivity> 
    <engineInputs> 
      <deltaV name="Midcourse Correction"> 
        <epoch>2440420.178449</epoch> 
        <magnitude unit="km/s">6.73</magnitude> 
        <referenceBody>EARTH</referenceBody> 
        <referenceFrame>LVLH</referenceFrame> 
        <directionVector> 
          <x>0</x> 
          <y>0</y> 
          <z>1</z> 
        </directionVector> 
      </deltaV> 
    </engineInputs> 
  </forceModel> 
  <integrator> 
    <timeStep> 
      <initial unit="s">30</initial> 
      <minimum unit="s">1</minimum> 
      <maximum unit="h">1</maximum> 
    </timeStep> 
    <truncationErrorTolerance> 
      <position unit="m">100</position> 
      <velocity unit="m/h">10</velocity> 
    </truncationErrorTolerance> 
  </integrator> 
  <output> 
    <spk> 
      <objectCode>-911</objectCode> 
      <interpolationPolynomial degree="9">LAGRANGE</interpolationPolynomial> 
    </spk> 
    <raw> 
      <commentLineStart>#</commentLineStart> 
    </raw> 
  </output> 
</propagatorSetup> 
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Listing D.2 – Procedural planet generator input XML file example. 

D.2 Simulator Module 

 

Listing D.3 – Models information input XML file example. 

<?xml version="1.0" encoding="UTF-8"?> 
<forceSystems xmlns="urn:simorbit"> 
  <forceSystem name="Solar System"> 
    <barycenter>SOLAR SYSTEM BARYCENTER</barycenter> 
    <centralBody>SUN</centralBody> 
    <thirdBodies> 
      <thirdBody>MERCURY BARYCENTER</thirdBody> 
      <thirdBody>VENUS BARYCENTER</thirdBody> 
      <thirdBody>EARTH BARYCENTER</thirdBody> 
      <thirdBody>MARS BARYCENTER</thirdBody> 
      <thirdBody>JUPITER BARYCENTER</thirdBody> 
      <thirdBody>SATURN BARYCENTER</thirdBody> 
      <thirdBody>URANUS BARYCENTER</thirdBody> 
      <thirdBody>NEPTUNE BARYCENTER</thirdBody> 
      <thirdBody>PLUTO BARYCENTER</thirdBody> 
    </thirdBodies> 
  </forceSystem> 
  <forceSystem name="Mercury System"> 
    <barycenter>MERCURY BARYCENTER</barycenter> 
    <thirdBodies> 
      <thirdBody>VENUS</thirdBody> 
    </thirdBodies> 
    <centralBody>MERCURY</centralBody> 
  </forceSystem> 
  <forceSystem name="Venus System"> 
    <barycenter>VENUS BARYCENTER</barycenter> 
    <centralBody>VENUS</centralBody> 
  </forceSystem> 
  <forceSystem name="Earth System"> 
    <barycenter>EARTH BARYCENTER</barycenter> 
    <centralBody>EARTH</centralBody> 
    <thirdBodies> 
      <thirdBody>MOON</thirdBody> 
    </thirdBodies> 
  </forceSystem> 
  <!--TRUNCATED--> 
</forceSystems> 

<?xml version="1.0" encoding="UTF-8"?> 
<models xmlns="urn:simorbit"> 
  <model> 
    <object>-82</object> 
    <filename>Models\Cassini\Cassini.obj</filename> 
    <scale>0.001</scale> 
  </model> 
  <model> 
    <object>401</object> 
    <filename>Models\Cassini\Phobos.3ds</filename> 
    <scale>1.0</scale> 
  </model> 
  <model> 
    <object>402</object> 
    <filename>Models\Deimos\Deimos.3ds</filename> 
    <scale>1.0</scale> 
  </model> 
</models> 
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Listing D.4 – Procedural planet generator input XML file example. 

<?xml version="1.0" encoding="UTF-8"?> 
<planets xmlns="urn:simorbit"> 
  <planet name="EARTH"> 
    <material> 
      <ambientColor> 
        <r>0.00</r> 
        <g>0.00</g> 
        <b>0.00</b> 
      </ambientColor> 
      <diffuseColor> 
        <r>1.00</r> 
        <g>1.00</g> 
        <b>1.00</b> 
      </diffuseColor> 
      <specularColor> 
        <r>1.00</r> 
        <g>1.00</g> 
        <b>1.00</b> 
      </specularColor> 
      <emissiveColor> 
        <r>1.00</r> 
        <g>1.00</g> 
        <b>1.00</b> 
      </emissiveColor> 
      <shininess>20</shininess> 
      <shininessStrength>1.0</shininessStrength> 
      <diffuseMap>Models\Textures\Earth\diffuse.dds</diffuseMap> 
      <specularMap>Models\Textures\Earth\specular.dds</specularMap> 
      <emissiveMap>Models\Textures\Earth\emissive.dds</emissiveMap> 
      <normalsMap>Models\Textures\Earth\normals.dds</normalsMap> 
    </material> 
    <atmosphere> 
      <wavelength> 
        <r>0.680</r> 
        <g>0.550</g> 
        <b>0.440</b> 
      </wavelength> 
      <rayleighConstant>0.0022</rayleighConstant> 
      <mieConstant>0.0015</mieConstant> 
      <asymmetryFactor>0.99</asymmetryFactor> 
    </atmosphere>  <planet name="SATURN"> 
    <!--TRUNCATED--> 
    <rings> 
      <innerRadius unit="km">66900.0</innerRadius> 
      <outerRadius unit="km">140225.0</outerRadius> 
      <colorMap>Models\Textures\Saturn\rings.dds</colorMap> 
    </rings> 
  </planet> 
</planets> 
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Listing D.5 – Cameras input XML file example. 

 

<?xml version="1.0" encoding="UTF-8"?> 
<cameras xmlns="urn:simorbit"> 
  <camera name="Apollo 11 (Moon Orbit)"> 
    <startEpoch>2440422.0145833</startEpoch> 
    <timeScale unit="min">1</timeScale> 
    <eyePosition> 
      <referenceBody>-911</referenceBody> 
      <offset> 
        <referenceFrame>LVLH</referenceFrame> 
        <centralBody>MOON</centralBody> 
        <directionVector> 
          <x>-1</x> 
          <y>0</y> 
          <z>-1</z> 
        </directionVector> 
        <range unit="m">300.0</range> 
      </offset> 
    </eyePosition> 
    <lookAtPosition> 
      <referenceBody>-911</referenceBody> 
    </lookAtPosition> 
    <upDirection> 
      <referenceBody>-911</referenceBody> 
      <referenceFrame>TRAJECTORY</referenceFrame> 
      <centralBody>MOON</centralBody> 
      <directionVector> 
        <x>0</x> 
        <y>0</y> 
        <z>1</z> 
      </directionVector> 
    </upDirection> 
  </camera> 
</cameras> 
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Appendix E 

TRAJECTORY PROPAGATOR FLOWCHARTS 

t = Epoch time
tstop = Propagator end epoch time
tsegment stop = Segment end epoch time
tnext delta-V = Next delta-V epoch time
r = Position relative to the main body in the J2000 frame
V = Velocity relative to the main body in the J2000 frame
ΔV(t) = Engine delta-V function at t
Rmain = Equatorial radius of the main body
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Figure E.1 – Trajectory propagator flowchart. 
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r = Position relative to the main body in the 
J2000 frame
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Figure E.2 – Trajectory propagator subroutine flowcharts (Select Force System, Numerical Integrator Step, Calculate Derivatives). 
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