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Preface to the fourth edition

This book is a revised and reset edition ofNonlinear ordinary differential equations, published
in previous editions in 1977, 1987, and 1999. Additional material reflecting the growth in the
literature on nonlinear systems has been included, whilst retaining the basic style and structure
of the textbook. Thewide applicability of the subject to the physical, engineering, and biological
sciences continues to generate a supply of new problems of practical and theoretical interest.
The book developed from courses on nonlinear differential equations given over many years

in the Mathematics Department of Keele University. It presents an introduction to dynamical
systems in the context of ordinary differential equations, and is intended for students of mathe-
matics, engineering and the sciences, andworkers in these areas who are mainly interested in the
more direct applications of the subject. The level is about that of final-year undergraduate, or
master’s degree courses in the UK. It has been found that selected material fromChapters 1 to 5,
and 8, 10, and 11 can be covered in a one-semester course by students having a background of
techniques in differential equations and linear algebra. The book is designed to accommodate
courses of varying emphasis, the chapters forming fairly self-contained groups from which a
coherent selection can be made without using significant parts of the argument.
From the large number of citations in research papers it appears that although it is mainly

intended to be a textbook it is often used as a source of methods for a wide spectrum of
applications in the scientific and engineering literature. We hope that research workers in many
disciplines will find the new edition equally helpful.
General solutions of nonlinear differential equations are rarely obtainable, though particular

solutions can be calculated one at a time by standard numerical techniques. However, this
book deals with qualitative methods that reveal the novel phenomena arising from nonlinear
equations, and produce good numerical estimates of parameters connected with such general
features as stability, periodicity and chaotic behaviour without the need to solve the equations.
We illustrate the reliability of such methods by graphical or numerical comparison with numer-
ical solutions. For this purpose the Mathematica™software was used to calculate particular
exact solutions; this was also of great assistance in the construction of perturbation series,
trigonometric identities, and for other algebraic manipulation. However, experience with such
software is not necessary for the reader.
Chapters 1 to 4 mainly treat plane autonomous systems. The treatment is kept at an intuitive

level, but we try to encourage the reader to feel that, almost immediately, useful new investiga-
tive techniques are readily available. The main features of the phase plane—equilibrium points,
linearization, limit cycles, geometrical aspects—are investigated informally. Quantitative esti-
mates for solutions are obtained by energy considerations, harmonic balance, and averaging
methods.



viii Preface to the fourth edition

Various perturbation techniques for differential equations which contain a small parameter
are described in Chapter 5, and singular perturbations for non-uniform expansions are treated
extensively in Chapter 6. Chapter 7 investigates harmonic and subharmonic responses, and
entrainment, using mainly the van der Pol plane method. Chapters 8, 9, and 10 deal more for-
mally with stability. In Chapter 9 its is shown that solution perturbation to test stability can lead
to linear equations with periodic coefficients including Mathieu’s equation, and Floquet the-
ory is included Chapter 10 presents. Liapunov methods for stability for presented. Chapter 11
includes criteria for the existence of periodic solutions. Chapter 12 contains an introduction to
bifurcation methods and manifolds. Poincaré sequences, homoclinic bifurcation; Melnikov’s
method and Liapunov exponents are explained, mainly through examples, in Chapter 13.
The text has been subjected to a thorough revision to improve, we hope, the understanding of

nonlinear systems for a wide readership. The main new features of the subject matter include an
extended explanation ofMathieu’s equation with particular reference to damped systems, more
on the exponential matrix and a detailed account of Liapunov exponents for both difference
and differential equations.
Many of the end-of-chapter problems, of which there are over 500, contain significant

applications and developments of the theory in the chapter. They provide a way of indicat-
ing developments for which there is no room in the text, and of presenting more specialized
material. We have had many requests since the first edition for a solutions manual, and simul-
taneously with the publication of the fourth edition, there is now available a companion book,
Nonlinear Ordinary Differential Equations: Problems and Solutions also published by Oxford
University Press, which presents, in detail, solutions of all end-of-chapter problems. This oppor-
tunity has resulted in a re-working and revision of these problems. In addition there are 124
fully worked examples in the text. We felt that we should include some routine problems in the
text with selected answers but no full solutions. There are 88 of these new “Exercises”, which
can be found at the end of most sections. In all there are now over 750 examples and problems
in the book.
On the whole we have we have tried to keep the text free from scientific technicality and to

present equations in a simple reduced from where possible, believing that students have enough
to do to follow the underlying arguments.
We are grateful to many correspondents for kind words, for their queries, observations and

suggestions for improvements. We wish to express our appreciation to Oxford University Press
for giving us this opportunity to revise the book, and to supplement it with the new solutions
handbook.

Dominic Jordan
Peter Smith

Keele
June 2007



1
Second-order differential
equations in the phase
plane

Very few ordinary differential equations have explicit solutions expressible in finite terms.
This is not simply because ingenuity fails, but because the repertory of standard functions
(polynomials, exp, sin, and so on) in terms of which solutions may be expressed is too limited
to accommodate the variety of differential equations encountered in practice. Even if a solution
can be found, the ‘formula’ is often too complicated to display clearly the principal features
of the solution; this is particularly true of implicit solutions and of solutions which are in the
form of integrals or infinite series.
The qualitative study of differential equations is concerned with how to deduce important

characteristics of the solutions of differential equations without actually solving them. In this
chapter we introduce a geometrical device, the phase plane, which is used extensively for
obtaining directly from the differential equation such properties as equilibrium, periodicity,
unlimited growth, stability, and so on. The classical pendulum problem shows how the phase
plane may be used to reveal all the main features of the solutions of a particular differential
equation.

1.1 Phase diagram for the pendulum equation

The simple pendulum (see Fig. 1.1) consists of a particle P of mass m suspended from a fixed
point O by a light string or rod of length a, which is allowed to swing in a vertical plane. If
there is no friction the equation of motion is

ẍ + ω2 sin x = 0, (1.1)

where x is the inclination of the string to the downward vertical, g is the gravitational constant,
and ω2 = g/a.
We convert eqn (1.1) into an equation connecting ẋ and x by writing

ẍ = dẋ
dt
= dẋ

dx
dx
dt

= d
dx

(
1
2
ẋ2
)
.

(1.2)

This representaion of ẍ is called the energy transformation. Equation (1.1) then becomes

d
dx

(
1
2
ẋ2
)
+ ω2 sin x = 0.
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Figure 1.1 The simple pendulum, with angular displacement x.

By integrating this equation with respect to x we obtain

1
2 ẋ

2 − ω2 cos x = C, (1.3)

where C is an arbitrary constant. Notice that this equation expresses conservation of energy
during any particular motion, since if we multiply through eqn (1.3) by a constant ma2, we
obtain

1
2ma2ẋ2 −mga cos x = E,

where E is another arbitrary constant. This equation has the form

E = kinetic energy of P + potential energy of P ,

and a particular value of E corresponds to a particular free motion.
Now write ẋ in terms of x from eqn (1.3):

ẋ = ±√2(C + ω2 cos x)1/2. (1.4)

This is a first-order differential equation for x(t). It cannot be solved in terms of elementary
functions (seeMcLachlan 1956), but we shall show that it is possible to reveal the main features
of the solution by working directly from eqn (1.4) without actually solving it.
Introduce a new variable, y, defined by

ẋ = y. (1.5a)

Then eqn (1.4) becomes

ẏ = ±√2(C + ω2 cos x)1/2. (1.5b)

Set up a frame of Cartesian axes x, y, called the phase plane, and plot the one-parameter family
of curves obtained from (1.5b) by using different values of C. We obtain Fig. 1.2. This is called
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Figure 1.2 Phase diagram for the simple pendulum equation (1.1).

phase diagram for the problem, and the curves are called the phase paths. Various types of
phase path can be identified in terms of C. On the paths joining (−π , 0) and (π , 0), C=ω2; for
paths within these curves ω2>C> −ω2; and for paths outside C >ω2. Equation (1.56) implies
the 2π -periodicity in x shown in Fig. 1.2. The meaning of the arrowheads will be explained
shortly.
A given pair of values (x, y), or (x, ẋ), represented by a point P on the diagram is called

a state of the system. A state gives the angular velocity ẋ = y at a particular inclination x,
and these variables are what we sense when we look at a swinging pendulum at any particular
moment. A given state (x, ẋ) serves also as a pair of initial conditions for the original differential
equation (1.1); therefore a given state determines all subsequent states, which are obtained by
following the phase path that passes through the point P : (x, y), where (x, y) is the initial state.

The directions in which we must proceed along the phase paths for increasing time are
indicated by the arrowheads in Fig. 1.2. This is determined from (1.5a): when y >0, then
ẋ >0, so that x must increase as t increases. Therefore the required direction is always from
left to right in the upper half-plane. Similarly, the direction is always from right to left in the
lower half-plane. The complete picture, Fig. 1.2, is the phase diagram for this problem.
Despite the non-appearance of the time variable in the phase plane display, we can deduce

several physical features of the pendulum’s possible motions from Fig. 1.2. Consider first the
possible states of the physical equilibrium of the pendulum. The obvious one is when the
pendulum hangs without swinging; then x = 0, ẋ = 0, which corresponds to the origin in
Fig. 1.2. The corresponding time-function x(t) = 0 is a perfectly legitimate constant solution
of eqn (1.1); the phase path degenerates to a single point.
If the suspension consists of a light rod there is a second position of equilibrium, where

it is balanced vertically on end. This is the state x = π , ẋ = 0, another constant solution,
represented by point A on the phase diagram. The same physical condition is described by
x = −π , x = 0, represented by the point B, and indeed the state x = nπ , ẋ = 0, where n

is any integer, corresponds physically to one of these two equilibrium states. In fact we have
displayed in Fig. 1.2 only part of the phase diagram, whose pattern repeats periodically; there
is not in this case a one-to-one relationship between the physical state of the pendulum and
points on its phase diagram.
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Since the points O,A,B represent states of physical equilibrium, they are called equilibrium
points on the phase diagram.
Now consider the family of closed curves immediately surrounding the origin in Fig. 1.2.

These indicate periodic motions, in which the pendulum swings to and fro about the vertical.
The amplitude of the swing is the maximum value of x encountered on the curve. For small
enough amplitudes, the curves represent the usual ‘small amplitude’ solutions of the pendulum
equation in which eqn (1.1) is simplified by writing sin x≈ x. Then (1.1) is approximated by
ẍ+ω2x=0, having solutions x(t)=A cosωt +B sinωt , with corresponding phase paths

x2 + y2

ω2 = constant

The phase paths are nearly ellipses in the small amplitude region.
The wavy lines at the top and bottom of Fig. 1.2, on which ẋ is of constant sign and x

continuously increases or decreases, correspond to whirling motions on the pendulum. The
fluctuations in ẋ are due to the gravitational influence, and for phase paths on which ẋ is very
large these fluctuations become imperceptible: the phase paths become nearly straight lines
parallel to the x axis.
We can discuss also the stability of the two typical equilibrium points O and A. If the

initial state is displaced slightly from O, it goes on to one of the nearby closed curves and the
pendulum oscillates with small amplitude about O. We describe the equilibrium point at O as
being stable. If the initial state is slightly displaced from A (the vertically upward equilibrium
position) however, it will normally fall on the phase path which carries the state far from
the equilibrium state A into a large oscillation or a whirling condition (see Fig. 1.3). This
equilibrium point is therefore described as unstable.

An exhaustive account of the pendulum can be found in the book by Baker and Blackburn
(2005).

Oscillatory
region

Oscillatory
region

Pha
se

 pa
th

Whirling region

Whirling region

C

A

Figure 1.3 Unstable equilibrium point for the pendulum: typical displaced initial state C.
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1.2 Autonomous equations in the phase plane

The second-order differential equation of general type

ẍ = f (x, ẋ, t)

with initial conditions, say x(t0) and ẋ(t0), is an example of a dynamical system. The evolution
or future states of the system are then given by x(t) and ẋ(t). Generally, dynamical systems are
initial-value problems governed by ordinary or partial differential equations, or by difference
equations. In this book we consider mainly those nonlinear systems which arise from ordinary
differential equations.
The equation above can be interpreted as an equation of motion for a mechanical system,

in which x represents displacement of a particle of unit mass, ẋ its velocity, ẍ its acceleration,
and f the applied force, so that this general equation expresses Newton’s law of motion for
the particle:

acceleration = force per unit mass

A mechanical system is in equilibrium if its state does not change with time. This implies
that an equilibrium state corresponds to a constant solution of the differential equation, and
conversely. A constant solution implies in particular that ẋ and ẍ must be simultaneously zero.
Note that ẋ = 0 is not alone sufficient for equilibrium: a swinging pendulum is instantaneously
at rest at its maximum angular displacement, but this is obviously not a state of equilibrium.
Such constant solutions are therefore the constant solutions (if any) of the equation

f (x, 0, t) = 0.

We distinguish between two types of differential equation:

(i) the autonomous type in which f does not depend explicitly on t ;

(ii) the non-autonomous or forced equation where t appears explicitly in the function f .

A typical non-autonomous equation models the damped linear oscillator with a harmonic
forcing term

ẍ + kẋ + ω2
0x = F cosωt ,

in which f (x, ẋ, t) = −kẋ−ω2
0x+F cosωt . There are no equilibrium states. Equilibrium states

are not usually associated with non-autonomous equations although they can occur as, for
example, in the equation (Mathieu’s equation, Chapter 9)

ẍ + (α + β cos t)x = 0.

which has an equilibrium state at x = 0, ẋ = 0.
In the present chapter we shall consider only autonomous systems, given by the differential

equation

ẍ = f (x, ẋ), (1.6)
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in which t is absent on the right-hand side. To obtain the representation on the phase plane, put

ẋ = y, (1.7a)

so that

ẏ = f (x, y). (1.7b)

This is a pair of simultaneous first-order equations, equivalent to (1.6).
The state of the system at a time t0 consists of the pair of numbers (x(t0), ẋ(t0)), which can

be regarded as a pair of initial conditions for the original differential equation (1.6). The initial
state therefore determines all the subsequent (and preceding) states in a particular free motion.
In the phase plane with axes x and y, the state at time t0 consists of the pair of values

(x(t0), y(t0)). These values of x and y, represented by a point P in the phase plane, serve
as initial conditions for the simultaneous first-order differential equations (1.7a), (1.7b), and
therefore determine all the states through which the system passes in a particular motion. The
succession of states given parametrically by

x = x(t), y = y(t), (1.8)

traces out a curve through the initial point P : (x(t0), y(t0)), called a phase path, a trajectory or
an orbit.
The direction to be assigned to a phase path is obtained from the relation ẋ = y (eqn 1.7a).

When y > 0, then ẋ > 0, so that x is increasing with time, and when y < 0, x is decreasing
with time. Therefore the directions are from left to right in the upper half-plane, and from right
to left in the lower half-plane.
To obtain a relation between x and y that defines the phase paths, eliminate the parameter t

between (1.7a) and (1.7b) by using the identity

ẏ

ẋ
= dy

dx
.

Then the differential equation for the phase paths becomes

dy
dx
= f (x, y)

y
. (1.9)

A particular phase path is singled out by requiring it to pass through a particular point P :
(x, y), which corresponds to an initial state (x0, y0), where

y(x0) = y0. (1.10)

The complete pattern of phase paths including the directional arrows constitutes the phase
diagram. The time variable t does not figure on this diagram.
The equilibrium points in the phase diagram correspond to constant solutions of eqn (1.6),

and likewise of the equivalent pair (1.7a) and (1.7b). These occur when ẋ and ẏ are
simultaneously zero; that is to say, at points on the x axis where

y = 0 and f (x, 0) = 0. (1.11)
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Figure 1.4 (a) The representative point P on a segment of a phase path. (b) A closed path: P leaves A and returns
to A an infinite number of times.

Equilibrium points can be regarded as degenerate phase paths. At equilibrium points we obtain,
from eqn (1.9),

dy
dx
= 0

0
,

so they are singular points of eqn (1.9), although they are not singular points of the time-
dependent equations (1.7) (see Appendix A for a description of singular points).
In the representation on the phase plane the time t is not involved quantitatively, but can be

featured by the following considerations. Figure 1.4(a) shows a segment �
AB of a phase path.

Suppose that the system is in a state A at time t = tA. The moving point P represents the states
at times t ≥ tA; it moves steadily along �

AB (from left to right in y > 0) as t increases, and is
called a representative point on �

AB.
The velocity of P along the curve �

AB is given in component form by

(ẋ(t), ẏ(t)) = (y, f (x, y))

(from (1.7)): this depends only on its position P : (x, y), and not at all on t and tA (this is true
only for autonomous equations). If tB is the time P reaches B, the time TAB taken for P to
move from A to B,

TAB = tB − tA, (1.12)

is independent of the initial time tA. The quantity TAB is called the elapsed time or transit time
from A to B along the phase path.
We deduce from this observation that if x(t) represents any particular solution of ẍ = f (x, ẋ),

then the family of solutions x(t − t1), where t1 may take any value, is represented by the same
phase path and the same representative point. The graphs of the functions x(t) and x(t − t1),
and therefore of y(t) = ẋ(t) and y(t − t1), are identical in shape, but are displaced along the
time axis by an interval t1, as if the system they represent had been switched on at two different
times of day.
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Consider the case when a phase path is a closed curve, as in Fig. 1.4(b). Let A be any point
on the path, and let the representative point P be at A at time tA. After a certain interval of
time T ,P returns to A, having gone once round the path. Its second circuit starts at A at time
tA + T , but since its subsequent positions depend only on the time elapsed from its starting
point, and not on its starting time, the second circuit will take the same time as the first circuit,
and so on. A closed phase path therefore represents a motion which is periodic in time.
The converse is not true—a path that is not closed may also describe a periodic motion. For

example, the time-solutions corresponding to the whirling motion of a pendulum (Fig. 1.2) are
periodic.
The transit time TAB = tB − tA of the representative point P from state A to state B along

the phase path can be expressed in several ways. For example,

TAB =
∫ tB

tA

dt =
∫ tB

tA

(
dx
dt

)−1 dx
dt

dt

=
∫

�
AB

dx
ẋ
=
∫

�
AB

dx
y(x)

. (1.13)

This is, in principle, calculable, given y as a function of x on the phase path. Notice that the final
integral depends only on the path �

AB and not on the initial time tA, which confirms the earlier
conclusion. The integral is a line integral, having the usual meaning in terms of infinitesimal
contributions: ∫

�
AB

dx
y
= lim

N→∞

N−1∑
i=0

δxi

y(xi)
,

in which we follow values of x in the direction of the path by increments δxi , appropriately
signed. Therefore the δxi are positive in the upper half-plane and negative in the lower half-
plane. It may therefore be necessary to split up the integral as in the following example.

Example 1.1 The phase paths of a system are given by the family x+ y2=C, whereC is an arbitrary constant.
On the path with C=1 the representative point moves from A : (0, 1) to B : (−1,−√2). Obtain the transit
time TAB .

The path specified is shown in Fig. 1.5. It crosses the x axis at the point C : (1, 0), and at this point δx changes
sign. On

�
AC, y = (1− x)1/2, and on

�
CB, y = −(1− x)1/2. Then

TAB =
∫

�
AC

dx
y
+
∫

�
CB

dx
y
=
∫ 1

0

dx

(1− x)1/2
+
∫ −1
1

dx

[−(1− x)1/2]

= [−2(1− x)1/2]10 + [2(1− x)1/2]−11 = 2+ 2
√
2.

For an expression alternative to eqn (1.13), see Problem 1.8. �
Here we summarize the main properties of autonomous differential equations ẍ = f (x, ẋ),

as represented in the phase plane by the equations

ẋ = y, ẏ = f (x, y). (1.14)
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Figure 1.5 Path AB along which the transit time is calculated.

(i) Equation for the phase paths:

dy
dx
= f (x, y)

y
. (1.15)

(ii) Directions of the phase paths: from left to right in the upper half-plane; from right to left
in the lower half-plane.

(iii) Equilibrium points: situated at points (x, 0) where f (x, 0)=0; representing constant
solutions.

(iv) Intersection with the x axis: the phase paths cut the x axis at right angles, except possibly
at equilibrium points (see (ii)).

(v) Transit times: the transit time for the representative point from a point A to a point B
along a phase path is given by the line integral

TAB =
∫

�
AB

dx
y
. (1.16)

(vi) Closed paths: closed phase paths represent periodic time-solutions (x(t), y(t)).

(vii) Families of time-solutions: let x1(t) be any particular solution of ẍ = f (x, ẋ). Then the
solutions x1(t − t1), for any t1, give the same phase path and representative point.

The examples which follow introduce further ideas.

Example 1.2 Construct the phase diagram for the simple harmonic oscillator equation ẍ + ω2x = 0.

This approximates to the pendulum equation for small-amplitude swings. Corresponding to equations (1.14)
we have

ẋ = y, ẏ = −ω2x.

There is a single equilibrium point, at x = 0, y = 0. The phase paths are the solutions of (1.15):

dy
dx
= −ω2 x

y
.
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Figure 1.6 (a) centre for the simple harmonic oscillator. (b) Typical solution.

This is a separable equation, leading to

y2 + ω2x2 = C,

where C is arbitrary, subject to C ≥ 0 for real solutions. The phase diagram therefore consists of a family of
ellipses concentric with the origin (Fig. 1.6(a)). All solutions are therefore periodic. Intuitively we expect the
equilibrium point to be stable since phase paths near to the origin remain so. Figure 1.6(b) shows one of the
periodic time-solutions associated with a closed path. �
An equilibrium point surrounded in its immediate neighbourhood (not necessarily over the

whole plane) by closed paths is called a centre. A centre is stable equilibrium point.

Example 1.3 Construct the phase diagram for the equation ẍ − ω2x = 0.
The equivalent first-order pair (1.14) is

ẋ = y, ẏ = ω2x.

There is a single equilibrium point (0, 0). The phase paths are solutions of (1.15):

dy
dx
= ω2 x

y
.

Therefore their equations are

y2 − ω2x2 = C, (1.17)

where the parameter C is arbitrary. These paths are hyperbolas, together with their asymptotes y = ±ωx, as
shown in Fig. 1.7. �
Any equilibrium point with paths of this type in its neighbourhood is called a saddle

point. Such a point is unstable, since a small displacement from the equilibrium state will
generally take the system on to a phase path which leads it far away from the equilibrium
state.
The question of stability is discussed precisely in Chapter 8. In the figures, stable equilibrium

points are usually indicated by a full dot •, and unstable ones by an ‘open’ dot ◦.
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M

N9 M9

y = –�x y = �x

x

y

O

N

Figure 1.7 Saddle point: only the paths MO and M ′O approach the origin.

The differential equations in Examples 1.2 and 1.3 can be solved explicitly for x in terms
of t . For Example 1.2, the general solution of ẍ + ω2x = 0 is

x(t) = A cosωt + B sinωt , (1.18)

where A and B are arbitrary constants. This can be written in another form by using the
ordinary trigonometric identities. Put

κ = (A2 + B2)1/2

and let φ satisfy the equations

A

κ
= cosφ,

B

κ
= sinφ.

Then (1.18) becomes

x(t) = κ cos(ωt − φ), (1.19)

where the amplitude κ and the phase angle φ are arbitrary. Figure 1.6(b) shows an example of
this time-solution: all values of φ produce the same phase path (see (vii) in the summary above).
The period of every oscillation is 2π/ω, which is independent of initial conditions (known as
an isochronous oscillation).
For Example 1.3, the time-solutions of ẍ − ω2x = 0 are given by

x(t) = Aeωt + Be−ωt , (1.20)

where A and B are arbitrary. To make a correspondence with Fig. 1.7, we require also

y = ẋ(t) = Aωeωt − Bωe−ωt . (1.21)

Assume that ω > 0. Then from eqns (1.20) and (1.21), all the solutions approach infinity as
t →∞, except those for which A = 0 in (1.20) and (1.21). The case A = 0 is described in the
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phase plane parametrically by

x = Be−ωt , y = −Bωe−ωt . (1.22)

For these paths we have

y

x
= −ω;

these are the paths MO and M ′O in Fig. 1.7, and they approach the origin as t→∞. Note
that these paths represent not just one time-solution, but a whole family of time-solutions
x(t)=Be−ωt , and this is the case for every phase path (see (vii) in the summary above: for this
case put B = ± e−ωt1 , for any value of t1).
Similarly, if B = 0, then we obtain the solutions

x = Aeωt , y = Aωeωt ,

for which y = ωx: this is the line NN ′. As t→ −∞, x→0 and y→0. The origin is an example
of a saddle point, characterised by a pair of incoming phase paths MO, M ′O and outgoing
paths ON , ON ′, known as separatrices.

Example 1.4 Find the equilibrium points and the general equation for the phase paths of ẍ+ sin x=0. Obtain
the particular phase paths which satisfy the initial conditions (a) x(t0)=0, y(t0)= ẋ(t0)=1; (b) x(t0)=0,
y(t0)=2.

This is a special case of the pendulum equation (see Section 1.1 and Fig. 1.2). The differential equations in
the phase plane are, in terms of t ,

ẋ = y, ẏ = −sin x.

Equilibrium points lie on the x axis at points where sin x = 0; that is at x = nπ(n = 0,±1,±2, . . .). When n is
even they are centres; when n is odd they are saddle points.

The differential equation for the phase paths is

dy
dx
= − sin x

y
.

This equation is separable, leading to

∫
y dy = −

∫
sin x dx,

or

1
2y

2 = cos x + C, (i)

where C is the parameter of the phase paths. Therefore the equation of the phase paths is

y = ±√2(cos x + C)1/2. (ii)
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P

P

Figure 1.8 Phase paths for ẍ + sin x = 0.

Since y must be real, C may be chosen arbitrarily, but in the range C ≥1. Referring to Fig. 1.8, or the extended
version Fig. 1.2, the permitted range of C breaks up as follows:

Values of C Type of motion

C = −1 Equilibrium points at (nπ , 0)
(centres for n even; saddle points for n odd)

−1 < C < 1 Closed paths (periodic motions)
C = 1 Paths which connect equilibrium points (sepa-

ratrices)
C > 1 Whirling motions

(a) x(t0) = 0, y(t0) = 1. From (i) we have 1
2 = 1 + C, so that C = −1

2 . The associated phase path is
(from (ii))

y = √2
(
cos x − 1

2

)1/2
,

shown as P1 in Fig. 1.8. The path is closed, indicating a periodic motion.
(b) x(t0) = 0, y(t0) = 2. From (i) we have 2 = 1+ C, or C = 1. The corresponding phase path is

y = √2(cos x + 1)1/2.

On this path y=0 at x= ±nπ , so that the path connects two equilibrium points (note that it does not continue
beyond them). As t→∞, the path approaches (π , 0) and emanates from (−π , 0) at t = −∞. This path, shown
as P2 in Fig. 1.8, is called a separatrix, since it separates two modes of motion; oscillatory and whirling. It also
connects two saddle points. �



14 1 : Second-order differential equations in the phase plane

Exercise 1.1
Find the equilibrium points and the general equation for the phase paths of ẍ + cos x=0.
Obtain the equation of the phase path joining two adjacent saddles. Sketch the phase
diagram.

Exercise 1.2
Find the equilibrium points of the system ẍ + x − x2 = 0, and the general equation of the
phase paths. Find the elapsed time between the points (−1

2 , 0) and (0, 1√
3
) on a phase path.

1.3 Mechanical analogy for the conservative system ẍ= f (x)
Consider the family of autonomous equations having the more restricted form

ẍ = f (x). (1.23)

Replace ẋ by the new variable y to obtain the equivalent pair of first-order equations

ẋ = y, ẏ = f (x). (1.24)

In the (x, y) phase plane, the states and paths are defined exactly as in Section 1.2, since
eqn (1.23) is a special case of the system (1.6).
When f (x) is nonlinear the analysis of the solutions of (1.23) is sometimes helped by con-

sidering a mechanical model whose equation of motion is the same as eqn (1.23). In Fig. 1.9,
a particle P having unit mass is free to move along the axis Ox. It is acted on by a force f (x)
which depends only on the displacement coordinate x, and is counted as positive if it acts in
the positive direction of the x axis. The equation of motion of P then takes the form (1.23).
Note that frictional forces are excluded since they are usually functions of the velocity ẋ, and
their direction of action depends on the sign of ẋ; but the force f (x) depends only on position.

Sometimes physical intuition enables us to predict the likely behaviour of the particle for
specific force functions. For example, suppose that

ẍ = f (x) = 1+ x2.

O P x

x
f (x)

Figure 1.9 Unit particle P under the force f (x).
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Then f (x) > 0 always, so f always acts from left to right in Fig. 1.9. There are no equilibrium
points of the system, so we expect that, whatever the initial conditions, P will be carried away
to infinity, and there will be no oscillatory behaviour.
Next, suppose that

f (x) = −λx, λ > 0,

where λ is a constant. The equation of motion is

ẍ = −λx.
This is the force on the unit particle exerted by a linear spring of stiffness λ, when the origin is
taken at the point where the spring has its natural length l (Fig. 1.10). We know from experience
that such a spring causes oscillations, and this is confirmed by the explicit solution (1.19), in
which λ = ω2. The cause of the oscillations is that f (x) is a restoring force, meaning that its
direction is always such as to try to drive P towards the origin.

Figure 1.10 Unit particle P attached to a spring of natural length l = AO. The displacement of P from O is x.

Now consider a spring having a nonlinear relation between tension and extension:

tension = −f (x),
where f (x) has the restoring property; that is

f (x) > 0 for x < 0,

f (0) = 0,

f (x) < 0 for x > 0.

(1.25)

We should expect oscillatory behaviour in this case also. The equation

ẍ = −x3 (1.26)

is of this type, and the phase paths are shown in the lower diagram in Fig. 1.11 (the details
are given in Example 1.5). However, the figure tells us a good deal more; that the oscillations
do not consist merely of to-and-fro motions, but are strictly regular and periodic. The result is
obtained from the more detailed analysis which follows.
Returning to the general case, let x(t) represent a particular solution of eqn (1.23). When the

particle P in Fig. 1.9 moves from a position x to a nearby position x + δx the work δW done
on P by f (x) is given by

δW = f (x)δx.
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V V

Figure 1.11

This work goes to increment the kinetic energy T of the (unit) particle, where T = 1
2 ẋ

2:

δT = δW = f (x)δx.

Divide by δx and let δx → 0; we obtain

dT
dx
= f (x). (1.27)

Now define a function V(x) by the relation

dV
dx
= −f (x), (1.28)

where V(x) is called a potential function for f (x). Specifically,

V(x) = −
∫

f (x) dx, (1.29)

where
∫
f (x) dx stands for any particular indefinite integral of f (x). (Indefinite integrals involve

an arbitrary constant: any constant may be chosen here for convenience, but it is necessary to
stick with it throughout the problem so that V(x) has a single, definite, meaning.) If we specify
a self-contained device that will generate the force f (x), such as a spring in Fig. 1.10, or the
earth’s gravitation field, then V(x) is equal to the physical potential energy stored in the device,
at any rate up to an additive constant. From (1.27) and (1.28) we obtain

d
dt

(T + V) = 0,
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so that during any particular motion

T + V = constant, (1.30)

or, explicitly,

1
2
ẋ2 −

∫
f (x)dx = C, (1.31)

where C is a parameter that depends upon the particular motion and the particular potential
function which has been chosen. As we range through all possible values of C consistent with
real values of ẋ we cover all possible motions. (Note that eqn (1.31) can also be obtained by
using the energy transformation (1.2); or the phase-plane equation (1.9) with ẋ = y.)
In view of eqn (1.30), systems governed by the equation ẍ = f (x) are called conservative

systems. From (1.31) we obtain

ẋ = ±√2(C − V(x))1/2. (1.32)

The equivalent equations in the phase plane are

ẋ = y, ẏ = f (x),

and (1.32) becomes

y = ±√2(C − V(x))1/2, (1.33)

which is the equation of the phase paths.

Example 1.5 Show that all solutions of the equation

ẍ + x3 = 0

are periodic.

Here f (x)= − x3, which is a restoring force in terms of the earlier discussion, so we expect oscillations. Let

V(x) = −
∫

f (x)dx = 1
4
x4,

in which we have set the usual arbitrary constant to zero for simplicity. From (1.33) the phase paths are
given by

y = ±√2(C − V(x))1/2 = ±√2(C − 1
4x

4)1/2. (1.33a)

Figure 1.11 illustrates how the structure of the phase diagram is constructed from eqn (1.33a). In order to
obtain any real values for y, we must have C ≥ 0. In the top frame the graph of V(x) = 1

4x
4 is shown, together

with three horizontal lines for representative values of C > 0. The distance RS is equal to C − 1
4x

4 for C = 1
and a typical value of x. The relevant part of the graph, for which y in eqn (1.33a) takes real values, is the part
below the line AB. Then, at the typical point on the segment, y = ±√2(RS)1/2. These two values are placed
in the lower frame on Fig. 1.11.
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The complete process for C = 1 produces a closed curve in the phase diagram, representing a periodic
motion. For larger or smaller C, larger or smaller ovals are produced. When C = 0 there is only one point—the
equilibrium point at the origin, which is a centre. �

Equilibrium points of the system ẋ = y, ẏ = f (x) occur at points where y = 0 and f (x) = 0,
or alternatively where

y = 0,
dV
dx
= 0,

from (1.28). The values of x obtained are therefore those where V(x) has a minimum, maxi-
mum or point of inflection, and the type of equilibrium point is different in these three cases.
Figure 1.12 shows how their nature can be established by the method used in Example 1.5:

a minimum of V(x) generates a centre (stable);
a maximum of V(x) generates a saddle (unstable);
a point of inflection leads to a cusp, as shown in Fig. 1.12(c),

⎫⎬
⎭ (1.34)

Consider these results in terms of the force function f (x) in the mechanical model. Suppose
that f (xe) = 0, so that x = xe, y = 0 is an equilibrium point. If x changes sign from positive
to negative as x increases through the value xe, then it is a restoring force (eqn (1.25)). Since
dV/dx = −f (x), this is also the condition for V(xe) to be minimum. Therefore a restoring force
always generates a centre.
If f (x) changes from negative to positive through xe the particle is repelled from the equi-

librium point, so we expect an unstable equilibrium point on general grounds. Since V(x)

has a maximum at xe in this case, the point (xe, 0) is a saddle point, so the expectation is
confirmed.

V V V

Figure 1.12 Typical phase diagrams arising from the stationary points of the potential energy.
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0.2
V

Figure 1.13 The dashed phase paths are separatrices associated with the equilibrium points at (−1, 0) and (1, 0).

Example 1.6 Sketch the phase diagram for the equation ẍ = x3 − x.

This represents a conservative system (the pendulum equation (1.1) reduces to a similar one after writing
sin x≈ x− 1

6x
3 for moderate amplitudes). We have f (x)= x3− x, so by eqn (1.29)

V(x) = 1
2x

2 − 1
4x

4.

Figure 1.13 shows the construction of the phase diagram.
There are three equilibrium points: a centre at (0, 0) since V(0) is a minimum; and two saddle points, at

(−1, 1) and (1, 0) since V(−1) and V(1) are maxima. The reconciliation between the types of phase path
originating around these points is achieved across special paths called separatrices, shown as broken lines (see
Example 1.4 for an earlier occurrence). They correspond to values of C in the equation

y = ±√2(C − V(x))1/2

of C = 1
4 and C = 0, equal to the ordinates of the maxima and minimum of V(x). They start or end on

equilibrium points, and must not be mistaken for closed paths. �
Example 1.7 A unit particle P is attached to a long spring having the stress–strain property

tension = xe−x ,

where x is the extension from its natural length. Show that the point (0, 0) on the phase diagram is a centre,
but that for large disturbances P will escape to infinity.

The equation of motion is ẍ = f (x), where f (x) = xe−x , so this is a restoring force (eqn (1.25)). Therefore we
expect oscillations over a certain range of amplitude. However, the spring becomes very weak as x increases,
so the question arises as to whether it has the strength to reverse the direction of motion if P is moving rapidly
towards the right.
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V

Figure 1.14

We have

V(x) = −
∫

f (x)dx =
∫

xe−xdx = 1− e−x(1+ x),

having chosen, for convenience, a value of the arbitrary constant that causes V(0) to be zero. The upper frame
in Fig. 1.14 shows the graph of V(x).

The function V(x) has a minimum at x = 0, so the origin is a centre, indicating periodic motion. As x →∞,
V(x)→ 1. The phase diagram is made up of the curves

y = ±√2(C − V(x))1/2.

The curves are constructed as before: any phase path occupies the range in which V(x) ≤ C.
The value C=1 is a critical value: it leads to the path separating the oscillatory region from the region in

which P goes to infinity, so this path is a separatrix. For values of C approaching C=1 from below, the ovals
become increasingly extended towards the right. For C ≥1 the spring stretches further and further and goes
off to infinity.

The transition takes place across the path given by

1
2y

2 + V(x) = 1
2y

2 + {1− e−x(1+ x)} = C = 1.
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The physical interpretation of 1
2y

2 is the kinetic energy of P , and V(x) is the potential energy stored in
the spring due to its displacement from equilibrium. Therefore for any motion in which the total energy is
greater than 1, P will go to infinity. There is a parallel between this case and the escape velocity of a space
vehicle. �

Exercise 1.3
Find the potential function V(x) for the conservative system ẍ − x + x2 = 0. Sketch V(x)

against x, and the main features of the phase diagram.

1.4 The damped linear oscillator

Generally speaking, equations of the form

ẍ = f (x, ẋ) (1.35)

do not arise from conservative systems, and so can be expected to show new phenomena. The
simplest such system is the linear oscillator with linear damping, having the equation

ẍ + kẋ + cx = 0, (1.36)

where c >0, k >0. An equation of this form describes a spring–mass system with a damper
in parallel (Fig. 1.15(a)); or the charge on the capacitor in a circuit containing resistance,
capacitance, and inductance (Fig. 1.15(b)). In Fig. 1.15(a), the spring force is proportional
to the extension x of the spring, and the damping, or frictional force, is proportional to the
velocity ẋ. Therefore

mẍ = −mcx −mkẋ

by Newton’s law, where c and k are certain constants relating to the stiffness of the spring
and the degree of friction in the damper respectively. Since the friction generates heat, which

Damper

Spring

(a) (b)

Figure 1.15 (a) Block controlled by a spring and damper. (b) Discharge of a capacitor through an (L,R,C) circuit.



22 1 : Second-order differential equations in the phase plane

is irrecoverable energy, the system is not conservative. These devices serve as models for many
other oscillating systems. We shall show how the familiar features of damped oscillations show
up on the phase plane.
Equation (1.36) is a standard type of differential equation, and the procedure for solving it

goes as follows. Look for solutions of the form

x(t) = ept , (1.37)

where p is a constant, by substituting (1.37) into (1.36). We obtain the characteristic equation

p2 + kp + c = 0. (1.38)

This has the solutions

p1
p2

}
= 1

2
{−k ±√(k2 − 4c)}. (1.39)

where p1 and p2 may be both real, or complex conjugates depending on the sign of k2 − 4c.
Unless k2 − 4c = 0, we have found two solutions of (1.36); ep1t and ep2t , and the general

solution is

x(t) = Aep1t + Bep2t , (1.40)

where A and B are arbitrary constants which are real if k2 − 4c > 0, and complex conjugates

if k2 − 4c < 0. If k2 − 4c = 0 we have only one solution, of the form e−
1
2 kt ; we need a second

one, and it can be checked that this takes the form te−
1
2 kt . Therefore, in the case of coincident

solutions of the characteristic equation, the general solution is

x(t) = (A+ Bt)e−
1
2 kt , (1.41)

where A and B are arbitrary real constants.
Put

k2 − 4c = 
, (1.42)

where 
 is called the discriminant of the characteristic equation (1.38). The physical character
of the motion depends upon the nature of the parameter 
, as follows:

Strong damping (
 > 0)

In this case p1 and p2 are real, distinct and negative; and the general solution is

x(t) = Aep1t + Bep2t ; p1 < 0, p2 < 0. (1.43)

Figure 1.16(a) shows two typical solutions. There is no oscillation and the t axis is cut at most
once. Such a system is said to be deadbeat.
To obtain the differential equation of the phase paths, write as usual

ẋ = y, ẏ = −cx − ky; (1.44)
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Figure 1.16 (a) Typical damped time solutions for strong damping. (b) Phase diagram for a stable node.

then

dy
dx
= −cx + ky

y
. (1.45)

There is a single equilibrium point, at x = 0, y = 0. A general approach to linear systems such
as (1.44) is developed in Chapter 2: for the present the solutions of (1.45) are too complicated
for simple interpretation. We therefore proceed in the following way. From (1.43), putting
y = ẋ,

x = Aep1t + Bep2t , y = Ap1ep1t + Bp2ep2t (1.46)

for fixed A and B, there can be treated as a parametric representation of a phase path, with
parameter t . The phase paths in Fig. 1.16(b) are plotted in this way for certain values of k > 0
and c > 0. This shows a new type of equilibrium point, called a stable node. All paths start at
infinity and terminate at the origin, as can be seen by putting t = ±∞ into (1.43). More details
on the structure of nodes is given in Chapter 2.

Weak damping (
 < 0)

The exponents p1 and p2 are complex with negative real part, given by

p1,p2 = −1
2k ± 1

2 i
√
(−
),

where i = √−1. The expression (1.40) for the general solution is then, in general, complex.
To extract the cases for which (1.40) delivers real solutions, allow A and B to be arbitrary and
complex, and put

A = 1
2Ceiα,

where α is real and C = 2|A|; and
B = Ā = 1

2Ce−iα,
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Figure 1.17 (a) Typical time solution for weak damping. (b) Phase diagram for a stable spiral showing just one phase
path.

where Ā is the complex conjugate of A. Then (1.40) reduces to

x(t) = Ce−
1
2 kt cos {12

√
(−
)t + α};

C and α are real and arbitrary, and C > 0.
A typical solution is shown in Fig. 1.17(a); it represents an oscillation of frequency

(−
)
1
2 /(4π) and exponentially decreasing amplitude Ce− 1

2 kt . Its image on the phase plane
is shown in Fig. 1.17(b). The whole phase diagram would consist of a family of such spirals
corresponding to different time solutions.
The equilibrium point at the origin is called a stable spiral or a stable focus.

Critical damping (
 = 0)

In this case p1 = p2 = −1
2k, and the solutions are given by (1.41). The solutions resemble those

for strong damping, and the phase diagram shows a stable node.
We may also consider cases where the signs of k and c are negative:

Negative damping (k < 0, c > 0)

Instead of energy being lost to the system due to friction or resistance, energy is generated within
the system. The node or spiral is then unstable, the directions being outward (see Fig. 1.18).
A slight disturbance from equilibrium leads to the system being carried far from the equilibrium
state (see Fig. 1.18).

Spring with negative stiffness (c < 0, k takes any value)

The phase diagram shows a saddle point, since p1, p2 are real but of opposite signs.

Exercise 1.4
For the linear system ẍ − 2ẋ + 2x = 0, classify its equilibrium point and sketch the phase
diagram.
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Figure 1.18 Phase diagrams for (a) the unstable node (k < 0, 
 > 0); (b) unstable spiral (k < 0, 
 < 0) showing
just one phase path.

Exercise 1.5
Show that every phase path of

ẍ + ε|x|sgn ẋ + x = 0, 0 < ε < 1,

is an isochronous spiral (that is, every circuit of the origin on every path occur in the same
time).

1.5 Nonlinear damping: limit cycles

Consider the autonomous system

ẍ = f (x, ẋ),

where f is a nonlinear function; and f takes the form

f (x, ẋ) = −h(x, ẋ)− g(x),

so that the differential equation becomes

ẍ + h(x, ẋ)+ g(x) = 0. (1.47)

The equivalent pair of first-order equations for the phase paths is

ẋ = y, ẏ = −h(x, y)− g(x). (1.48)
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For the purposes of interpretation we shall assume that there is a single equilibrium point, and
that it is at the origin (having been moved to the origin, if necessary, by a change of axes). Thus

h(0, 0)+ g(0) = 0

and the only solution of h(x, 0)+ g(x) = 0 is x = 0. We further assume that

g(0) = 0, (1.49)

so that

h(0, 0) = 0. (1.50)

Under these circumstances, by writing eqn (1.47) in the form

ẍ + g(x) = −h(x, ẋ), (1.51)

we can regard the system as being modelled by a unit particle on a spring whose free motion
is governed by the equation ẍ + g(x) = 0 (a conservative system), but is also acted upon by an
external force−h(x, ẋ)which supplies or absorbs energy. If g(x) is a restoring force (eqn (1.25)
with −g(x) in place of f (x)), then we should expect a tendency to oscillate, modified by the
influence of the external force −h(x, ẋ). In both the free and forced cases, equilibrium occurs
when x = ẋ = 0.

Define a potential energy function for the spring system by

V(x) =
∫

g(x)dx, (1.52a)

and the kinetic energy of the particle by

T = 1
2 ẋ

2. (1.52b)

The total energy E for the particle and spring alone is

E = T + V = 1
2 ẋ

2 +
∫

g(x)dx, (1.53)

so that the rule of change of energy

dE
dt
= ẋẍ + g(x)ẋ.

Therefore, by (1.49)

dE
dt
= ẋ(−g(x)− h(x, ẋ)+ g(x)) = −ẋh(x, ẋ) (1.54)

= −yh(x, y)
in the phase plane. This expression represents external the rate of supply of energy generated
by the term −h(x, ẋ) representing the external force.
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Suppose that, in some connected region R of the phase plane which contains the equilibrium
point (0, 0), dE/dt is negative:

dE
dt
= −yh(x, y) < 0 (1.55)

(except on y = 0, where it is obviously zero). Consider any phase path which, after a certain
point, lies in R for all time. Then E continuously decreases along the path. The effect of h
resembles damping or resistance; energy is continuously withdrawn from the system, and this
produces a general decrease in amplitude until the initial energy runs out. We should expect
the path to approach the equilibrium point.
If

dE
dt
= −yh(x, y) > 0 (1.56)

in R (for y 	= 0), the energy increases along every such path, and the amplitude of the phase
paths increases so long as the paths continue to remain in R. Here h has the effect of negative
damping, injecting energy into the system for states lying in R. �
Example 1.8 Examine the equation

ẍ + |ẋ|ẋ + x = 0

for damping effects.
The free oscillation is governed by ẍ + x = 0, and the external force is given by

−h(x, ẋ) = −|ẋ|ẋ.

Therefore, from (1.55), the rate of change of energy

dE
dt
= −|ẋ|ẋ2 = −|y|y2 < 0

everywhere (except for y = 0). There is loss of energy along every phase path no matter where it goes in the
phase plane. We therefore expect that from any initial state the corresponding phase path enters the equilibrium
state as the system runs down. �

A systemmay possess both characteristics; energy being injected in one region and extracted in
another region of the phase plane. On any common boundary to these two regions, ẋh(x, y) = 0
(assuming that h(x, y) is continuous). The common boundarymay constitute a phase path, and
if so the energy E is constant along it. This is illustrated in the following example.

Example 1.9 Examine the equation

ẍ + (x2 + ẋ2 − 1)ẋ + x = 0

for energy input and damping effects.

Put ẋ = y; then
h(x, y) = (x2 + ẋ2 − 1)ẋ,
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and, from (1.55),
dE
dt
= −yh(x, y) = −(x2 + y2 − 1)y2.

Therefore the energy in the particle–spring system is governed by:

dE
dt

> 0 along the paths in the region x2 + y2 < 1;

dE
dt

< 0 along the paths in the region x2 + y2 > 1;

The regions concerned are shown in Fig. 1.19. It can be verified that x = cos t satisfies the differential equation
given above. Therefore ẋ = y = − sin t ; so that the boundary between the two regions, the circle

x2 + y2 = 1,

is a phase path, as shown. Along it

T + V = 1
2 ẋ

2 + 1
2x

2 = 1
2 (x

2 + y2) = 1
2

is constant, so it is a curve of constant energy E , called an energy level.
The phase diagram consists of this circle together with paths spiralling towards it from the interior and

exterior, and the (unstable) equilibrium point at the origin. All paths approach the circle. Therefore the system
moves towards a state of steady oscillation, whatever the (nonzero) initial conditions. �
The circle in Fig. 1.19 is an isolated closed path: ‘isolated’ in the sense that there is no other

closed path in its immediate neighbourhood. An isolated closed path is called a limit cycle,
and when it exists it is always one of the most important features of a physical system. Limit
cycles can only occur in nonlinear systems. The limit cycle in Fig. 1.19 is a stable limit cycle,
since if the system is disturbed from its regular oscillatory state, the resulting new path, on

Figure 1.19 Approach of two phase paths to the stable limit cycle x2+y2 = 1 generated by ẍ+(x2+ẋ2−1)ẋ+x = 0.
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either side, will be attracted back to the limit cycle. There also exist unstable limit cycles, where
neighbouring phase paths, on one side or the other are repelled from the limit cycle.
An important example of the significance of a stable limit cycle is the pendulum clock (for

details see Section 1.6(iii)). Energy stored in a hanging weight is gradually supplied to the system
by means of the escapement; this keeps the pendulum swinging. A balance is automatically set
up between the rate of supply of energy and the loss due to friction in the form of a stable limit
cycle which ensures strict periodicity, and recovery from any sudden disturbances.
An equation of the form

ẍ = f (x),

which is the ‘conservative’ type treated in Section 1.3, cannot lead to a limit cycle. From the
argument in that section (see Fig. 1.12), there is no shape forV(x) that could produce an isolated
closed phase path.
We conclude this section by illustrating several approaches to equations having the form

ẍ + h(x, ẋ)+ g(x) = 0, (1.57)

which do not involve any necessary reference to mechanical models or energy.

(i) Polar coordinates

We shall repeat Example 1.9 using polar coordinates. The structure of the phase diagram is
made clearer, and other equations of similar type respond to this technique. Let r, θ be polar
coordinates, where x = r cos θ , y = r sin θ , so that

r2 = x2 + y2, tan θ = y

x
.

Then, differentiating these equations with respect to time,

2rṙ = 2xẋ + 2yẏ, θ̇ sec2 θ = xẏ − ẋy

x2

so that

ṙ = xẋ + yẏ

r
, θ̇ = xẏ − ẋy

r2
. (1.58)

We then substitute

x = r cos θ , ẋ = y = r sin θ

into these expressions, using the form for ẏ obtained from the given differential equation.

Example 1.10 Express the equation (see Example 1.9)

ẍ + (x2 + ẋ2 − 1)ẋ + x = 0

on the phase plane, in terms of polar coordinates r, θ .
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We have x = r cos θ and ẋ = y = r sin θ , and

ẏ = −(x2 + ẋ2 − 1)ẋ − x = −(r2 − 1)r sin θ − r cos θ .

By substituting these functions into (1.58) we obtain

ṙ = −r(r2 − 1) sin2 θ ,

θ̇ = −1− (r2 − 1) sin θ cos θ .

One particular solution is
r = 1, θ = −t ,

corresponding to the limit cycle, x = cos t , y = −sin t , observed in Example 1.9. Also (except when sin θ = 0;
that is, except on the x axis)

ṙ > 0 when 0 < r < 1

ṙ < 0 when r > 1,

showing that the paths approach the limit cycle r = 1 from both sides. The equation for θ̇ also shows a steady
clockwise spiral motion for the representative points, around the limit cycle. �
(ii) Topographic curves

We shall introduce topographic curves through an example.

Example 1.11 Investigate the trend of the phase paths for the differential equation

ẍ + |ẋ|ẋ + x3 = 0.

The system has only one equilibrium point, at (0,0). Write the equation in the form

ẍ + x3 = −|ẋ|ẋ,

and multiply through by ẋ:

ẋẍ + x3ẋ = −|ẋ|ẋ2.
In terms of the phase plane variables x, y this becomes

y
dy
dt
+ x3

dx
dt
= −|y|y2.

Consider a phase path that passes through an arbitrary point A at time tA and arrives at a point B at time
tB > tA. By integrating this last equation from tA to tB we obtain

[
1
2y

2 + 1
4x

4
]tB
t=tA
= −
∫ tB

tA

|y|y2 dt .

The right-hand side is negative everywhere, so

(
1
2y

2 + 1
4x

4
)
t=tB

>
(
1
2y

2 + 1
4x

4
)
t=tA
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Figure 1.20 Phase diagram for ẋ = y, ẏ = −|y|y − x3: the broken lines represent constant level curves.

along the phase path. Therefore the values of the bracketed expression, 1
2y

2 + 1
4x

4, constantly diminishes
along every phase path. But the family of curves given by

1
2y

2 + 1
4x

4 = constant

is a family of ovals closing in on the origin as the constant diminishes. The paths cross these ovals successively
in an inward direction, so that the phase paths all move towards the origin as shown in Fig. 1.20. In mechanical
terms, the ovals are curves of constant energy. �

Such familes of closed curves, which can be used to track the paths to a certain extent, are
called topographic curves, and are employed extensively in Chapter 10 to determine stability.
The ‘constant energy’ curves, or energy levels, in the example constitute a special case.

(iii) Equations of motion in generalized coordinates

Suppose we have a conservative mechanical system, which may be in one, two, or three dimen-
sions, and may contain solid elements as well as particles, but such that its configuration is
completely specified by the value of a certain single variable x. The variable need not represent
a displacement; it might, for example, be an angle, or even the reading on a dial forming part
of the system. It is called a generalized coordinate.
Generally, the kinetic and potential energies T and V will take the forms

T = p(x)ẋ2 + q(x), V = V(x),

where p(x) > 0. The equation of motion can be derived using Lagrange’s equation

d
dt

(
∂T
∂ẋ

)
− ∂T

∂x
= −dV

dx
.

Upon substituting for T and V we obtain the equation of motion in terms of x:

2p(x)ẍ + p′(x)ẋ2 + (V ′(x)− q ′(x)) = 0. (1.59)
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This equation is not of the form ẍ = f (x) discussed in Section 1.3. To reduce to this form
substitute u for x from the definition

u =
∫

p1/2(x)dx. (1.60)

Then
u̇ = p1/2(x)ẋ and ü = 1

2p
−1/2(x)p′(x)ẋ2 + p1/2(x)ẍ.

After obtaining ẋ and ẍ from these equations and substituting in eqn (1.59) we have

ü+ g(u) = 0,

where
g(u) = 1

2p
−1/2(x)(V ′(x)− q ′(x)).

This is of the conservative type discussed in Section 1.3.

Exercise 1.6
Find the equation of the limit cycle of

ẍ + (4x2 + ẋ2 − 4)ẋ + 4x = 0.

What is its period?

1.6 Some applications

(i) Dry friction

Dry (or Coulomb) friction occurs when the surfaces of two solids are in contact and in relative
motion without lubrication. The model shown in Fig. 1.21 illustrates dry friction. A continuous
belt is driven by rollers at a constant speed v0. A block of mass m connected to a fixed support
by a spring of stiffness c rests on the belt. If F is the frictional force between the block and the
belt and x is the extension of the spring, then the equation of motion is

mẍ + cx = F .

Figure 1.21 A device illustrating dry friction.
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Figure 1.22 (a) Typical dry friction/slip velocity profile. (b) Idealized approximation with discontinuity.

Assume that F depends on the slip velocity, v0− ẋ; a typical relation is shown in Fig. 1.22(a).
For small slip velocities the frictional force is proportional to the slip velocity. At a fixed
small value of the slip speed sc the magnitude of the frictional force peaks and then gradually
approaches a constant F0 or−F0 for large slip speeds. We will replace this function by a simpler
one having a discontinuity at the origin:

F = F0 sgn(v0 − ẋ)

where F0 is a positive constant (see Fig. 1.22(b)) and the sgn (signum) function is defined by

sgn(u) =
⎧⎨
⎩

1, u > 0,
0, u = 0,
−1, u < 0.

The equation of motion becomes

mẍ + cx = F0 sgn(v0 − ẋ).

The term on the right is equal to F0 when v0 > ẋ, and −F0 when v0 < ẋ, and we obtain the
following solutions for the phase paths in these regions:

y = ẋ > v0: my2 + c

(
x + F0

c

)2
= constant,

y = ẋ < v0: my2 + c

(
x − F0

c

)2
= constant.

These are families of displaced ellipses, the first having its centre at (−F0/c, 0) and the second
at (F0/c, 0). Figure 1.23 shows the corresponding phase diagram, in non-dimensional form
with x′ = x

√
c and y′ = y

√
m. In terms of these variables the paths are given by

y′ > v0
√
m: y′2 +

(
x′ + F0√

c

)2
= constant,

y′ < v0
√
m: y′2 +

(
x′ − F0√

c

)2
= constant,

which are arcs of displaced circles.
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C

Figure 1.23 Phase diagram for the stick–slip dry friction oscillator. (Note that the axes are scaled as x
√
c, y
√
m.)

There is a single equilibrium point, at (F0/c, 0), which is a centre. Points on y (or ẋ)= v0 are
not covered by the differential equation since this is where F is discontinuous, so the behaviour
must be deduced fromother physical arguments. On encountering the state ẋ= v0 for |x|<F0/c,
the block will move with the belt along AB until the maximum available friction, F0, is insuffi-
cient to resist the increasing spring tension. This is at B when x=F0/c; the block then goes into
an oscillation represented by the closed path C through (F0/c, v0). In fact, for any initial con-
ditions lying outside this ellipse, the system ultimately settles into this oscillation. A computed
phase diagram corresponding to a more realistic frictional force as in Fig. 1.21(a) is displayed
in Problem 3.50, Fig 3.32. This kind of motion is often described as a stick–slip oscillation.

(ii) The brake

Consider a simple brake shoe applied to the hub of a wheel as shown in Fig. 1.24. The friction
force will depend on the pressure and the angular velocity of the wheel, θ̇ . We assume again a
simplified dry-friction relation corresponding to constant pressure

F = −F0 sgn(θ̇)

so if the wheel is otherwise freely spinning its equation of motion is

I θ̈ = −F0a sgn(θ̇)

where I is the moment of inertia of the wheel and a the radius of the brake drum. The phase
paths are found by rewriting the differential equation, using the transformation (1.2):

I θ̇
dθ̇
dθ
= −F0a sgn(θ̇),

whence for θ̇ > 0
1
2I θ̇

2 = −F0aθ + C

and for θ̇ < 0
1
2I θ̇

2 = F0aθ + C.

These represent two families of parabolas as shown in Fig. 1.25. (θ , 0) is an equilibrium point
for every θ .
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u
.

Figure 1.24 A brake model.

Figure 1.25 Phase diagram for the brake model in Fig. 1.24.

(iii) The pendulum clock: a limit cycle

Figure 1.26 shows the main features of the pendulum clock. The ‘escape wheel’ is a toothed
wheel, which drives the hands of the clock through a succession of gears. It has a spindle around
which is wound a wire with a weight at its free end. The escape wheel is intermittently arrested
by the ‘anchor’, which has two teeth. The anchor is attached to the shaft of the pendulum
and rocks with it, controlling the rotation of the escape wheel. The anchor and teeth on the
escape wheel are so designed that as one end of the anchor loses contact with a tooth, the other
end engages a tooth but allows the escape wheel to turn through a small angle, which turns
the hands of the clock. Every time this happens the anchor receives small impulses, which is
heard as the ‘tick’ of the clock. These impulses maintain the oscillation of the pendulum, which
would otherwise die away. The loss of potential energy due to the weight’s descent is therefore
fed periodically into the pendulum via the anchor mechanism. Although the impulses push the
pendulum in the same direction at each release of the anchor, the anchor shape ensures that
they are slightly different in magnitude.
It can be shown that the system will settle into steady oscillations of fixed amplitude inde-

pendently of sporadic disturbance and of initial conditions. If the pendulum is swinging with
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Figure 1.26 The driving mechanism (escapement) of weight-driven pendulum clock.

u

u

.

Limit cycle
Impulses

Figure 1.27 Phase diagram for a damped impulse-driven oscillator model for a pendulum clock.

too great an amplitude, its loss of energy per cycle due to friction is large, and the impulse
supplied by the escapement is insufficient to offset this. The amplitude consequently decreases.
If the amplitude is too small, the frictional loss is small; the impulses will over-compensate and
the amplitude will build up. A balanced state is therefore approached, which appears in the
θ , θ̇ plane (Fig. 1.27) as an isolated closed curve C. Such an isolated periodic oscillation, or
limit cycle (see Section 1.5) can occur only in systems described by nonlinear equations, and
the following simple model shows where the nonlinearity is located.
The motion can be approximated by the equation

I θ̈ + kθ̇ + cθ = f (θ , θ̇ ), (1.61)

where I is the moment of inertia of the pendulum, k is a small damping constant, c is another
constant determined by gravity, θ is the angular displacement, and f (θ , θ̇ ) is the moment,
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supplied twice per cycle by the escapement mechanism. The moment f (θ , θ̇ )will be a nonlinear
function in θ and θ̇ . The model function

f (θ , θ̇ ) = 1
2 [(k1 + k2)+ (k1 − k2) sgn(θ̇)]δ(θ),

where δ(θ) is the Dirac delta, or impulse, function, and k1, k2 are positive constraints, delivers
impulses to the pendulum when θ = 0. If θ̇ > 0, then f (θ , θ̇ ) = k1δ(θ), and if θ̇ < 0, then
f (θ , θ̇ ) = k2δ(θ). The pendulum will be driven to overcome damping if k2 > k1. The pendulum
clock was introduced by Huyghens in 1656. The accurate timekeeping of the pendulum rep-
resented a great advance in clock design over the earlier weight-driven clocks (see Baker and
Blackburn (2005)).
Such an oscillation, generated by an energy source whose input is not regulated externally,

but which automatically synchronizes with the existing oscillation, is called a self-excited
oscillation. Here the build-up is limited by the friction.

Exercise 1.7
A smooth wire has the shape of a cycloid given parametrically by x= a(φ + sinφ),
y= a(1 − cosφ), (−π < φ < π). A bead is released from rest where φ = φ0. Using
conservation of energy confirm that

aφ̇2 cos2 1
2φ = g(sin2 1

2φ0 − sin2 1
2φ).

Hence show that the period of oscillation of the bead is 4π
√
(a/g) (i.e., independent of φ0).

This is known as the tautochrone.

1.7 Parameter-dependent conservative systems

Suppose x(t) satisfies

ẍ = f (x, λ) (1.62)

where λ is a parameter. The equilibrium points of the system are given by f (x, λ) = 0, and in
general their location will depend on the parameter λ. In mechanical terms, for a particle of
unit mass with displacement x, f (x, λ) represents the force experienced by the particle. Define
a function V(x, λ) such that f (x, λ) = −∂V/∂x for each value of λ; then V(x, λ) is the potential
energy per unit mass of the equivalent mechanical system and equilibrium points correspond to
stationary values of the potential energy. As indicated in Section 1.3, we expect a minimum of
potential energy to correspond to a stable equilibrium point, and other stationary values (the
maximum and point of inflexion) to be unstable. In fact, V is a minimum at x = x1 if ∂V/∂x

changes from negative to positive on passing through x1; this implies that f (x, λ) changes sign
from positive to negative as x increases through x = x1. It acts as a restoring force.
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Stable equilibrium points

Unstable equilibrium points

Figure 1.28 Representative stability diagram showing stability curves for the equilibrium points of ẍ = f (x, λ).

There exists a simple graphical method of displaying the stability of equilibrium points for a
parameter-dependent system, in which both the number and stability of equilibrium points may
vary with λ. We assume f (x, λ) to be continuous in both x and λ. Plot the curve f (x, λ) = 0
in the λ, x plane; this curve represents the equilibrium points. Shade the domains in which
f (x, λ) > 0 as shown in Fig. 1.28: If a segment of the curve has shading below it, the corre-
sponding equilibrium points are stable, since for fixed λ, f changes from positive to negative
as x increases.
The solid line between A and B corresponds to stable equilibrium points. A and B are

unstable: C is also unstable since f is positive on both sides of C. The nature of the equilibrium
points for a given value of λ can easily be read from the figure; for example when λ = λ0
as shown, the system has three equilibrium points, two of which are stable. A, B and C are
known as bifurcation points. As λ varies through such points the equilibrium point may split
into two or more, or several equilibrium points may merge into a single one. More information
on bifurcation can be found in Chapter 12.

Example 1.12 A bead slides on a smooth circular wire of radius a which is constrained to rotate about a
vertical diameter with constant angular velocity ω. Analyse the stability of the bead.

The bead has a velocity component aθ̇ tangential to the wire and a component aω sin θ perpendicular to the
wire, where θ is the inclination of the radius to the bead to the downward vertical as shown in Fig. 1.29. The
kinetic energy T and potential energy V are given by

T = 1
2ma2(θ̇2 + ω2 sin2 θ), V = −mga cos θ .

Since the system is subject to a moving constraint (that is, the angular velocity of the wire is imposed), the usual
energy equation does not hold. Lagrange’s equation for the system is

d
dt

(
∂T
∂θ̇

)
− ∂T

∂θ
= −∂V

∂θ
,

which gives

aθ̈ = aω2 sin θ cos θ − g sin θ .
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Figure 1.29 Bead on a rotating wire.

Set aω2/g = λ. Then

aθ̈ = aθ̇
dθ̇
dθ
= g sin θ(λ cos θ − 1)

which, after integration, becomes

1
2aθ̇

2 = g(1− 1
2λ cos θ) cos θ + C,

the equation of the phase paths.
In the notation of eqn (1.62), we have from (i):

f (θ , λ) = g sin θ(λ cos θ − 1)
a

.

The equilibrium points are given by f (θ , λ) = 0, which is satisfied when sin θ = 0 or cos θ = λ−1. From the
periodicity of the problem, θ = π and θ = −π correspond to the same state of the system.

The regions where f < 0 and f > 0 are separated by curves where f = 0, and can be located, therefore,
by checking the sign at particular points; for example, f (12π , 1) = −g/a < 0. Figure 1.30 shows the stable
and unstable equilibrium positions of the bead. The point A is a bifurcation point, and the equilibrium there
is stable. It is known as a pitchfork bifurcation because of its shape.

Phase diagrams for the system may be constructed as in Section 1.3 for fixed values of λ. Two possibilities
are shown in Fig. 1.31. Note that they confirm the stability predictions of Fig. 1.30. �

Exercise 1.8
Sketch the stability diagram for the parameter-dependent equation

ẍ = λ3 + λ2 − x2,

and discuss the stability of the equilibrium points.
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Figure 1.30 Stability diagram for a bead on a rotating wire.

u

u u

� �–�
–1

(a) (b)

–1
O

O

11

–�

� = 0.6 � = 2

.
u
.

Figure 1.31 Typical phase diagrams for the rotating bead equation θ̈ = (g/a) sin θ(λ cos θ − 1) for the cases (a)
λ < 0; (b) λ > 0, with a = g in both cases.

1.8 Graphical representation of solutions

Solutions and phase paths of the system

ẋ = y, ẏ = f (x, y)

can be represented graphically in a number of ways. As we have seen, the solutions of dy/dx =
f (x, y)/y can be displayed as paths in the phase plane (x, y). Different ways of viewing paths
and solutions of the pendulum equation ẍ = − sin x are shown in Fig. 1.32. Figure 1.32(a)
shows typical phase paths including separatrices.
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(a) (b)

(c) (d)

Equilibrium
pointC

C
C

C

C

C

Figure 1.32 Different views of solutions of the pendulum equation ẍ+ sin x = 0. In particular, the periodic solution
Lp and a whirling solution Lw are shown (a) in the phase plane; (b) as an (x, t) solution; (c) in the solution space
(x, y, t); (d) on a cylindrical phase surface which can be used for differential equations periodic in x.

If the solutions of ẍ = f (x, ẋ) are known, either exactly or numerically, then the behaviour
of x in terms of t can be shown in an (x, t) graph as in Fig. 1.32(b) for a periodic solution of
the pendulum. Alternatively time (t) can be added as a third axis to the phase plane, so that
solutions can be plotted parametrically as (x(t), y(t), t) in three dimensions: solutions of the
pendulum equation are shown in Fig. 1.32(c). This representation is particularly appropriate
for the general phase plane (Chapter 2) and for forced systems.
If f (x, ẋ) is periodic in x, that is if there exists a number C such that f (x + C, ẋ) = f (x, ẋ)

for all x, then phase paths on any x-interval of length C are repeated on any prior or succeeding
intervals of length C. Hence solutions can be wrapped round a cylinder of circumference C.
Figure 1.32(d) shows the phase paths in Fig. 1.32(a) plotted on to the cylinder, the x-axis now
being wrapped round the cylinder.

Exercise 1.9
Sketch phase paths and solution of the damped oscillations
(i) ẍ + 2ẋ + 2x = 0, (ii) ẍ − 3ẋ + 2x = 0,
as in Fig. 1.32(a)–(c).
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Problems

1.1 Locate the equilibrium points and sketch the phase diagrams in their neighbourhood for the following
equations:

(i) ẍ − kẋ = 0.

(ii) ẍ − 8xẋ = 0.

(iii) ẍ = k(|x| > 1), ẍ = 0(|x| < 1).

(iv) ẍ + 3ẋ + 2x = 0.

(v) ẍ − 4ẋ + 40x = 0.

(vi) ẍ + 3|ẋ| + 2x = 0.

(vii) ẍ+k sgn(ẋ)+c sgn(x) = 0, c > k. Show that the path starting at (x0, 0) reaches ((c−k)2x0/(c+k)2, 0)
after one circuit of the origin. Deduce that the origin is a spiral point.

(viii) ẋ + x sgn(x) = 0.

1.2 Sketch the phase diagram for the equation ẍ = −x − αx3, considering all values of α. Check the stability
of the equilibrium points by the method of Section 1.7.

1.3 A certain dynamical system is governed by the equation ẍ+ ẋ2+ x=0. Show that the origin is a centre in
the phase plane, and that the open and closed paths are separated by the path 2y2 = 1− 2x.

1.4 Sketch the phase diagrams for the equation ẍ+ ex = a, for a <0, a=0, and a >0.

1.5 Sketch the phase diagram for the equation ẍ− ex = a, for a < 0, a = 0, and a > 0.

1.6 The potential energy V(x) of a conservative system is continuous, and is strictly increasing for x < −1,
zero for |x| ≤ 1, and strictly decreasing for x > 1. Locate the equilibrium points and sketch the phase
diagram for the system.

1.7 Figure 1.33 shows a pendulum striking an inclinedwall. Sketch the phase diagramof this ‘impact oscillator’,
for α positive and α negative, when (i) there is no loss of energy at impact, (ii) the magnitude of the velocity
is halved on impact.

Figure 1.33 Impact pendulum.

1.8 Show that the time elapsed, T , along a phase path C of the system ẋ = y, ẏ = f (x, y) is given, in a form
alternative to (1.13), by

T =
∫
C
(y2 + f 2)1/2 ds,

where ds is an element of distance along C.
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By writing δs 
 (y2 + f 2)1/2δt , indicate, very roughly, equal time intervals along the phase paths of the
system ẋ = y, ẏ = 2x.

1.9 On the phase diagram for the equation ẍ + x = 0, the phase paths are circles. Use (1.13) in the form
δt 
 δx/y to indicate, roughly, equal time steps along several phase paths.

1.10 Repeat Problem 1.9 for the equation ẍ + 9x = 0, in which the phase paths are ellipses.

1.11 The pendulum equation, ẍ+ω2 sin x = 0, can be approximated for moderate amplitudes by the equation
ẍ + ω2(x − 1

6x
3) = 0. Sketch the phase diagram for the latter equation, and explain the differences

between it and Fig. 1.2.

1.12 The displacement, x, of a spring-mounted mass under the action of Coulomb dry friction is assumed to
satisfy mẍ+ cx = −F0 sgn(ẋ), where m, c, and F0 are positive constants (Section 1.6). The motion starts
at t = 0, with x = x0 > 3F0/c and ẍ = 0. Subsequently, whenever x = −α, where 2F0/c− x0 < −α < 0
and ẋ > 0, a trigger operates, to increase suddenly the forward velocity so that the kinetic energy increases
by a constant amount E. Show that if E > 8F2

0 /c, a periodic motion exists, and show that the largest
value of x in the periodic motion is equal to F0/c + E/4F0.

1.13 In Problem 1.12, suppose that the energy is increased by E at x = −α for both ẍ < 0 and ẍ > 0; that
is, there are two injections of energy per cycle. Show that periodic motion is possible if E > 6F2

0 /c, and
find the amplitude of the oscillation.

1.14 The ‘friction pendulum’ consists of a pendulum attached to a sleeve, which embraces a close-fitting
cylinder (Fig. 1.34). The cylinder is turned at a constant rate �. The sleeve is subject to Coulomb dry
friction through the coupleG = −F0 sgn(θ̇−�). Write down the equation of motion, find the equilibrium
states, and sketch the phase diagram.

Figure 1.34 Friction-driven pendulum.

1.15 By plotting the ‘potential energy’ of the nonlinear conservative system ẍ = x4 − x2, construct the phase
diagram of the system. A particular path has the initial conditions x = 1

2 , ẋ = 0 at t = 0. Is the subsequent
motion periodic?

1.16 The system ẍ+x = −F0 sgn(ẋ),F0 > 0, has the initial conditions x = x0 > 0, ẋ = 0. Show that the phase
path will spiral exactly n times before entering equilibrium (Section 1.6) if (4n−1)F0 < x0 < (4n+1)F0.

1.17 A pendulum of length a has a bob of mass m which is subject to a horizontal force mω2a sin θ , where θ
is the inclination to the downward vertical. Show that the equation of motion is θ̈ = ω2(cos θ − λ) sin θ ,
where λ = g/ω2a. Investigate the stability of the equilibrium states by the method of Section 1.7 for
parameter-dependent systems. Sketch the phase diagrams for various λ.
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1.18 Investigate the stability of the equilibrium points of the parameter-dependent system ẍ = (x−λ)(x2−λ).

1.19 If a bead slides on a smooth parabolic wire rotating with constant angular velocity ω about a vertical
axis, then the distance x of the particle from the axis of rotation satisfies (1+ x2)ẍ+ (g−ω2+ ẋ2)x = 0.
Analyse the motion of the bead in the phase plane.

1.20 A particle is attached to a fixed point O on a smooth horizontal plane by an elastic string. When
unstretched, the length of the string is 2a. The equation of motion of the particle, which is constrained
to move on a straight line through 0, is

ẍ = −x + a sgn(x), |x| > a (when the string is stretched),

ẍ = 0 |x| ≤ a (when the string is slack),

x being the displacement from 0. Find the equilibrium points and the equations of the phase paths, and
sketch the phase diagram.

1.21 The equation of motion of a conservative system is ẍ+g(x) = 0, where g(0) = 0, g(x) is strictly increasing
for all x, and ∫ x

0
g(u)du→∞ as x →±∞. (a)

Show that the motion is always periodic.

By considering g(x) = xe−x2 , show that if (a) does not hold, the motions are not all necessarily
periodic.

1.22 The wave function u(x, t) satisfies the partial differential equation

∂2u

∂x2
+ α

∂u

∂x
+ βu3 + γ

∂u

∂t
= 0,

where α,β, and γ are positive constants. Show that there exist travelling wave solutions of the form
u(x, t) = U(x − ct) for any c, where U(ζ ) satisfies

d2U

dζ2
+ (α − γ c)

dU
dζ
+ βU3 = 0.

Using Problem 1.21, show that when c = α/γ , all such waves are periodic.

1.23 The linear oscillator ẍ + ẋ + x = 0 is set in motion with initial conditions x = 0, ẋ = v, at t = 0. After
the first and each subsequent cycle the kinetic energy is instantaneously increased by a constant, E, in
such a manner as to increase ẋ. Show that if E = 1

2v
2(1 − e4π/

√
3), a periodic motion occurs. Find the

maximum value of x in a cycle.

1.24 Show how phase paths of Problem 1.23 having arbitrary initial conditions spiral on to a limit cycle.
Sketch the phase diagram.

1.25 The kinetic energy, T , and the potential energy, V, of a system with one degree of freedom are
given by

T = T0(x)+ ẋT1(x)+ ẋ2T2(x), V = V(x).

Use Lagrange’s equation
d
dt

(
∂T
∂ẋ

)
− ∂T

∂x
= −∂V

∂x

to obtain the equation of motion of the system. Show that the equilibrium points are stationary points
of T0(x)− V(x), and that the phase paths are given by the energy equation

T2(x)ẋ
2 − T0(x)+ V(x) = constant.
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1.26 Sketch the phase diagram for the equation ẍ = −f (x + ẋ), where

f (u) =
⎧⎨
⎩

f0, u ≥ c,
f0u/c, |u| ≤ c,
−f0, u ≤ −c,

where f0, c are constants, f0 > 0, and c > 0. How does the system behave as c→ 0?

1.27 Sketch the phase diagram for the equation ẍ = u, where

u = −sgn
(√

2|x|1/2sgn(x)+ ẋ
)
.

(u is an elementary control variablewhich can switch between+1 and−1. The curve√2|x|1/2sgn(x)+y =
0 is called the switching curve.)

1.28 The relativistic equation for an oscillator is

d
dt

{
m0ẋ√[1− (ẋ/c)2]

}
+ kx = 0, |ẋ| < c

where m0, c, and k are positive constants. Show that the phase paths are given by

m0c
2

√[1− (y/c)2] +
1
2kx

2 = constant.

If y = 0 when x = a, show that the period, T , of an oscillation is given by

T = 4
c
√
ε

∫ a

0

[1+ ε(a2 − x2)]dx√
(a2 − x2)

√[2+ ε(a2 − x2)] , ε = k

2m0c
2
.

The constant ε is small; by expanding the integrand in powers of ε show that

T ≈ π
√
2

c

(
1

ε1/2
+ 3

8
ε1/2a2

)
.

1.29 A mass m is attached to the mid-point of an elastic string of length 2a and stiffness λ (Fig. 1.35). There
is no gravity acting, and the tension is zero in the equilibrium position. Obtain the equation of motion
for transverse oscillations and sketch the phase paths.

Figure 1.35 Transverse oscillations.

1.30 The system ẍ + x = F(v0 − ẋ) is subject to the friction law

F(u) =
⎧⎨
⎩
1, u > ε,
u/ε, −ε ≤ u ≤ ε,
−1, u < −ε,

where u = v0 − ẋ is the slip velocity and v0 > ε > 0. Find explicit equations for the phase paths in
the (x, y = ẋ) plane. Compute a phase diagram for ε = 0.2, v0 = 1 (say). Explain using the phase
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diagram that the equilibrium point at (1,0) is a centre, and that all paths which start outside the circle
(x − 1)2 + y2 = (v0 − ε)2 eventually approach this circle.

1.31 The system ẍ + x = F(ẋ) where

F(ẋ) =
⎧⎨
⎩
kẋ + 1, ẋ < v0,
0, ẋ = v0,
−kẋ − 1, ẋ > v0,

and k > 0, is a possible model for Coulomb dry friction with damping. If k < 2, show that the equilibrium
point is an unstable spiral. Compute the phase paths for, say, k=0.5, v0=1. Using the phase diagram
discuss the motion of the system, and describe the limit cycle.

1.32 A pendulum with a magnetic bob oscillates in a vertical plane over a magnet, which repels the bob
according to the inverse square law, so that the equation of motion is (Fig. 1.36)

ma2θ̈ = −mga sin θ + Fh sinφ,

Figure 1.36 Magnetically repelled pendulum.

where h > a and F = c/(a2 + h2 − 2ah cos θ) and c is a constant. Find the equilibrium positions of the
bob, and classify them as centres and saddle points according to the parameters of the problem. Describe
the motion of the pendulum.

1.33 A pendulum with equation ẍ + sin x = 0 oscillates with amplitude a. Show that its period, T , is equal to
4K(β), where β = sin2 1

2a and

K(β) =
∫ π/2

0

dφ√
(1− β sin2 φ)

.

The function K(β) has the power series representation

K(β) = 1
2π

[
1+
(
1
2

)2
β +
(
1.3
2.4

)2
β2 + · · ·

]
, |β| < 1.

Deduce that, for small amplitudes,

T = 2π
(
1+ 1

16a
2 + 11

3072a
4
)
+O(a6).
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1.34 Repeat Problem 1.33 with the equation ẍ + x − εx3 = 0 (ε > 0), and show that

T = 4
√
2√

(2− εa2)
K(β), β = εa2

2− εa2
,

and that
T = 2π

(
1+ 3

8εa
2 + 57

256ε
2a4
)
+O(ε3a6),

as εa2 → 0.

1.35 Show the equation of the form ẍ+g(x)ẋ2+h(x) = 0 are effectively conservative. (Find a transformation
of x which puts the equations into the usual conservative form. Compare with eqn (1.59).)

1.36 Sketch the phase diagrams of the following: (i) ẋ= y, ẏ=0, (ii) ẋ= y, ẏ=1, (iii) ẋ= y, ẏ= y.

1.37 Show that the phase plane for the equation ẍ − εxẋ + x = 0 has a centre at the origin, by finding the
equation of the phase paths.

1.38 Show that the equation ẍ+ x+ εx3=0 (ε >0) with x(0)= a, ẋ(0) = 0 has phase paths given by

ẋ2 + x2 + 1
2εx

4 =
(
1+ 1

2εa
2
)
a2.

Show that the origin is a centre. Are all phase paths closed, and hence all solutions periodic?

1.39 Locate the equilibrium points of the equation ẍ + λ+ x3 − x = 0, in the x, λ plane. Show that the phase
paths are given by

1
2 ẋ

2 + λx + 1
4λx

4 − 1
2x

2 = constant.

Investigate the stability of the equilibrium points.

1.40 Burgers’ equation
∂φ

∂t
+ φ

∂φ

∂x
= c

∂2φ

∂x2

shows diffusion and nonlinear effects in fluid mechanics (see Logan (1994)). Find the equation for per-
manent waves by putting φ(x, t) = U(x − ct), where c is the constant wave speed. Find the equilibrium
points and the phase paths for the resulting equation and interpret the phase diagram.

1.41 A uniform rod of mass m and length L is smoothly pivoted at one end and held in a vertical position
of equilibrium by two unstretched horizontal springs, each of stiffness k, attached to the other end as
shown in Fig. 1.37. The rod is free to oscillate in a vertical plane through the springs and the rod. Find
the potential energy V(θ) of the system when the rod is inclined at an angle θ to the upward vertical. For

Figure 1.37 Spring restrained inverted pendulum.
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small θ confirm that
V(θ) ≈ (kL− 1

4mg)Lθ2.

Sketch the phase diagram for small |θ |, and discuss the stability of this inverted pendulum.

1.42 Two stars, each with gravitational mass µ, are orbiting each other under their mutual gravitational forces
in such a way that their orbits are circles of radius a. A satellite of relatively negligible mass is moving on a
straight line through the mass centreG such that the line is perpendicular to the plane of the mutual orbits
of this binary system. Explain why the satellite will continue to move on this line. If z is the displacement
of the satellite from G, show that

z̈ = − 2µz

(a2 + z2)3/2
.

Obtain the equations of the phase paths. What type of equilibrium point is z = 0?

1.43 A long wire is bent into the shape of a smooth curve with equation z = f (x) in a fixed vertical (x, z) plane
(assume that f ′(x) and f ′′(x) are continuous). A bead of mass m can slide on the wire: assume friction is
negligible. Find the kinetic and potential energies of the bead, and write down the equation of the phase
paths. Explain why the method of Section 1.3 concerning the phase diagrams for stationary values of the
potential energy still holds.

1.44 In the previous problem suppose that friction between the bead and the wire is included. Assume linear
damping in which motion is opposed by a frictional force proportional (factor k) to the velocity. Show
that the equation of motion of the bead is given by

m(1+ f ′(x)2)ẍ +mf ′′(x)ẋ2 + kẋ(1+ f ′(x)2)+mgf ′(x) = 0,

where m is its mass.
Suppose that the wire has the parabolic shape given by z = x2 and that dimensions are chosen so that

k = m and g = 1. Compute the phase diagram in the neighbourhood of the origin, and explain general
features of the diagram near and further away from the origin. (Further theory and experimental work
on motion on tracks can be found in the book by Virgin (2000).)



2
Plane autonomous
systems and linearization

Chapter 1 describes the application of phase-plane methods to the equation ẍ= f (x, ẋ) through
the equivalent first-order system ẋ= y, ẏ= f (x, y). This approach permits a useful line of
argument based on a mechanical interpretation of the original equation. Frequently, however,
the appropriate formulation of mechanical, biological, and geometrical problems is not through
a second-order equation at all, but directly as a more general type of first-order system of the
form ẋ = X(x, y), ẏ = Y (x, y). The appearance of these equations is an invitation to construct
a phase plane with x, y coordinates in which solutions are represented by curves (x(t), y(t))
where x(t), y(t) are the solutions. The constant solutions are represented by equilibrium points
obtained by solving the equationsX(x, y) = 0, Y (x, y) = 0, and these may now occur anywhere
in the plane. Near the equilibrium points we may make a linear approximation to X(x, y),
Y (x, y), solve the simpler equations obtained, and so determine the local character of the paths.
This enables the stability of the equilibrium states to be settled and is a starting point for global
investigations of the solutions.

2.1 The general phase plane

Consider the general autonomous first-order system

ẋ = X(x, y), ẏ = Y (x, y) (2.1)

of which the type considered in Chapter 1,

ẋ = y, ẏ = f (x, y),

is a special case. Assume that the functions X(x, y) and Y (x, y) are smooth enough to make
the system regular (see Appendix A) in the region of interest. As in Section 1.2, the system is
called autonomous because the time variable t does not appear in the right-hand side of (2.1).
We shall give examples later of how such systems arise.
The solutions x(t), y(t) of (2.1) may be represented on a plane with Cartesian axes x, y.

Then as t increases (x(t), y(t)) traces out a directed curve in the plane called a phase path.
The appropriate form for the initial conditions of (2.1) is

x = x0, y = y0 at t = t0 (2.2)

where x0 and y0 are the initial values at time t0; by the existence and uniqueness theorem
(Appendix A) there is one and only one solution satisfying this condition when (x0, y0) is an
‘ordinary point’. This does not at once mean that there is one and only one phase path through
the point (x0, y0) on the phase diagram, because this same point could serve as the initial



50 2 : Plane autonomous systems and linearization

conditions for other starting times. Therefore it might seem that other phase paths through
the same point could result: the phase diagram would then be a tangle of criss-crossed curves.
We may see that this is not so by forming the differential equation for the phase paths. Since
ẏ/ẋ = dy/dx on a path the required equation is

dy
dx
= Y (x, y)

X(x, y)
. (2.3)

Equation (2.3) does not give any indication of the direction to be associated with a phase
path for increasing t . This must be settled by reference to eqns (2.1). The signs of X and Y at
any particular point determine the direction through the point, and generally the directions at
all other points can be settled by the requirement of continuity of direction of adjacent paths.
The diagram depicting the phase paths is called the phase diagram. A typical point (x, y) is

called a state of the system, as before. The phase diagram shows the evolution of the states of
the system, starting from arbitrary initial states.
Points where the right-hand side of (2.3) satisfy the conditions for regularity (Appendix A)

are called the ordinary points of (2.3). There is one and only one phase path through any
ordinary point (x0, y0), no matter at what time t0 the point (x0, y0) is encountered. Therefore
infinitely many solutions of (2.1), differing only by time displacements, produce the same
phase path.
However, eqn (2.3) may have singular points where the conditions for regularity do not hold,

even though the time equations (2.1) have no peculiarity there. Such singular points occur where
X(x, y) = 0. Points where X(x, y) and Y (x, y) are both zero,

X(x, y) = 0, Y (x, y) = 0 (2.4)

are called equilibrium points. If x1, y1 is a solution of (2.4), then

x(t) = x1, y(t) = y1

are constant solutions of (2.1), and are degenerate phase paths. The term fixed point is
also used.
Since dy/dx = Y (x, y)/X(x, y) is the differential equation of the phase paths, phase paths

which cut the curve defined by the equation Y (x, y) = cX(x, y) will do so with the same slope
c: such curves are known as isoclines. The two particular isoclines Y (x, y) = 0, which paths
cut with zero slope, and X(x, y) = 0, which paths cut with infinite slope, are helpful in phase
diagram sketching. The points where these isoclines intersect define the equilibrium points.
Between the isoclines, X(x, y) and Y (x, y) must each be of one sign. For example, in a region
in the (x, y) plane in which X(x, y) > 0 and Y (x, y) > 0, the phase paths must have positive
slopes. This will also be the case ifX(x, y) < 0 and Y (x, y) < 0. Similarly, ifX(x, y) and Y (x, y)
have opposite signs in a region, then the phase paths must have negative slopes.

Example 2.1 Locate the equilibrium points, and sketch the phase paths of

ẋ = y(1− x2), ẏ = −x(1− y2).
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The equilibrium points occur at the simultaneous solutions of

y(1− x2) = 0, x(1− y2) = 0.

The solutions of these equations are, respectively, x = ±1, y = 0 and x = 0, y = ±1, so that there are five
solution pairs, (0, 0), (1, 1), (1,−1), (−1, 1) and (−1,−1) which are equilibrium points.

The phase paths satisfy the differential equation

dy
dx
= −x(1− y2)

y(1− x2)
,

which is a first-order separable equation. Hence

−
∫

xdx

1− x2
=
∫

ydy

1− y2
,

so that

1
2 ln |1− x2| = −1

2 ln |1− y2| + C,

which is equivalent to

(1− x2)(1− y2) = A, a constant,

(the modulus signs are no longer necessary). Notice that there are special solutions along the lines x = ±1 and
y = ±1 where A = 0. These solutions and the locations of the equilibrium points help us to plot the phase
diagram, which is shown in Fig. 2.1. Paths cross the axis x = 0 with zero slope, and paths cross y = 0 with

Figure 2.1 Phase diagram for ẋ = y(1− x2); ẏ = −x(1− y2); the dashed lines are isoclines of zero slope and infinite
slope.

infinite slope. The directions of the paths may be found by continuity, starting at the point (0, 1), say, where
ẋ > 0, and the phase path therefore runs from left to right. �
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Figure 2.2 Phase diagrams for (a) ẋ = y, ẏ = −x; (b) ẋ = xy, ẏ = −x2.

Example 2.2 Compare the phase diagrams of the systems
(a) ẋ = y, ẏ = −x; (b) ẋ = xy, ẏ = −x2.
The equation for the paths is the same for both, namely

dy
dx
= −x

y

(strictly, for y 	= 0, and for x 	= 0 in the second case), giving a family of circles in both cases (Fig. 2.2).
However, in case (a) there is an equilibrium point only at the origin, but in case (b) every point on the y axis is
an equilibrium point. The directions, too, are different. By considering the signs of ẋ, ẏ in the various quadrants
the phase diagram of Fig. 2.2(b) is produced. �

A second-order differential equation can be reduced to the general form (2.1) in an arbi-
trary number of ways, and this occasionally has advantages akin to changing the variable to
simplify a differential equation. For example the straightforward reduction ẋ = y applied to
xẍ − ẋ2 − x3 = 0 leads to the system

ẋ = y, ẏ = y2

x
+ x2. (2.5)

Suppose, instead of y, we use another variable y1 given by y1(t) = ẋ(t)/x(t), so that

ẋ = xy1. (2.6)

Then from (2.6) ẍ = xẏ1 + ẋy1 = xẏ1 + xy21 (using (2.6) again). But from the differential
equation, ẍ = (ẋ2/x)+ x2 = xy21 + x2. Therefore,

ẏ1 = x. (2.7)

The pair of eqns (2.6) and (2.7) provide a representation alternative to (2.5). The phase diagram
using x, y1 will, of course, be different in appearance from the x, y diagram.
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Returning to the general equation (2.1), the time T elapsing along a segment C of a phase
path connecting two states (compare Fig. 1.4(a) and eqn (1.13)) is given by

T =
∫

C
dt =

∫
C

(
dx
dt

)−1 (dx
dt

)
dt =

∫
C

dx
X(x, y)

. (2.8)

Alternatively, let ds be a length element of C. Then ds2 = dx2 + dy2 on the path, and

T =
∫

C

(
ds
dt

)−1 (ds
dt

)
dt =

∫
C

ds
(X2 + Y 2)1/2

. (2.9)

The integrals above depend only on X and Y and the geometry of the phase path; therefore the
time scale is implicit in the phase diagram. Closed paths represent periodic solutions.

Exercise 2.1
Locate all equilibrium points of ẋ = cos y, ẏ = sin x. Find the equation of all phase paths.

2.2 Some population models

In the following examples systems of the type (2.1) arise naturally. Further examples from
biology can be found in Pielou (1969), Rosen (1973) and Strogatz (1994).

Example 2.3 A predator–prey problem (Volterra’s model)
In a lake there are two species of fish: A, which lives on plants of which there is a plentiful supply, and B

(the predator) which subsists by eating A (the prey). We shall construct a crude model for the interaction of A
and B.

Let x(t) be the population of A and y(t) that of B. We assume that A is relatively long-lived and rapidly
breeding if left alone. Then in time δt there is a population increase given by

axδt , a > 0

due to births and ‘natural’ deaths, and ‘negative increase’

−cxyδt , c > 0

owing to A’s being eaten by B (the number being eaten in this time being assumed proportional to the number
of encounters between A and B). The net population increase of A, δx, is given by

δx = axδt − cxyδt ,

so that in the limit δt → 0

ẋ = ax − cxy. (2.10)

Assume that, in the absence of prey, the starvation rate of B predominates over the birth rate, but that the
compensating growth of B is again proportional to the number of encounters with A. This gives

ẏ = −by + xyd (2.11)



54 2 : Plane autonomous systems and linearization

with b > 0, d > 0. Equations (2.10) and (2.11) are a pair of simultaneous nonlinear equations of the form
(2.1).

We now plot the phase diagram in the x, y plane. Only the quadrant

x ≥ 0, y ≥ 0

is of interest. The equilibrium points are where

X(x, y) ≡ ax − cxy = 0, Y (x, y) ≡ −by + xyd = 0;

that is at (0, 0) and (b/d, a/c). The phase paths are given by dy/dx=Y/X, or

dy
dx
= (−b + xd)y

(a − cy)x
,

which is a separable equation leading to∫
(a − cy)

y
dy =

∫
(−b + xd)

x
dx.

or

a loge y + b loge x − cy − xd = C, (2.12)

where C is an arbitrary constant, the parameter of the family. Writing (2.12) in the form (a loge y − cy) +
(b loge x − xd) = C, the result of Problem 2.25 shows that this is a system of closed curves centred on the
equilibrium point (b/d, a/c).

Figure 2.3 shows the phase paths for a particular case. The direction on the paths can be obtained from
the sign of ẋ at a single point, even on y = 0. This determines the directions at all points by continuity. From
(2.11) and (2.10) the isoclines of zero slope occur on ẏ = 0, that is, on the lines y = 0 and y = xd/b, and those
of infinite slope on ẋ = 0, that is, on the lines x = 0 and y = ax/c.

Since the paths are closed, the fluctuations of x(t) and y(t), starting from any initial population, are periodic,
the maximum population of A being about a quarter of a period behind the maximum population of B. As
A gets eaten, causing B to thrive, the population x of A is reduced, causing eventually a drop in that of B.
The shortage of predators then leads to a resurgence of A and the cycle starts again. A sudden change in state

Figure 2.3 Typical phase diagram for the predator–prey model.
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due to external causes, such as a bad season for the plants, puts the state on to another closed curve, but no
tendency to an equilibrium population, nor for the population to disappear, is predicted. If we expect such a
tendency, then we must construct a different model (see Problems 2.12 and 2.13). �
Example 2.4 A general epidemic model
Consider the spread of a non-fatal disease in a population which is assumed to have constant size over the
period of the epidemic. At time t suppose the population consists of

x(t) susceptibles: those so far uninfected and therefore liable to infection;

y(t) infectives: those who have the disease and are still at large;

z(t) who are isolated, or who have recovered and are therefore immune.
Assume there is a steady contact rate between susceptibles and infectives and that a constant proportion of
these contacts result in transmission. Then in time δt , δx of the susceptibles become infective, where

δx = −βxyδt ,
and β is a positive constant.

If γ > 0 is the rate at which current infectives become isolated, then

δy = βxyδt − γ yδt .

The number of new isolates δz is given by

δz = γ yδt .

Now let δt → 0. Then the system

ẋ = −βxy, ẏ = βxy − γ y, ż = γ y, (2.13)

with suitable initial conditions, determines the progress of the disease. Note that the result of adding the
equations is

d
dt

(x + y + z) = 0;

that is to say, the assumption of a constant population is built into the model. x and y are defined by the first
two equations in (2.13). With the restriction x ≥ 0, y ≥ 0, equilibrium occurs for y = 0 (all x ≥ 0). The
analysis of this problem in the phase plane is left as an exercise (Problem 2.29). �

We shall instead look in detail at a more complicated epidemic:

Example 2.5 Recurrent epidemic

Suppose that the problem is as before, except that the stock of susceptibles x(t) is being added to at a constant
rate µ per unit time. This condition could be the result of fresh births in the presence of a childhood disease
such as measles in the absence of vaccination. In order to balance the population in the simplest way we shall
assume that deaths occur naturally and only among the immune, that is, among the z(t) older people most of
whom have had the disease. For a constant population the equations become

ẋ = −βxy + µ, (2.14)

ẏ = βxy − γ y, (2.15)

ż = γ y − µ (2.16)

(note that (d/dt)(x + y + z) = 0: the population size is steady).
Consider the variation of x and y, the active participants, represented on the x, y phase plane. We need only

(2.14) and (2.15), which show an equilibrium point (γ /β,µ/γ ).
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Instead of trying to solve the equation for the phase paths we shall try to get an idea of what the phase diagram
is like by forming linear approximations to the right-hand sides of (2.14), (2.15) in the neighbourhood of the
equilibrium point. Near the equilibrium point we write

x = γ /β + ξ , y = µ/γ + η

(ξ , η small) so that ẋ = ξ̇ and ẏ = η̇. Retaining only the linear terms in the expansion of the right sides of
(2.14), (2.15), we obtain

ξ̇ = −βµ

γ
ξ − γ η,

(2.17)

η̇ = βµ

γ
ξ . (2.18)

We are said to have linearized (2.14) and (2.15) near the equilibrium point. Elimination of ξ gives

γ η̈ + (βµ)η̇ + (βµγ )η = 0. (2.19)

This is the equation for the damped linear oscillator (Section 1.4), and we may compare (2.19) with eqn (1.36)
of Chapter 1, but it is necessary to remember that eqn (2.19) only holds as an approximation close to the
equilibrium point of (2.14) and (2.15). When the ‘damping’ is light (βµ/γ 2 < 4) the phase path is a spiral.
Figure 2.4 shows some phase paths for a particular case. All starting conditions lead to the stable equilibrium
point E: this point is called the endemic state for the disease. �

��� �:

Figure 2.4 Typical spiral phase paths for the recurrent epidemic.

Exercise 2.2
The populations x and y of two species satisfy the equations

ẋ = x(3− x − 2y), ẏ = y(3− 2x − y), (x, y ≥ 0),

(after scaling). Find the equilibrium points of the system. Confirm that y = x is a phase path.
Sketch the phase diagram. What happens to the species in the cases with initial populations
(a) x = 10, y = 9, (b) x = 9, y = 10?
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2.3 Linear approximation at equilibrium points

Approximation to a nonlinear system by linearizing it at near equilibrium point, as in the last
example, is a most important and generally useful technique. If the geometrical nature of the
equilibrium points can be settled in this way the broad character of the phase diagram often
becomes clear. Consider the system

ẋ = X(x, y), ẏ = Y (x, y). (2.20)

Suppose that the equilibrium point to be studied has been moved to the origin by a translation
of axes, if necessary, so that

X(0, 0) = Y (0, 0) = 0.

We can therefore write, by a Taylor expansion,

X(x, y) = ax + by + P(x, y), Y (x, y) = cx + dy +Q(x, y),

where

a = ∂X

∂x
(0, 0), b = ∂X

∂y
(0, 0), c = ∂Y

∂x
(0, 0), d = ∂Y

∂y
(0, 0) (2.21)

and P(x, y),Q(x, y) are of lower order of magnitude than the linear terms as (x, y) approaches
the origin (0, 0). The linear approximation to (2.21) in the neighbourhood at the origin is
defined as the system

ẋ = ax + by, ẏ = cx + dy. (2.22)

We expect that the solutions of (2.22) will be geometrically similar to those of (2.20) near
the origin, an expectation fulfilled in most cases (but see Problem 2.7: a centre may be an
exception).
Over the next two sections we shall show how simple relations between the coefficients

a, b, c, d enable the equilibrium point of the system (2.22) to be classified.

Exercise 2.3
Find the linear approximations of

ẋ = sin x + 2y, ẏ = xy + 3yex + x

near the origin.
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2.4 The general solution of linear autonomous plane systems

The following two examples illustrate techniques for solving the system of linear differential
equations with constant coefficients:

ẋ = ax + by, ẏ = cx + dy (2.23)

for x(t), y(t). They are followed by a more general treatment.

Example 2.6 Solve the differential equations

ẋ = x − 2y, ẏ = −3x + 2y.

Look for two linearly independent solutions (that is, solutions which are not simply constant multiples of each
other) each of which takes the form of the pair

x = reλt , y = seλt (i)

where r, s, λ are certain constants. Suppose that the two solutions are (x1(t), y1(t)) and (x2(t), y2(t)); then the
general solution will be given by

x(t) = C1x1(t)+ C2x2(t), y(t) = C1y1(t)+ C2y2(t). (ii)

To obtain the basic solutions, substitute (i) into the given differential equations. After cancelling the common
factor eλt and rearranging the terms, we obtain the pair of algebraic equations for the three unknowns λ, r,
and s:

(1− λ)r − 2s = 0, −3r + (2− λ)s = 0. (iii)

Regarding these as linear simultaneous equations for r and s, it is known that the determinant of the coefficients
must be zero, or else the only solution is r = 0, s = 0. Therefore we require

det
[

1− λ −2
−3 2− λ

]
= λ2 − 3λ− 4 = (λ− 4)(λ+ 1) = 0.

There are two permissible values of λ:

λ = λ1 = 4 and λ = λ2 = −1. (iv)

For each of these values in turn we have to solve (iii) for r and s:
The case λ = λ1 = 4. Equations (iii) become

−3r − 2s = 0, −3r − 2s = 0. (iv)

The equations are identical in this case; and in every case it turns out that one is simply a multiple of the other,
so that essentially the two equations become a single equation. Choose any nonzero solution of (iv), say

r = r1 = −2, s = s1 = 3,

and we have found a solution having the form (i):

x(t) = x1(t) = −2e4t , y(t) = y1(t) = 3e4t . (v)

The case λ = λ2 = −1. Equations (iii) become

2r − 2s = 0, −3r + 3s = 0. (vi)
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These are both equivalent to r − s = 0. We take the simplest solution

r = r2 = 1, s = s2 = 1.

We now have as the second, independent solution of the differential equations:

x(t) = x2(t) = e−t , y(t) = y2(t) = e−1. (vii)

Finally, from (ii), (v), and (vii), the general solution is given by

x(t) = −2C1e
4t + C2e

−t , y(t) = 3C1e
4t + C2e

−t ,

where C1 and C2 are arbitrary constants. �
In the following example the exponents λ1 and λ2 are complex numbers.

Example 2.7 Obtain the general solution of the system

ẋ = x + y, ẏ = −5x − 3y.

Proceed exactly as in Example 2.6. Substitute

x = reλt , y = seλt

into the differential equations specified, obtaining

(1− λ)r + s = 0, −5r − (3+ λ)s = 0. (i)

There exist nonzero solutions (r, s) only if

det
[
1− λ 1
−5 −3− λ

]
= λ2 + 2λ+ 2 = 0. (ii)

The permitted values of λ are therefore

λ1 = −1+ i, λ2 = −1− i. (iii)

These are complex numbers, and since (ii) is a quadratic equation, they are complex conjugate:

λ2 = λ̄1. (iv)

The case λ = λ1 = −1+ i. Equations (i) become

(2− i)r + s = 0, −5r − (2+ i)s = 0;

(as always, these equations are actually multiples of each other). A particular solution of the differential
equations associated with these is

x1(t) = e(−1+i)t , y1(t) = (−2+ i)e(−1+i)t . (v)

The case λ = λ2 = λ̄1. There is no need to rework the equations for r and s: eqn (i) shows that since λ2 = λ̄,
we may take

r2 = r̄1 = 1, s2 = s̄1 = −2− i.

The corresponding solution of the differential equations is

x2(t) = e(−1−i)t , y2(t) = (−2− i)e(−1−i)t ,
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(which are the complex conjugates of x1(t), y1(t)). The general solution of the system is therefore

x(t) = C1e
(−1+i)t + C2e

(−1−i)t ,

y(t) = C1(−2+ i)e(−1+i)t + C2(−2− i)e(−1−i)t .
(iv)

If we allow C1 and C2 to be arbitrary complex numbers, then (vi) gives us all the real and complex solutions
of the equations. We are interested only in real solutions, but we must be sure that we extract all of them from
(vi). This is done by allowing C1 to be arbitrary and complex, and requiring that

C2 = C̄1.

The terms on the right of eqn (vi) are then complex conjugate, so their sums are real; we obtain

x(t) = 2Re
{
C1e

(−1+i)t},
y(t) = 2Re

{
C1(−2+ i)e(−1+i)t

}
,

By putting

2C1 = c1 + ic2,

where c1 and c2 are real arbitrary constants, we obtain the general real solution in the form

x(t) = e−t (c1 cos t − c2 sin t),

y(t) = −e−t {(2c1 + c2) cos t + (c1 − 2c2) sin t}. �
The general linear autonomous case is more manageable (particularly for higher order

systems) when the algebra is expressed in matrix form. Define the column vectors

x(t) =
[
x(t)

y(t)

]
, ẋ(t) =

[
ẋ(t)

ẏ(t)

]
.

The system to be solved is

ẋ = ax + by, ẏ = cx + dy,

which may be written as

ẋ = Ax with A =
[
a b

c d

]
. (2.24)

We shall only consider caseswhere there is a single equilibriumpoint, at the origin, the condition
for this being

detA = ad − bc 	= 0. (2.25)

(If detA=0, then one of its rows is a multiple of the other, so that ax+ by=0 (or cx+dy = 0)
consists of a line of equilibrium points.)
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We seek a fundamental solution consisting of two linearly independent solutions of (2.24),
having the form

x1(t) = v1eλ1t , x2(t) = v2eλ2t , (2.26)

where λ1, λ2 are constants, and v1, v2 are constant vectors. It is known (see Chapter 8) that
the general solution is given by

x(t) = C1x1(t)+ C2x2(t), (2.27)

where C1 and C2 are arbitrary constants.
To determine λ1, v1, λ2, v2 in (2.26) substitute

x(t) = veλt (2.28)

into the system equations (2.24). After cancelling the common factor eλt , we obtain

λv = Av,
or

(A− λI )v = 0, (2.29)

where I is the identity matrix. If we put

v =
[
r

s

]
, (2.30)

eqn (2.29) represents the pair of scalar equations

(a − λ)r + bs = 0, cr + (d − λ)s = 0, (2.31)

for λ, r, s.
It is known from algebraic theory that eqn (2.29) has nonzero solutions for v only if the

determinant of the matrix of the coefficients in eqns (2.31) is zero. Therefore

det
[
a − λ b

c d − λ

]
= 0, (2.32)

or

λ2 − (a + d)λ+ (ad − bc) = 0. (2.33)

This is called the characteristic equation, and its solutions, λ1 and λ2, the eigenvalues of the
matrix A, or the characteristic exponents for the problem. For the purpose of classifying the
solutions of the characteristic equation (2.33) it is convenient to use the following notations:

λ2 − pλ+ q = 0,

where

p = a + d, q = ad − bc. (2.34)
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Also put


 = p2 − 4q. (2.35)

The eigenvalues λ = λ1 and λ = λ2 are given by

λ1, λ2 = 1
2 (p ±
1/2). (2.36)

These are to be substituted successively into (2.31) to obtain corresponding values for the
constants r and s.
There are two main classes to be considered; when the eigenvalues are real and different, and

when they are complex. These cases are distinguished by the sign of the discriminant 
 (we
shall not consider the special case when 
 = 0). If 
 > 0 the eigenvalues are real, and if 
 < 0
they are complex. We assume also that q 	= 0 (see (2.25)).

Time solutions when 
 > 0,q 	= 0

In this case λ1 and λ2 are real and distinct. When λ = λ1 eqns (2.31) for r and s become

(a − λ1)r + bs = 0, cr + (d − λ1)s = 0. (2.37)

Since the determinant (2.32) is zero, its rows are linearly dependent. Therefore one of these
eqns (2.37) is simply a multiple of the other; effectively we have only one equation connecting
r and s. Let r = r1, s = s1 be any (nonzero) solution of (2.37), and put (in line with (2.30))

v1 =
[
r1
s1

]
	= 0. (2.38)

This is called an eigenvector of A corresponding to the eigenvalue λ1. We have then obtained
one of the two basic time solutions having form (2.26).
This process is repeated starting with λ = λ2, giving rise to an eigenvector

v2 =
[
r2
s2

]
.

The general solution is then given by (2.27):

x(t) = C1v1eλ1t + C2v2eλ2t (2.39)

in vector form, where C1 and C2 are arbitrary constants.

Time solutions when 
 < 0,q 	= 0

In this case λ1 and λ2, obtained from (2.36), are complex, given by

λ1 = 1
2 {p + i(−
)1/2} = α + iβ,

λ2 = 1
2 {p − i(−
)1/2} = α − iβ,

(2.40)

where α = 1
2p and β = 1

2 (−
)1/2 are real numbers. Therefore λ1 and λ2 are complex
conjugates.
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Obtain an eigenvector corresponding to λ1 from (2.31),

v = v1 =
[
r1
s1

]
, (2.41)

exactly as before, where r1 and s1 are now complex. Since a, b, c, d are all real numbers, a
suitable eigenvector corresponding to λ2 (= λ̄1) is given by taking r2 = r̄1, s2 = s̄1 as solutions
of (2.31):

v2 = v̄1 =
[
r̄1
s̄1

]
.

Therefore, two basic complex time solutions taking the form (2.26) are

ve(α+iβ)t , v̄e(α−iβ)t ,

where ν is given by (2.41). The general (complex) solution of (2.24) is therefore

x(t) = C1ve(α+iβ)t + C2v̄e(α−iβ)t , (2.42)

where C1 and C2 are arbitrary constants which are in general complex.
We are interested only in real solutions. These are included among those in (2.42); the

expression is real if and only if

C2 = C̄1,

in which case the second term is the conjugate of the first, and we obtain

x(t) = 2Re{C1ve(α+iβ)t },
or

x(t) = Re{Cve(α+iβ)t }, (2.43)

where C(=2C1) is an arbitrary complex constant.

Exercise 2.4
Find the eigenvalues, eigenvectors and general solution of

ẋ = −4x + y, ẏ = −2x − y

2.5 The phase paths of linear autonomous plane systems

For the system

ẋ = ax + by, ẏ = cx + dy, (2.44)

the general character of the phase paths can be obtained from the time solutions (2.39) and
(2.43). It might be thought that an easier approach would be to obtain the phase paths directly
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by solving their differential equation

dy
dx
= cx + dy

ax + by
,

but the standard methods for solving these equations lead to implicit relations between x and
y which are difficult to interpret geometrically. If eqn (2.44) is a linear approximation near the
origin then the following phase diagrams will generally approximate to the phase diagram of
the nonlinear system. Linearization is an important tool in phase plane analysis.
The phase diagram patterns fall into three main classes depending on the eigenvalues, which

are the solutions λ1, λ2 of the characteristic equation (2.34):

λ2 − pλ+ q = 0, (2.45)

with p = a + d and q = ad − bc 	= 0. The three classes are

(A) λ1, λ2 real, distinct and having the same sign;

(B) λ1, λ2 real, distinct and having opposite signs;

(C) λ1, λ2 are complex conjugates.

These cases are now treated separately.

(A) The eigenvalues real, distinct, and having the same sign

Call the greater of the two eigenvalues λ1, so that

λ2 < λ1. (2.46)

In component form the general solution (2.39) for this case becomes

x(t) = C1r1eλ1t + C2r2eλ2t , y(t) = C1s1eλ1t + C2s2eλ2t , (2.47)

where C1,C2 are arbitrary constants and r1, s1 and r2, s2 are constants obtained by solving
(2.37) with λ= λ1 and λ= λ2 respectively. From (2.47) we obtain also

dy
dx
= ẏ

ẋ
= C1s1λ1eλ1t + C2s2λ2eλ2t

C1r1λ1eλ1t + C2r2λ2eλ2t
(2.48)

Suppose firstly that λ1 and λ2 are negative, so that

λ2 < λ1 < 0. (2.49)

From (2.49) and (2.47), along any phase path

x and y approach the origin as t →∞,
x and y approach infinity as t →−∞.

}
(2.50)
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Also there are four radial phase paths, which lie along a pair of straight lines as follows:

if C2 = 0,
y

x
= s1

r1
;

if C1 = 0,
y

x
= s2

r2
.

⎫⎪⎪⎬
⎪⎪⎭ (2.51)

From (2.48), the dominant terms being those involving eλ1t for large positive t , and eλ2t for
large negative t , we obtain

dy
dx
→ s1

r1
as t →∞,

dy
dx
→ s2

r2
as t →−∞.

⎫⎪⎪⎬
⎪⎪⎭ (2.52)

Along with (2.50) and (2.51), this shows that every phase path is tangential to y = (s1/r1)x at
the origin, and approaches the direction of y = (s2/r2)x at infinity. The radial solutions (2.51)
are called asymptotes of the family of phase paths. These features can be seen in Fig. 2.5(a).
If the eigenvalues λ1, λ2 are both positive, with λ1 > λ2 > 0, the phase diagram has similar

characteristics (Fig. 2.5(b)), but all the phase paths are directed outward, running from the
origin to infinity.
These patterns show a new feature called a node. Figure 2.5(a) shows a stable node and

Fig. 2.5(b) an unstable node. The conditions on the coefficients which correspond to these
cases are:

stable node: 
 = p2 − 4q > 0, q > 0, p < 0;

unstable node: 
 = p2 − 4q > 0, q > 0, p > 0.

}
(2.53)

Figure 2.5 (a) Stable node; (b) unstable node.
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(B) The eigenvalues are real, distinct, and of opposite signs

In this case

λ2 < 0 < λ1,

and the solution (2.47) and the formulae (2.48) still apply. In the same way as before, we can
deduce that four of the paths are straight lines radiating from the origin, two of them lying
along each of the lines

y

x
= s1

r1
and

y

x
= s2

r2
(2.54)

which are broken by the equilibrium point at the origin.
In this case however there are only two paths which approach the origin. From (2.47) it can

be seen that these are the straight-line paths which lie along y/x = s2/r2, obtained by putting
C1 = 0. The other pair of straight-line paths go to infinity as t →∞, as do all the other paths.
Also, every path (except for the two which lie along y/x = s2/r2) starts at infinity as t →−∞.
The pattern is like a family of hyperbolas together with its asymptotes, as illustrated in Fig. 2.6.

Figure 2.6 Saddle point.

The equilibrium point at the origin is a saddle. From (2.45), the conditions on the coefficients
of the characteristic equation are

saddle point
 = p2 − 4q > 0, q < 0. (2.55)

A saddle is always unstable.
The following example illustrates certain short-cuts which are useful for cases when the

system coefficients a, b, c, d are given numerically.

Example 2.8 Sketch the phase diagram and obtain the time solutions of the system

ẋ = 3x − 2y, ẏ = 5x − 4y (i)
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The characteristic equation is λ2 − pλ+ q = 0, where p = a + d = −1 and q = ad − bc = −2. Therefore
λ2 + λ− 2 = 0 = (λ− 1)(λ+ 2),

so that

λ1 = 1, λ2 = −2. (ii)

Since these are of opposite sign the origin is a saddle. (If all we had needed was the phase diagram, we could
have checked (2.55) instead:

q = −2 < 0 and p2 − 4q = 9 > 0;

but we need λ1 and λ2 for the time solution.)
We know that the asymptotes are straight lines, and therefore have the form y = mx. We can find m by

substituting y = mx into the equation for the paths:

dy
dx
= cx + dy

ax + by
= 5x − 4y

3x − 2y
,

which implies that m = (5− 4m)/(3− 2m). Therefore

2m2 − 7m+ 5 = 0,

from which m = 5
2 and 1, so the asymptotes are

y = 5
2x and y = x. (iii)

The pattern of the phase diagram is therefore as sketched in Fig. 2.7. The directions may be found by continuity,
starting at any point. For example, at C: (1, 0), eqn (i) gives ẏ = 5>0, so the path through C follows the
direction of increasing y. This settles the directions of all other paths.

The general time solution of (i) is

x(t) = C1r1eλ1t + C2r2eλ2t = C1r1et + C2r2e−2t

y(t) = C1s1eλ1t + C2s2eλ2t = C1s1et + C2s2e−2t .

}
(iv)

Figure 2.7 Saddle point of ẋ = 3x − 2y, ẏ = 5x − 4y.
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The paths B ′O,BO correspond to solutions with C1 = 0, since they enter the origin as t →∞. On these paths

y

x
= C2s2e−2t

C2r2e−2t
= s2

r2
= 5

2

from eqn (iii). Similarly, on OA and OA′

y

x
= s1

r1
= 1.

We may therefore choose s1 = r1 = 1, and s2 = 5, r2 = 2. Putting these values into (iv) we obtain the general
solution

x(t) = C1e
t + 2C2e

−2t ,

y(t) = C1e
t + 5C2e

−2t ,

where C1 and C2 are arbitrary constants. �

(C) The eigenvalues are complex

Complex eigenvalues of real matrices always occur as complex conjugate pairs, so put

λ1 = α + iβ, λ2 = α − iβ (α,β real). (2.56)

By separating the components of (2.43) we obtain for the general solution

x(t) = eαtRe{Cr1eiβt }, y(t) = eαtRe{Cs1eiβt }, (2.57)

where C, r1, and s1 are all complex in general.
Suppose firstly that α = 0. Put C, r1, s1 into polar form:

C = |C|eiγ , r1 = |r1|eiρ , s1 = |s1|eiσ .

Then (2.57), with α = 0, becomes

x(t) = |C||r1| cos(βt + γ + ρ), y(t) = |C||s1| cos(βt + γ + σ). (2.58)

The motion of the representative point (x(t), y(t)) in the phase plane consists of two simple
harmonic components of equal circular frequency β, in the x and y directions, but they have
different phase and amplitude. The phase paths therefore form a family of geometrically similar
ellipses which, in general, is inclined at a constant angle to the axes. (The construction is
similar to the case of elliptically polarized light; the proof involves eliminating cos(βt + γ ) and
sin(βt + γ ) between the equations in (2.58).)
This case is illustrated in Fig. 2.8. The algebraic conditions corresponding to the centre at

the origin are

centre p = 0, q > 0. (2.59)
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Figure 2.8 Typical centre: rotation may be in either sense.

Figure 2.9 (a) Stable spiral; (b) unstable spiral.

Now suppose that α 	= 0. As t increases in eqns (2.57), the elliptical paths above are modified
by the factor eαt . This prevents them from closing, and each ellipse turns into a spiral; a
contracting spiral if α < 0, and an expanding spiral if α > 0 (see Fig. 2.9). The equilibrium
point is then called a spiral or focus, stable if α < 0, unstable if α > 0. The directions may be
clockwise or counterclockwise.
The algebraic conditions are

stable spiral: 
 = p2 − 4q < 0, q > 0, p < 0;
unstable spiral: 
 = p2 − 4q < 0, q > 0, p > 0.

}
(2.60)

Example 2.9 Determine the nature of the equilibrium point of the system ẋ = −x − 5y, ẏ = x + 3y.

We have a = −1, b = −5, c = 1, d = 3. Therefore

p = a + d = 2 > 0, q = ad − bc = 2 > 0,
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so that 
 = p2 − 4q = −4 < 0. These are the conditions (2.60) for an unstable spiral. By putting, say
x > 0, y = 0 into the equation for ẏ, we obtain ẏ > 0 for phase paths as they cross the positive x axis. The
spiral paths therefore unwind in the counterclockwise direction. �
In addition to the cases discussed there are several degenerate cases. These occur when there

is a repeated eigenvalue, or when an eigenvalue is zero.
If q = det A = 0, then the eigenvalues are λ1 = p, λ2 = 0. If p 	= 0, then as in the case

(2.39), with v1 and v2 the eigenvectors,

x(t) = C1v1ept + C2v2.

There is a line of equilibrium points given by

ax + by = 0

(which is effectively the same equation as cx + dy = 0; the two expressions are linearly depen-
dent). The phase paths form a family of parallel straight lines as shown in Fig. 2.10. A further
special case arises if q = 0 and p = 0.

If 
 = 0, then eigenvalues are real and equal with λ = 1
2p. If p 	= 0, it can be shown that

the equilibrium point becomes a degenerate node (see Fig. 2.10), in which the two asymptotes
have converged.
Figure 2.10 summarizes the results of this section as a pictorial diagram, whilst the table

classifies the equilibrium points in terms of the parameters p, q and 
.

Figure 2.10 Classification for the linear system in the (p, q) plane: ẋ = ax + by, ẏ = cx + dy with p = a + d, q =
ad − bc, 
 = p2 − 4q.
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Classification of equilibrium points of ẋ = ax + by, ẏ = cx + dy

p = a + d q = ad − bc 
 = p2 − 4q

Saddle — q < 0 
 > 0
Stable node p < 0 q > 0 
 > 0
Stable spiral p < 0 q > 0 
 < 0
Unstable node p > 0 q > 0 
 > 0
Unstable spiral p > 0 q > 0 
 < 0
centre p = 0 q > 0 
 < 0
Degenerate stable node p < 0 q > 0 
 = 0
Degenerate unstable node p > 0 q > 0 
 = 0

(2.61)

A centre may be regarded as a degenerate case, forming a transition between stable and
unstable spirals. The existence of a centre depends on there being a particular exact rela-
tion, namely a + d =0, between coefficients of the system, so a centre is rather a fragile
feature. Consequently, if the linear approximation to a nonlinear system predicts a centre
it cannot be reliably concluded that the original system has a centre: it might have a stable,
or worse, an unstable spiral (see, e.g. Problem 2.7). The same applies to all the degenerate
cases indicated: if they are used as linear approximations then, taken alone, they are unreliable
indicators.
If there exists a neighbourhood of an equilibrium point such that every phase path starting

in the neighbourhood ultimately approaches the equilibrium point, the point is known as an
attractor. (The term is used both for linear and nonlinear systems.) The stable node and stable
spiral are attractors. An attractor with all path directions reversed is a repellor. Unstable nodes
and spirals are repellors, but a saddle point is not. The terms attractor and repellor can also be
applied to limit cycles, and to less well defined attracting sets, such as the strange attractor of
Chapter 13, from which paths cannot escape.
If the eigenvalues of the linearized equation have nonzero real parts then the equilibrium

point is said to be hyperbolic. It is shown in Chapter 10 that at hyperbolic points the phase
diagrams of the nonlinear equations and the linearized equations are, locally, qualitatively the
same. Spirals, nodes, and saddles are hyperbolic but the centre is not.

Exercise 2.5
Using Fig. 2.10 classify the equilibrium points of:

(a) ẋ = −4x + 2y, ẏ = 4x + 3y;

(b) ẋ = −6x + 5y, ẏ = −5x + 2y;

(b) ẋ = 11x + 6y, ẏ = −6x − 2y.
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2.6 Scaling in the phase diagram for a linear autonomous system

Consider the system

ẋ = ax + by, ẏ = cx + dy. (2.62)

In Fig. 2.11, P represents a segment of a phase path, passing throughA : (xA, yA) at (say) t = 0,
and P : (xP (t), yP (t)) is the representative point on P at time t .
The segment Ck is a scaled copy of P , constructed in the following way. Choose any constant

k; and the two points B : (xB , yB) and Q : (xQ, yQ) such that

(xB , yB) = (kxA, kyA), (xQ, yQ) = (kxP , kyP ). (2.63)

Then B lies on the radius OA and Q on the radius OP , extended as necessary. Points B and
Q are on the same side or opposite sides of the origin according to whether k >0 or k <0,
respectively (in Fig. 2.11, k >1). As the representative point P traces the phase path P ,Q
traces the curve Ck.

A: (       )
: (      )

: (          )

: (          )

C

P

Figure 2.11 P is a phase path segment. Ck is the image of P, expanded by a factor k. It is also a phase path.

Since P is the representative point on the phase path P , the system equations (2.62) give

kẋP = a(kxP )+ b(kyP ), kẏP = c(kxP )+ d(kyP ).

Therefore, from (2.63)

ẋQ = axQ + byQ, ẏQ = cxQ + dyQ. (2.64)

The functions xQ(t), yQ(t) therefore satisfy the system equations, with Q passing through B at
time t = 0. Hence given any value of k, Ck is another phase path, with Q its representative
point.
Various facts follow easily from this result.

(i) Any phase path segment spanning a sector centred on the origin determines all the rest
within the sector, and in the opposite sector. A region consisting of a circle of radius r,
centred on the origin, contains the same geometrical pattern of phase paths no matter what
the value of r may be.
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(ii) All the phase paths spanning a two-sided sector are geometrically similar. They are similarly
positioned and directed if k >0, and are reflected in the origin if k <0.

(iii) Any half cycle of a spiral (that is any segment of angular width π ) generates the complete
spiral structure of the phase diagram.

(iv) All path segments spanning a two-sided radial sector are traversed by the representative
points in the same time. In particular, all closed paths have the same period. All complete
loops of any spiral path (that is, in a sectorial angle 2π) have the same transit time.

(v) A linear system has no limit cycles (i.e., no isolated closed paths).

2.7 Constructing a phase diagram

Suppose that the given system

ẋ = X(x, y), ẏ = Y (x, y) (2.65)

has an equilibrium point at (x0, y0):

X(x0, y0 = 0, Y (x0, y0) = 0. (2.66)

The pattern of phase paths close to (x0, y0) may be investigated by linearizing the equations at
this point, retaining only linear terms of the Taylor series forX and Y there. It is simplest to use
the method leading up to eqn (2.22) to obtain the coefficients. If local coordinates are defined by

ξ = x − x0, η = y − y0,

then, approximately,

[
ξ̇

η̇

]
=
[
a b

c d

] [
ξ

η

]
, (2.67)

where the coefficients are given by

[
a b

c d

]
=

⎡
⎢⎢⎣
∂X

∂x
(x0, y0)

∂X

∂y
(x0, y0)

∂Y

∂x
(x0, y0)

∂Y

∂y
(x0, y0)

⎤
⎥⎥⎦ . (2.68)

The equilibrium point is then classified using the methods of Section 2.4. This is done for each
equilibrium point in turn, and it is then possible to make a fair guess at the complete pattern
of the phase paths, as in the following example.
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Example 2.10 Sketch the phase diagram for the nonlinear system

ẋ = x − y, ẏ = 1− xy. (i)

The equilibrium points are at (−1,−1) and (1, 1). The matrix for linearization, to be evaluated at each
equilibrium point in turn, is

⎡
⎢⎣

∂X

∂x

∂X

∂y
∂Y

∂x

∂Y

∂y

⎤
⎥⎦ = [ 1 −1

−y −x
]
. (ii)

At (−1,−1) eqns (2.67) becomes

[
ξ̇

η̇

]
=
[
1 −1
1 1

] [
ξ

η

]
, (iii)

where ξ = x+ 1, η = y+ 1. The eigenvalues of the coefficient matrix are found to be λ1, λ2 = 1± i, implying
an unstable spiral. To obtain the direction of rotation, it is sufficient to use the linear equations (iii) (or the
original equations may be used): putting η = 0, ξ > 0 we find η̇ = ξ > 0, indicating that the rotation is
counterclockwise as before.

At (1, 1), we find that

[
ξ̇

η̇

]
=
[

1 −1
−1 −1

] [
ξ

η

]
, (iv)

where ξ = x − 1, η = y − 1. The eigenvalues are given by λ1, λ2 = ±√2, which implies
a saddle. The directions of the ‘straight-line’ paths from the saddle (which become curved sepa-
ratrices when away from the equilibrium point), are resolved by the technique of Example 2.8:
from (iv)

η̇

ξ̇
= dη

dξ
= −ξ − η

ξ − η
. (v)

We know that two solutions of this equation have the form η=mξ for some values of m. By substituting in (v)
we obtain m2−2m−1=0, so that m= 1±√2.

Finally the phase diagram is put together as in Fig. 2.12, where the phase paths in the neighbourhoods of
the equilibrium points are now known. The process can be assisted by sketching in the direction fields on the
lines x=0, x=1, etc., also on the curve 1− xy=0 on which the phase paths have zero slopes, and the line
y= x on which the paths have infinite slopes. �

Exercise 2.6
Find and classify the equilibrium points of

ẋ = 1
8 (x + y)3 − y, ẏ = 1

8 (x + y)3 − x.

Verify that lines y = x, y = 2 − x, y = −2 − x, are phase paths. Finally sketch the phase
diagram of the system.
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Figure 2.12 Phase diagram for ẋ = x − y, ẏ = 1− xy.

Exercise 2.7
Classify the equilibrium points of the following systems:

(a) ẋ = x2 + y2 − 2, ẏ = y − x2;

(b) ẋ = x2 − y2 + 1, ẏ = y − x2 + 5;

Using isoclines draw a rough sketch of their phase diagrams. Compare your diagrams with
computed phase diagrams.

2.8 Hamiltonian systems

By analogy with the form of Hamilton’s canonical equations in mechanics, a system

ẋ = X(x, y), ẏ = Y (x, y) (2.69)

is called a Hamiltonian system if there exists a function H(x, y) such that

X = ∂H

∂y
and Y = ∂H

∂x
. (2.70)

Then H is called theHamiltonian function for the system. A necessary and sufficient condition
for (2.69) to be Hamiltonian is that

∂X

∂x
+ ∂Y

∂y
= 0. (2.71)
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Let x(t), y(t) represent a particular time solution. Then along the corresponding
phase path,

dH
dt
= ∂H

∂x

dx
dt
+ ∂H

∂y

dy
dt

= −YX +XY (from (2.69), (2.70))

= 0.

Therefore,

H(x, y) = constant (2.72)

along any phase path. From (2.72), the phase paths are the level curves, or contours,

H(x, y) = C (2.73)

of the surface

z = H(x, y)

in three dimensions.
Suppose that the system has an equilibrium point at (x0, y0) so that

∂H

∂x
= ∂H

∂y
= 0 at (x0, y0). (2.74)

Then H(x, y) has a stationary point at (x0, y0). Sufficient conditions for the three main
types of stationary point are given by standard theory; we condense the standard criteria as
follows. Put

q0 = ∂2H

∂x2

∂2H

∂y2
−
(
∂2H

∂x∂y

)
(2.75)

evaluated at (x0, y0). Then

(a) H(x, y) has a maximum or minimum at (x0, y0) if

q0 > 0; (2.76)

(b) H(x, y) has a saddle at (x0, y0) if

q0 < 0. (2.77)

(We shall not consider cases where q0 = 0, although similar features may still be present.)
Since the phase paths are the contours of z = H(x, y), we expect that in the case (2.76), the

equilibrium point at (x0, y0) will be a centre, and that in case (2.77) it will be a saddle point.
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There is no case corresponding to a node or spiral: a Hamiltonian system contains only centres
and various types of saddle point.
The same prediction is obtained by linearizing the equations at the equilibrium point. From

(2.46) the linear approximation at (x0, y0) is

ẋ = a(x − x0)+ b(y − y0), ẏ = c(x − x0)+ d(y − y0), (2.78)

where, in the Hamiltonian case, the coefficients become

a = ∂2H

∂x∂y
, b = ∂2H

∂y2
, c = −∂2H

∂x2
, d = − ∂2H

∂x∂y
, (2.79)

all evaluated at (x0, y0).
The classification of the equilibrium point is determined by the values of p and q defined in

eqn (2.34), and it will be seen that the parameter q is exactly the same as the parameter q0
defined in (2.75). We have, from (2.45) and (2.79),

p = a + d = 0, q = ad − bc = −
(
∂2H

∂x∂y

)2
+ ∂2H

∂x2

∂2H

∂y2
, (2.80)

at (x0, y0) (therefore q = q0, as defined in (2.75)). The conditions (2.60) for a centre are that
p = 0 (automatically satisfied in (2.80)) and that q > 0. This is the same as the requirement
(2.76), that H should have a maximum or minimum at (x0, y0).
Note that the criterion (2.80) for a centre, based on the complete geometrical character of

H(x, y), is conclusive whereas, as we have pointed out several times, the linearization criterion
is not always conclusive.
If q = 0 maxima and minima ofH still correspondent to centres, but more complicated types

of saddle are possible.

Example 2.11 For the equations

ẋ = y(13− x2 − y2), ẏ = 12− x(13− x2 − y2):

(a) show that the system isHamiltonian and obtain theHamiltonian functionH(x, y); (b) obtain the equilibrium
points and classify them; (c) sketch the phase diagram.

(a) We have

∂X

∂x
+ ∂Y

∂y
= ∂

∂x
{y(13− x2 − y2)} + ∂

∂y
{12− x(13− x2 − y2)}

= −2xy + 2xy = 0.

Therefore, by (2.71), this is a Hamiltonian system. From (2.70)

∂H

∂x
= −Y = −12+ x(13− x2 − y2), (i)

∂H

∂y
= X = y(13− x2 − y2). (ii)
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Integrate (i) with respect to x keeping y constant, and (ii) with respect to y keeping x constant: we obtain

H = −12x + 13
2 x2 − 1

4x
4 − 1

2x
2y2 + u(y), (iii)

H = 13
2 y2 − 1

2x
2y2 − 1

4y
4 + ν(x), (iv)

respectively, where u(y) and ν(x) are arbitrary functions of y and x only, but subject to the consistency of
eqns (iii) and (iv). The two equations will match only if we choose

u(y) = 13
2 y2 − 1

4y
4 − C,

v(x) = −12x + 13
2 x2 − 1

4x
4 − C,

where C is any constant (to see why, subtract (iv) from (iii): the resulting expression must be identically zero).
Therefore the phase paths are given by

H(x, y) = −12x + 13
2 (x2 + y2)− 1

4 (x
4 + y4)− 1

4 (x
4 + y4)− 1

4 − 1
2x

2y2 = C, (v)

where C is a parameter.
(b) the equilibrium points occur where

y(13− x2 − y2) = 0, 12− x(13− x2 − y2) = 0.

Solutions exist only at points where y = 0, and

x3 − 13x + 12 = (x − 1)(x − 3)(x + 4) = 0.

Therefore, the coordinates of the equilibrium points are

(1, 0), (3, 0), (−4, 0). (vi)

The second derivatives of H(x, y) are

∂2H

∂x2
= 13− 3x2 − y2,

∂2H

∂y2
= 13− x2 − 3y2,

∂2H

∂x∂y
= −2xy.

We need only compute q (see (2.75)) at the equilibrium points. The results are

Equilibrium points (1, 0) (3, 0) (−4, 0)

Value of q 120 > 0 −56 < 0 105 > 0
Classification centre Saddle centre

(c) A computed phase diagram is shown in Fig. 2.13. �
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Figure 2.13 Phase diagram for the Hamiltonian system ẋ = y(13− x2 − y2), ẏ = 12− x(13− x2 − y2).

Exercise 2.8
Shows that the system

ẋ = (x2 − 1)(3y2 − 1), ẏ = −2xy(y2 − 1)

is Hamiltonian. Find the coordinates of the 8 equilibrium points. Using the obvious exact
solutions and the Hamiltonian property draw a rough sketch of the phase diagram.

Problems

2.1 Sketch phase diagrams for the following linear systems and classify the equilibrium point:
(i) ẋ = x − 5y, ẏ = x − y;
(ii) ẋ = x + y, ẏ = x − 2y;
(iii) ẋ = −4x + 2y, ẏ = 3x − 2y;
(iv) ẋ = x + 2y, ẏ = 2x + 2y;
(v) ẋ = 4x − 2y, ẏ = 3x − y;
(vi) ẋ = 2x + y, ẏ = −x + y.

2.2 Some of the following systems either generate a single eigenvalue, or a zero eigenvalue, or in other ways
vary from the types illustrated in Section 2.5. Sketch their phase diagrams.

(i) ẋ = 3x − y, ẏ = x + y;
(ii) ẋ = x − y, ẏ = 2x − 2y;
(iii) ẋ = x, ẏ = 2x − 3y;
(iv) ẋ = x, ẏ = x + 3y;
(v) ẋ = −y, ẏ = 2x − 4y;
(vi) ẋ = x, ẏ = y;
(vii) ẋ = 0, ẏ = x.
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2.3 Locate and classify the equilibrium points of the following systems. Sketch the phase diagrams: it will
often be helpful to obtain isoclines and path directions at other points in the plane.

(i) ẋ = x − y, ẏ = x + y − 2xy;
(ii) ẋ = yey , ẏ = 1− x2;
(iii) ẋ = 1− xy, ẏ = (x − 1)y;
(iv) ẋ = (1+ x − 2y)x, ẏ = (x − 1)y;
(v) ẋ = x − y, ẏ = x2 − 1;
(vi) ẋ = −6y + 2xy − 8, ẏ = y2 − x2;
(vii) ẋ = 4− 4x2 − y2, ẏ = 3xy;
(viii) ẋ = −y√(1− x2), ẏ = x

√
(1− x2) for |x| ≤ 1;

(ix) ẋ = sin y, ẏ = − sin x;
(x) ẋ = sin x cos y, ẏ = sin y cos x.

2.4 Construct phase diagrams for the following differential equations, using the phase plane in which y = ẋ.
(i) ẍ + x − x3 = 0;
(ii) ẍ + x + x3 = 0;
(iii) ẍ + ẋ + x − x3 = 0;
(iv) ẍ + ẋ + x + x3 = 0;
(v) ẍ = (2 cos x − 1) sin x.

2.5 Confirm that system ẋ = x − 5y, ẏ = x − y consists of a centre. By substitution into the equation for the
paths or otherwise show that the family of ellipses given by

x2 − 2xy + 5y2 = constant

describes the paths. Show that the axes are inclined at about 13.3◦ (the major axis) and −76.7◦ (the
minor axis) to the x direction, and that the ratio of major to minor axis length is about 2.62.

2.6 The family of curves which are orthogonal to the family described by the equation (dy/dx)= f (x, y) is
given by the solution of (dy/dx)= − [1/f (x, y)]. (These are called orthogonal trajectories of the first
family.) Prove that the family which is orthogonal to a centre that is associated with a linear system is a
node.

2.7 Show that the origin is a spiral point of the system ẋ= − y − x
√
(x2 + y2), ẏ= x − y

√
(x2 + y2) but a

centre for its linear approximation.

2.8 Show that the systems ẋ = y, ẏ = −x − y2, and ẋ= x + y1, ẏ1=−2x − y1 − (x + y1)
2, both represent

the equation ẍ + ẋ2 + x=0 in different (x, y) and (x, y1) phase planes. Obtain the equation of the phase
paths in each case.

2.9 Use eqn (2.9) in the form δs 
 δt
√
(X2 + Y2) to mark off approximately equal time steps on some of the

phase paths of ẋ= xy, ẏ= xy − y2.

2.10 Obtain approximations to the phase paths described by eqn (2.12) in the neighbourhood of the
equilibrium point x= b/d, y= a/c for the predator-prey problem ẋ= ax − cxy, ẏ= − by + dxy (see
Example 2.3). (Write x= b/d + ξ , y= a/c + η, and expand the logarithms to second-order terms in
ξ and η.)

2.11 For the system ẋ = ax+ by, ẏ = cx+ dy, where ad− bc = 0, show that all points on the line cx+ dy = 0
are equilibrium points. Sketch the phase diagram for the system ẋ = x − 2y, ẏ = 2x − 4y.

2.12 The interaction between two species is governed by the deterministic model Ḣ = (a1 − b1H − c1P)H ,
Ṗ = (−a2 + c2H)P , where H is the population of the host (or prey), and P is that of the parasite (or
predator), all constants being positive. (Compare Example 2.3: the term −b1H2 represents interference
with the host population when it gets too large.) Assuming that a1c2 − b1a2 > 0, find the equilibrium
states for the populations, and find how they vary with time from various initial populations.
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2.13 With the same terminology as in Problem 2.12, analyse the system Ḣ = (a1 − b1H − c1P)H , Ṗ =
(a2−b2P +c2H)P , all the constants being positive. (In this model the parasite can survive on alternative
food supplies, although the prevalence of the host encourages growth in population.) Find the equilibrium
states. Confirm that the parasite population can persist even if the host dies out.

2.14 Consider the host–parasite population model Ḣ = (a1 − c1P)H , Ṗ = (a2 − c2(P /H))P , where the
constants are positive. Analyse the system in the H ,P plane.

2.15 In the population model Ḟ = −αF +βµ(M)F , Ṁ = −αM+γµ(M)F , where α > 0, β > 0, γ > 0,F and
M are the female and male populations. In both cases the death rates are α. The birth rate is governed
by the coefficient µ(M) = 1− e−kM , k > 0, so that for large M the birth rate of females is βF and that
for males is γF , the rates being unequal in general. Show that if β > α then there are two equilibrium
states, at (0, 0) and at ([−β/(γ k)] log[(β − α)/β], [−1/k] log[(β − α)/β]).

Show that the origin is stable and that the other equilibrium point is a saddle point, according to their
linear approximations. Verify that M = γF/β is a particular solution. Sketch the phase diagram and
discuss the stability of the populations.

2.16 A rumour spreads through a closed population of constant size N + 1. At time t the total population can
be classified into three categories:

x persons who are ignorant of the rumour;

y persons who are actively spreading the rumour;

z persons who have heard the rumour but have stopped spreading it: if two persons who are spreading
the rumour meet then they stop spreading it.

The contact rate between any two categories is a constant, µ.
Show that the equations

ẋ = −µxy, ẏ = µ[xy − y(y − 1)− yz]
give a deterministic model of the problem. Find the equations of the phase paths and sketch the phase
diagram.

Show that, when initially y = 1 and x = N , the number of people who ultimately never hear the
rumour is x1, where

2N + 1− 2x1 +N log(x1/N) = 0.

2.17 The one-dimensional steady flow of a gas with viscosity and heat conduction satisfies the equations

µ0
ρc1

dv
dx
= √(2v)[2v −√(2v)+ θ ],

k

gRρc1

dθ

dx
= √(2v)

[
θ

γ − 1
− v +√(2v)− c

]
,

where v= u2/(2c21), c= c22/c
2
1 and θ = gRT /c21 =p/(ρc21). In this notation, x is measured in the direction

of flow, u is the velocity, T is the temperature, ρ is the density, p the pressure, R the gas constant, k the
coefficient of thermal conductivity, µ0 the coefficient of viscosity, γ the ratio of the specific heats, and
c1, c2 are arbitrary constants. Find the equilibrium states of the system.

2.18 A particle moves under a central attractive force γ /rα per unit mass, where r, θ are the polar coordinates
of the particle in its plane of motion. Show that

d2u

dθ2
+ u = γ

h2
uα−2,

where u = r−1, h is the angular momentum about the origin per unit mass of the particle, and γ is a
constant. Find the non-trival equilibrium point in the u, du/dθ plane and classify it according to its linear
approximation. What can you say about the stability of the circular orbit under this central force?
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2.19 The relativistic equation for the central orbit of a planet is

d2u

dθ2
+ u = k + εu2,

where u = 1/r, and r, θ are the polar coordinates of the planet in the plane of its motion. The term εu2

is the ’Einstein correction’, and k and ε are positive constants, with ε very small. Find the equilibrium
point which corresponds to a perturbation of the Newtonian orbit. Show that the equilibrium point is a
centre in the u, du/dθ plane according to the linear approximation. Confirm this by using the potential
energy method of Section 1.3.

2.20 A top is set spinning at an axial rate n radians / sec about its pivotal point, which is fixed in space. The
equations for its motion, in terms of the angles θ and µ are (see Fig. 2.14)

Aθ̇ − A(�+ µ̇)2 sin θ cos θ + Cn(�+ µ̇) sin θ −Mgh sin θ = 0,

Aθ̇2 + A(�+ µ̇)2 sin2 θ + 2Mgh cos θ = E;

�

�

Figure 2.14 Spinning top.

where (A,A,C) are the principal moments of inertia about O,M is the mass of the top, h is the distance
between the mass centre and the pivot, and E is a constant. Show that an equilibrium state is given by
θ = α, after elimination of � between

A�2 cosα − Cn�+Mgh = 0, A�2 sin2 α + 2Mgh cosα = E.

Suppose that E=2Mgh, so that θ =0 is an equilibrium state. Show that, close to this state, θ satisfies

Aθ̈ + [(C − A)�2 −Mgh]θ = 0.

For what condition on � is the motion stable?

2.21 Three freely gravitating particles with gravitational masses µ1, µ2, µ3, move in a plane so that they
always remain at the vertices of an equilateral triangle P1, P2, P3 with varying side-length a(t) as shown
in Figure 2.15. The triangle rotates in the plane with spin �(t) about the combined mass-centre G. If the
position vectors of the particles r1, r2, r3, relative to G, show that the equations of motion are

r̈i = −µ1 + µ2 + µ3

a3
ri (i = 1, 2, 3).
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a(t)

a(t)

Ω(t)

a(t)

G

r1

r3

P1

P3

P2

Figure 2.15 Lagrange equilateral configuration for a three-body problem with P1P2 = P2P3 = P3P1 = a(t).

If |ri | = ri , deduce the polar equations

r̈i − ri�
2 = −µ1 + µ2 + µ3

a3
ri , r2i � = constant (i = 1, 2, 3).

Explain why a satisfies

ä − a�2 = −µ1 + µ2 + µ3

a2
, a2� = constant = K,

say, and that solutions of these equations completely determine the position vectors. Express the equation
in non-dimensionless formby the substitutions a = K2/(µ1 + µ2 + µ3), t = K3τ/(µ1+µ2+µ3)

2, sketch
the phase diagram for the equation in µ obtained by eliminating �, and discuss possible motions of this
Lagrange configuration.

2.22 A disc of radius a is freely pivoted at its centre A so that it can turn in a vertical plane. A spring, of natural
length 2a and stiffness λ connects a point B on the circumference of the disc to a fixed point O, distance
2a above A. Show that θ satisfies

I θ̈ = −T a sinφ, T = λa[(5− 4 cos θ)1/2 − 2],

where T is the tension in the spring, I is the moment of inertia of the disc about A, ÔAB = θ and
ÂBO = φ. Find the equilibrium states of the disc and their stability.

2.23 A man rows a boat across a river of width a occupying the strip 0 ≤ x ≤ a in the x, y plane, always
rowing towards a fixed point on one bank, say (0, 0). He rows at a constant speed u relative to the water,
and the river flows at a constant speed v. Show that

ẋ = −ux/√(x2 + y2), ẏ = v − uy/
√
(x2 + y2),

where (x, y) are the coordinates of the boat. Show that the phase paths are given by y +√(x2 + y2) =
Ax1−α , where α = v/u. Sketch the phase diagram for α < 1 and interpret it. What kind of point is the
origin? What happens to the boat if α > 1?

2.24 In a simple model of a national economy, İ = I −αC, Ċ=β(I −C−G), where I is the national income,
C is the rate of consumer spending, and G the rate of government expenditure; the constants α and β

satisfy 1<α<∞, 1≤β <∞. Show that if the rate of government expenditure G is constant G0 there is
an equilibrium state. Classify the equilibrium state and show that the economy oscillates when β = 1.
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Consider the situation when government expenditure is related to the national income by the rule
G = G0 + kI , where k > 0. Show that there is no equilibrium state if k ≥ (α − 1)/α. How does the
economy then behave?

Discuss an economy in which G = G0 + kI2, and show that there are two equilibrium states if
G0 < (α − 1)2/(4kα2).

2.25 Let f (x) and g(y) have local minima at x = a and y = b respectively. Show that f (x) + g(y) has a
minimum at (a, b). Deduce that there exists a neighbourhood of (a, b) in which all solutions of the family
of equations

f (x)+ g(y) = constant

represent closed curves surrounding (a, b).
Show that (0, 0) is a centre for the system ẋ = y5, ẏ = −x3, and that all paths are closed curves.

2.26 For the predator–prey problem in Section 2.2, show by using Problem 2.25 that all solutions in y > 0,
x > 0 are periodic.

2.27 Show that the phase paths of the Hamiltonian system ẋ=−∂H/∂y, ẏ= ∂H/∂x are given by
H(x, y)= constant . Equilibrium points occur at the stationary points of H(x, y). If (x0, y0) is an equilib-
rium point, show that (x0, y0) is stable according to the linear approximation if H(x, y) has a maximum
or a minimum at the point. (Assume that all the second derivatives of H are nonzero at x0, y0.)

2.28 The equilibrium points of the nonlinear parameter-dependent system ẋ= y, ẏ= f (x, y, λ) lie on the
curve f (x, 0, λ)=0 in the x, λ plane. Show that an equilibrium point (x1, λ1) is stable and that all
neighbouring solutions tend to this point (according to the linear approximation) if fx(x1, 0, λ1) < 0
and fy(x1, 0, λ1) < 0.

Investigate the stability of ẋ = y, ẏ = −y + x2 − λx.

2.29 Find the equations for the phase paths for the general epidemic described (Section 2.2) by the system

ẋ = −βxy, ẏ = βxy − γ y, ż = γ y.

Sketch the phase diagram in the x, y plane. Confirm that the number of infectives reaches its maximum
when x = γ /β.

2.30 Two species x and y are competing for a common food supply. Their growth equations are

ẋ = x(1− x − y), ẏ = y(3− x − 3
2y), (x, y > 0).

Classify the equilibrium points using linear approximations. Draw a sketch indicating the slopes of the
phase paths in x ≥ 0, y ≥ 0. If x = x0 > 0, y = y0 > 0 initially, what do you expect the long term
outcome of the species to be? Confirm your conclusions numerically by computing phase paths.

2.31 Sketch the phase diagram for the competing species x and y for which

ẋ = (1− x2 − y2)x, ẏ = (54 − x − y)y.

2.32 A space satellite is in free flight on the line joining, and between, a planet (mass m1) and its moon (mass
m2), which are at a fixed distance a apart. Show that

−γm1

x2
+ γm2

(a − x)2
= ẍ,

where x is the distance of the satellite from the planet and γ is the gravitational constant. Show that the
equilibrium point is unstable according to the linear approximation.

2.33 The system

V̇1 = −σV1 + f (E − V2), V̇2 = −σV2+ f (E−V1), σ>0,E>0



Problems 85

represents (Andronov and Chaikin 1949) a model of a triggered sweeping circuit for an oscilloscope. The
conditions on f (u) are: f (u) continuous on −∞ < u < ∞, f (−u) = −f (u), f (u) tends to a limit as
u→∞, and f ′(u) is monotonic decreasing (see Fig. 3.20).

Show by a geometrical argument that there is always at least one equilibrium point, (v0, v0) say, and
that when f ′(E − v0) < σ it is the only one; and deduce by taking the linear approximation that it is a
stable node. (Note that f ′(E − v)= − df (E − v)/dv.)

Show that when f ′(E−v0)> σ there are two others, at (V ′, (1/σ)f (E−V ′)) and ((1/σ)f (E−V ′),V ′)
respectively for some V ′. Show that these are stable nodes, and that the one at (v0, v0) is a saddle point.

2.34 Investigate the equilibrium points of ẋ = a − x2, ẏ = x − y. Show that the system has a saddle and a
stable node for a >0, but no equilibrium points if a < 0. The system is said to undergo a bifurcation
as a increases through a = 0. This bifurcation is an example of a saddle-node bifurcation. This will be
discussed in more detail in Section 12.4. Draw phase diagrams for a = 1 and a = −1.

2.35 Figure 2.16 represents a circuit for activating an electric arcAwhich has the voltage–current characteristic
shown. Show that Lİ = V − Va(I),RCV̇ = − RI − V + E where Va(I) has the general shape shown in
Fig. 2.16. By forming the linear approximating equations near the equilibrium points find the conditions
on E,L,C,R, and V ′a for stable working assuming that V =E − RI meets the curve V =Va(I) in three
points of intersection.

Figure 2.16

2.36 The equation for the current x in the circuit of Fig. 2.17(a) is

LCẍ + RCẋ + x = I .

Neglect the grid current, and assume that I depends only on the relative grid potential eg : I = Is
(saturation current) for eg > 0 and I = 0 for eg < 0 (see Fig. 2.17(b)). Assume also that the mutual
inductance M > 0, so that eg ≷ 0 according as ẋ ≷ 0. Find the nature of the phase paths. By considering
their successive intersectionswith the x axis show that a limit cycle is approached from all initial conditions
(Assume R2C < 4L).

2.37 For the circuit in Fig. 2.17(a) assume that the relation between I and eg is as in Fig. 2.18; that is
I = f (eg + kep), where eg and ep are the relative grid and plate potentials, k > 0 is a constant, and in the
neighbourhood of the point of inflection, f (u) = I0+au−bu3, where a >0, b>0. Deduce the equation
for x when the D.C. source E is set so that the operating point is the point of inflection. Find when the
origin is a stable or an unstable point of equilibrium. (A form of Rayleigh’s equation, Example 4.6, is
obtained, implying an unstable or a stable limit cycle respectively.)

2.38 Figure 2.19(a) represents two identical D.C. generators connected in parallel, with inductance and
resistance L, r. Here R is the resistance of the load. Show that the equations for the currents are

L
di1
dt
= −(r + R)i1 − Ri2 + E(i1),L

di2
dt
= −Ri1 − (r + R)i2 + E(i2).
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Figure 2.17

Figure 2.18

Figure 2.19
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Assuming that E(i) has the characteristics indicated by Fig. 2.19(b) show that
(i) when E′(0)< r the state i1= i2=0 is stable and is otherwise unstable;

(ii) when E′(0)< r there is a stable state i1= − i2 (no current flows to R);

(iii) when E′(0)> r + 2R there is a state with i1= i2, which is unstable.

2.39 Show that the Emden–Fowler equation of astrophysics

(ξ2η′)′ + ξληn = 0

is equivalent to the predator–prey model

ẋ = −x(1+ x + y), ẏ = y(λ+ 1+ nx + y)

after the change of variable x= ξη′/η, y= ξλ−1ηn/η′, t = log |ξ |.
2.40 Show that Blasius’ equation η′′′ + ηη′′ = 0 is transformed by x = ηη′/η′′, y = η′2/ηη′′, t = log |η′| into

ẋ = x(1+ x + y), ẏ = y(2+ x − y).

2.41 Consider the family of linear systems

ẋ = X cosα − Y sinα, ẏ = X sinα + Y cosα

where X = ax + by, Y = cx + dy, and a, b, c, d are constants and α is a parameter. Show that the
parameters (Table (2.62)) are

p = (a + d) cos α + (b − c) sin α, q = ad − bc.

Deduce that the origin is a saddle point for all α if ad < bc.
If a = 2, b = c = d = 1, show that the origin passes through the sequence stable node, stable spiral,

centre, unstable spiral, unstable node, as α varies over range π .

2.42 Show that, given X(x, y), the system equivalent to the equation ẍ + h(x, ẋ) = 0 is

ẋ = X(x, y), ẏ = −
{
h(x,X)+ x

∂X

∂x

}/
∂X

∂y
.

2.43 The following system models two species with populations N1 and N2 competing for a common food
supply:

Ṅ1 = {a1 − d1(bN1 + cN2)}N1, Ṅ2 = {a2 − d2(bN1 + cN2)}N2.

Classify the equilibrium points of the system assuming that all coefficients are positive. Show that if
a1d2 > a2d1 then the species N2 dies out and the species N1 approaches a limiting size (Volterra’s
Exclusion Principle).

2.44 Show that the system

ẋ = X(x, y) = −x + y, ẏ = Y (x, y) = 4x2

1+ 3x2
− y

has three equilibrium points at (0,0), (13 ,
1
3 ) and (1, 1). Classify each equilibrium point. Sketch the

isoclines X(x, y) = 0 and Y (x, y) = 0, and indicate the regions where dy/dx is positive, and where dy/dx
is negative. Sketch the phase diagram of the system.

2.45 Show that the systems (A) ẋ=P(x, y), ẏ=Q(x, y) and (B) ẋ=Q(x, y), ẏ=P(x, y) have the same equi-
librium points. Suppose that system (A) has three equilibrium points which, according to their linear
approximations are, (a) a stable spiral, (b) an unstable node, (c) a saddle point. To what extent can the
equilibrium points in (B) be classified from this information?
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2.46 The system defined by the equations

ẋ = a + x2y − (1+ b)x, ẏ = bx − yx2 (a 	= 0, b 	= 0)

is known as the Brusselator and arises in a mathematical model of a chemical reaction (see Jackson
(1990)). Show that the system has one equilibrium point at (a, b/a). Classify the equilibrium point in
each of the following cases:

(a) a = 1, b = 2;

(b) a = 1
2 , b = 1

4 .

In case (b) draw the isoclines of zero and infinite slope in the phase diagram. Hence sketch the phase
diagram.

2.47 A Volterra model for the population size p(t) of a species is, in reduced form,

κ
dp
dt
= p − p2 − p

∫ t

0
p(s)ds, p(0) = p0,

where the integral term represents a toxicity accumulation term (see Small (1989)). Let x = logp, and
show that x satisfies

κẍ + ex ẋ + ex = 0.

Put y = ẋ, and show that the system is also equivalent to

ẏ = −(y + 1)p/κ, ṗ = yp.

Sketch the phase diagram in the (y,p) plane. Also find the exact equation of the phase paths.



3
Geometrical aspects of
plane autonomous systems

In this chapter, we discuss several topics which are useful for establishing the structure of the
phase diagram of autonomous systems. The ‘index’ of an equilibrium point provides supporting
information on its nature and complexity, particularly in strongly nonlinear cases, where the
linear approximation is zero. Secondly, the phase diagram does not give a complete picture of
the solutions; it is not sufficiently specific about the behaviour of paths at infinity beyond the
boundaries of any diagram, and we show various projections which include ‘points at infinity’
and give the required overall view. Thirdly, a difficult question is to determine whether there
are any limit cycles and roughly where they are; this question is treated again in Chapter 11,
but here we give some elementary conditions for their existence or non-existence. Finally,
having obtained all the information our methods allow about the geometrical layout of the
phase diagram we may want to compute a number of typical paths, and some suggestions for
carrying this out are made in Section 3.5.

3.1 The index of a point

Given the system

ẋ = X(x, y), ẏ = Y (x, y), (3.1)

let� be any smooth closed curve, traversed counterclockwise, consisting only of ordinary points
(in particular, it does not pass through any equilibrium points). LetQ be a point on � (Fig. 3.1);
then there is one and only one phase path passing through Q. The phase paths belong to the
family described by the equation

dy
dx
= Y (x, y)

X(x, y)
, (3.2)

(see (2.3)). In time δt >0 the coordinates of a representative point Q, (xQ, yQ) will increase by
δx, δy respectively, where

δx ≈ X(xQ, yQ)δt , δy ≈ Y (xQ, yQ)δt .

Therefore, the vector S = (X,Y ) is tangential to the phase path through the point, and points
in the direction of increasing t . Its inclination can be measured by the angle φ measured
counterclockwise from the positive direction of the x axis to the direction of S, so that

tanφ = Y/X. (3.3)
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Figure 3.1 The angle of inclination φ of a phase path at its intersection with an arbitrarily directed closed curve �.
The vector S = (X,Y).

The curve � is traversed in the counterclockwise direction and the variation in φ is followed
along it. When the value of φ at one point has been decided, the value for other points is settled
by requiring φ to be a continuous function of position, except that φ will not in general have
its original value on returning to its starting point after a full cycle: the value may differ by an
integer multiple of 2π .

Example 3.1 Trace the variation of the vector S and the angle φ when X(x, y) = 2x2−1, Y (x, y) = 2xy, and
� is the unit circle centred at the origin.

The system ẋ = X(x, y), ẏ = Y (x, y) has equilibrium points at (1/
√
2, 0) and (−1/√2, 0), which are inside

the unit circle �. Let θ be the polar angle of the representative point, and put x = cos θ , y = sin θ on �. Then
(X,Y ) = (cos 2θ , sin 2θ), 0 ≤ θ ≤ 2π . This vector is displayed in Fig. 3.2. The angle φ takes, for example, the
values 0, 12π , 2π , 4π at A,B,C, and A′ as we track counterclockwise round the circle.

�

�

Figure 3.2

In any complete counterclockwise revolution, φ increases by 4π . �
In every case the change in φ, denoted by [φ]�, must be a multiple of 2π ;

[φ]� = 2πI�, (3.4)
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say, where I� is an integer, positive, negative, or zero. I� is called the index of � with respect
to the vector field (X,Y ), � being described counterclockwise. In the previous example I� = 2.

An expression for I� is obtained as follows. Suppose that, as in Fig. 3.3(a), the curve � is
described counterclockwise once by the position vector r, given parametrically by

r(s) = (x(s), y(s)), s0 ≤ s ≤ s1, (3.5)

where x(s0) = x(s1), y(s0) = y(s1), and s is the parameter. From (3.3),

d
ds

(tanφ) = d
ds

(
Y

X

)
,

or, after some reduction,

dφ
ds
= XY ′ − YX′

X2 + Y 2 . (3.6)

(The dash denotes differentiation with respect to s.) Then from (3.4)

Figure 3.3

I� = 1
2π

∫ s1

s0

dφ
ds

ds = 1
2π

∫ s1

s0

XY ′ − YX′

X2 + Y 2 ds. (3.7)

As r(s) = (x(s), y(s)) describes �, R(s) = (X,Y ), regarded as a position vector on a plane with
axes X,Y , describes another curve, �R say. �R is closed, since R returns to its original value
after a complete cycle. From eqn (3.4) �R encircles the origin I� times, counterclockwise if I� is
positive and clockwise if it is negative. This is illustrated in Fig. 3.3 for I� = 2. We can replace
(3.7) by a line integral around the curve �R so that, with X and Y as variables

I� = 1
2π

∮
�R

XdY − YdX
X2 + Y 2 . (3.8)
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Example 3.2 In Example 3.1, X(x, y) = 2x2−1, Y (x, y) = 2xy, and � is the unit circle centred at the origin.
Confirm that I� = 2 using (3.7).

With � defined by x= cos θ , y= sin θ (0≤ θ ≤2π) and (X,Y )= (cos 2θ , sin 2θ),

I� = 1
2π

∫ 2π

0

XY ′ − YX′
X2 + Y2

dθ

= 1
2π

∫ 2π

0

2 cos 2θ cos 2θ − sin 2θ(−2 sin 2θ)
cos2 2θ + sin2 2θ

dθ

= 1
2π

∫ 2π

0
2 dθ = 2. �

Theorem 3.1 Suppose that � lies in a simply connected region on which X, Y and their first
derivatives are continuous and X and Y are not simultaneously zero. (In other words there is
no equilibrium point there.) Then I� is zero.

Proof Green’s theorem in the plane states that if � is a closed, non-self-intersecting curve,
lying in a simply connected region on which the functions P(x, y) andQ(x, y) have continuous
first partial derivatives, then∮

�

(P dx +Qdy) =
∫∫

D�

(
∂Q

∂x
− ∂P

∂y

)
dxdy,

where D� is the region interior to �. (The first integral is a line integral round �, the second a
double integral taken over its interior.)
In (3.7), write

dX
ds
= Xx

dx
ds
+Xy

dy
ds

,
dY
ds
= Yx

dx
ds
+ Yy

dy
ds

,

(where Xx denotes ∂X/∂x, and so on). Then (3.7) becomes the line integral

I� = 1
2π

∮
�

(
XYx − YXx

X2 + Y 2 dx + XYy − YXy

X2 + Y 2 dy
)
.

The functions P = (XYx − YXx)/(X
2 + Y 2) and Q = (XYy − YXy)/(X

2 + Y 2) satisfy the
conditions for Green’s theorem, since X2 + Y 2 	= 0 on � and its interior. Therefore

I� = 1
2π

∫∫
D�

[
∂

∂x

(
XYy − YXy

X2 + Y 2

)
− ∂

∂y

(
XYx − YXx

X2 + Y 2

)]
dx dy.

By evaluating the partial derivatives it can be verified that the integrand is identically zero on
D�. Therefore I� = 0. �

Corollary to Theorem 3.1 Let � be a simple closed curve, and �′ a simple closed curve inside
�. Then if, on �, �′ and the region between them there is no equilibrium point, and if X, Y and
their first derivatives are continuous there, then I� = I�′ .
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B
A

Γ

B� A�

Γ�

Figure 3.4 The composite simply connected closed curve C bridging � and �′, and traversed in the counterclockwise
direction (i.e., with its interior on the left). The dots represent equilibrium points which are exterior to C.

Proof In Fig. 3.4 letAA′ be a ‘bridge’ connecting� and�′, and consider the directed composite
contour, C, described by ABAA′B ′A′A in Fig. 3.4. Since C contains no equilibrium points,
IC = 0 by the Theorem. But by (3.4)

0 = IC = 1
2π

∮
C
dφ = 1

2π

(∮
�

dφ +
∮
AA′

dφ −
∮
�′
dφ +

∮
A′A

dφ
)
,

where ∮
�′
dφ and

∮
�

dφ

represent integrals taken in the counterclockwise direction around �′ and � respectively. Since∮
A′A

dφ=−
∮
AA′

dφ,

we obtain
1
2π

(∮
�

dφ −
∮
�′
dφ
)
= 0.

Therefore
I� = I�′ . �

This theorem shows that the index I� of the vector field (X,Y ) with respect to � is to a large
extent independent of �, and enables the index to be associated with special points in the plane
rather than with contours. If the smoothness conditions on the field (X,Y ) are satisfied in a
region containing a single equilibrium point, then any simple closed curve � surrounding the
point generates the same number I�. We therefore drop the suffix �, and say that I is the index
of the equilibrium point.

Theorem 3.2 If � surrounds n equilibrium points P1,P2, . . . ,Pn then

I� =
n∑

i=1
Ii ,

where Ii is the index of the point Pi , i = 1, 2, . . . , n.
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Figure 3.5 The composite simply connected curve C, traversed in the counterclockwise direction. P1 and P2 are
equilibrium points, exterior to C.

Proof We illustrate the proof for the case of two equilibrium points, at P1,P2. Construct a
contour C consisting of �, two ‘bridges’ A1A

′
1 and A2A

′
2 , and curves γ1 and γ2 surrounding P1

and P2 respectively, as shown in Fig. 3.5. The interior of C does not contain any equilibrium
points, so IC = 0. But also

IC = 1
2π

∮
�

dφ − 1
2π

∮
γ1

dφ − 1
2π

∮
γ2

dφ,

since the integrals along the ‘bridges’ cancel to zero. (Note that the integrals around γ1 and γ2
are here taken in the conventional counterclockwise direction.) Therefore

I� = I1 + I2. �

A simple way to calculate the index in a particular case is to use the following result.

Theorem 3.3 Let p be the number of times Y(x, y) /X(x, y) changes from +∞ to −∞, and q
the number of times it changes from −∞ to +∞, on �. Then I� = 1

2 (p − q).

Proof Since tanφ=Y/X, we are simply counting the number of times the direction (X,Y )
is vertical (up or down), and associating a direction of rotation. We could instead examine
the points where tanφ is zero, that is, where Y is zero. Then if P and Q are numbers of
changes in tanφ from (negative / positive) to (positive / negative) respectively across the zero of
Y , I� = 1

2 (P −Q). �

Example 3.3 Find the index of the equilibrium point (0, 0) of ẋ= y3, ẏ= x3.

By stretching the theory a little we can let � be the square with sides x=±1, y=±1. Start from (1, 1) and
go round counterclockwise. On y=1, tanφ= x3, with no infinities; similiarly on y = −1. On x = −1,
tanφ= − y−3, with a change from −∞ to +∞, and on x = 1, tanφ = y−3, with a change from −∞ to +∞.
Thus p = 0, q = 2 and the index is −1. �
Example 3.4 Find the index of the equilibrium point at (0, 0) of the system ẋ = y− 1

2xy−3x2, ẏ = −xy− 3
2y

2.

In using the method of Theorem 3.3, it is quite helpful first to sketch the curves

X(x, y) = y − 1
2xy − 3x2 = 0 and Y (x, y) = −xy − 3

2y
2 = 0,

(see Fig. 3.6(a)). Equilibrium points occur where these curves intersect: at (0, 0) and at (−1
4 ,

1
6 ). The origin is a

higher order equilibrium point (linearization will not classify it), and (−1
4 ,

1
6 ) is a saddle point. Surround (0, 0)
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Figure 3.6

by a circle � which does not include the saddle point. Then tanφ = Y (x, y)/X(x, y) becomes zero at A,B,C,
and D. In a counterclockwise circuit of �, the sign changes in tanφ are:

zero of Y (x, y) A B C D

sign change in tanφ −/+ −/+ +/− −/+

Hence P = 3 and Q = 1, so that the index of (0, 0) is I = 1.
The phase diagram of the system is shown in Fig. 3.6(b). Note the peculiarity of the equilibrium point at the

origin; it cannot be linearised about the origin. �
If we already know the nature of the equilibrium point, the index is readily found by sim-

ply drawing a figure and following the angle round. The following shows the indices of the
elementary types met in Chapter 2.

(i) A saddle point (Fig. 3.7) The change in φ in a single circuit of the curve � surrounding the
saddle point is −2π , and the index is therefore −1.

(ii) A centre (Fig. 3.8) � can be chosen to be a phase path, so that � = +1 irrespective of the
direction of the paths.

(iii) A spiral (stable or unstable) (Fig. 3.9). The index is +1.
(iv) A node (stable or unstable) (Fig. 3.10). The index is +1.

A simple practical way of finding the index of a curve � uses a watch. Set the watch to 12.00
(say) and put the watch at a point on � with the minute hand pointing in the direction of the
phase path there. Move the watch without rotation around �, always turning the direction of
the minute hand along the phase path. After one counterclockwise circuit of �, the index is
given by the gain (−1 for each hour gained) or loss, of the hour hand. For example the ‘time’
after one circuit of the centre is 11.00, an index of +1; for the saddle point the ‘time’ is 1.00,
an index of −1.
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Figure 3.7 Saddle point, index −1.

Figure 3.8 Centre, index 1.

Figure 3.9 Stable spiral, index 1.

Figure 3.10 Stable node, index 1.
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Exercise 3.1
For the system ẋ=2x2−1, ẏ=2xy, let � be defined by x= a cos θ , y= b sin θ . Using the
results from Example 3.1 deduce that

ab

∫ 2π

0

a2 + (a2 − 1) cos 2θ

(a2 − 1+ a2 cos 2θ)2 + a2b2 sin2 2θ
dθ = 2π

for all a >1/
√
2, b>0. (Index theory using Theorem 3.1 enables many seemingly

complicated integrals to be evaluated by choosing different �’s.)

Exercise 3.2
Find the index of the higher order saddle point at the origin of ẋ = 2xy, ẏ = x2 − y2.

3.2 The index at infinity

In the next two sections we show some techniques for getting a more global view of the pattern
of trajectories for the system

ẋ = X(x, y), ẏ = Y (x, y).

Definition 3.1 The index, I∞, of the point at infinity. Introduce new coordinates x1, y1 by the
transformation (known as inversion in the origin)

x1 = x

x2 + y2
, y1 = − y

x2 + y2
. (3.9)

The index of the origin, x1= y1=0, for the transformed equation is called the index at infinity
for the original equation. (In polar coordinates let x = r cos θ , y = r sin θ and x1 =
r1 cos θ1, y1 = r1 sin θ1. Then the inversion is r1 = 1/r, θ1 = −θ .)

In order to prove a result concerning the index of the point at infinity, it is convenient to use
complex variables and write

z = x + iy, z1 = x1 + iy1.

The differential equation system (3.1) becomes

dz
dt
= Z.

where Z = X+ iY (Z is not, of course, an analytic function of z in general.) Also φ (eqn (3.3))
is given by φ = argZ.
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The transformation in (3.9) is equivalent to the complex transformation

z1 = z−1, (3.10)

which maps points at infinity in the Z, or (x, y) plane into a neighbourhood of the origin in the
Z1, or (x1, y1) plane and vice versa, Then (3.9) becomes

− 1

z21

dz1
dt
= Z,

or, from (3.9)

dz1
dt
= −z21Z = Z1 (3.11)

say, which is the differential equation for the transformed system. Therefore, I∞ = the index
of (3.11) at Z1 = 0. Notice that by eqn (3.11), the transformation maps equilibrium points on
any infinite region of the Z plane into equilibrium points on the Z1 plane.

Theorem 3.4 The index I∞ for the system ẋ = X(x, y), ẏ = Y (x, y), having a finite number n
of equilibrium points with indices Ii , i = 1, 2, . . . , n, is given by

I∞ = 2−
n∑

i=1
Ii . (3.12)

Proof To obtain the index at the origin of the transformed plane, z1 = 0, surround z1 = 0 by a
simple closed contour C1 containing no equilibrium points of the new system apart fromZ1=0.
Under the transformation z = z−11 (eqn (3.10)), C1 described counterclockwise corresponds to
C described clockwise, and the exterior of C1 corresponds to the interior of C (Fig. 3.11). Thus
C embraces all the finite equilibrium points of the original system together with the point at
infinity.

(a) (b)

C

C

Figure 3.11 (a) The transformed plane and contour C1 which surrounds the origin, but excludes locations of
transformed equilibrium points. (b) The original plane and countour C containing all the equilibrium points.
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Now let

z1 = r1eiθ1 (3.13)

on C1; and on C1 and C, respectively let

Z1 = ρ1eiφ1 , Z = ρeiφ ,

where ρ1 = |Z1|, ρ = |Z|. Then

I∞ = 1
2π
[φ1]C1 .

But from (3.11)

Z1 = ρ1eiφ1 = −r21e2iθ1ρeiφ = r21ρe
i(2θ1+φ+π).

Therefore

I∞ = 1
2π
[2θ1 + φ + π ]C1

= 1
2π
{2[θ1]C1 + [φ]C1} =

1
2π
{2[θ1]C1 − [φ]C}

= 1
π

{
4π − 2π

n∑
i=1

Ii

}

by Theorem 3.2, since also C is described clockwise. The result follows. �

Corollary to Theorem 3.4 Under the conditions stated in the theorem, the sum of all the
indices, including that of the point at infinity, is 2. �

Example 3.5 Find the index at infinity of the system

ẋ = x − y2, ẏ = x − y.

The system has equilibrium points at (0, 0) and (1, 1). We show a different approach from that of Examples 3.3
and 3.4. Putting x = r cos θ , y = r sin θ we have

Z = (r cos θ − r2 sin2 θ)+ i(r cos θ − r sin θ),

and the transformation z = z−11 gives r = r−11 , θ = −θ1 so from (3.11)

Z1 = −r21 (cos 2θ1 + i sin 2θ1){ir−11 (cos θ1 + sin θ1)+ r−11 (cos θ1 − r−11 sin2 θ1)}. (3.14)

We require the index of eqn (3.11) at the point r1 = 0. To evaluate it choose �1 to be a circle centred at the
origin, having arbitrarily small radius equal to r1. Then we need to consider, in (3.14), only the terms of O(1),
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�1

�1

Figure 3.12

the terms of O(r1) making no contribution in the limit r1 → 0. Then on �

Z1 = (cos 2θ1 + i sin 2θ1) sin
2 θ1 +O(r1) = sin2 θ1e

2iθ1 +O(r1).

As shown in Fig. 3.12 the direction, φ1, of Z1 is equal to 2θ1, and the index at infinity is therefore equal to 2.
It can be confirmed that the other equilibrium points are a spiral or centre at x=0, y=0 with index 1,

and a saddle at x=1, y=1 with index −1. The sum of these indices and I∞ is therefore 2, as required by
Theorem 3.4. �

Exercise 3.3
Using the inversion x1 = x/(x2 + y2), y1 = y/(x2 + y2), express the equations ẋ = 2xy,
ẏ = x2 + y2 in terms of x1, y1. Using the unit circle x= cos θ , y= sin θ , find the index at
infinity of the system.

3.3 The phase diagram at infinity

Phase diagrams such as we have shown are incomplete since there is always an area outside the
picture which we cannot see. When the phase diagram has a simple structure this may not be a
serious loss, but in complicated cases the overall structure may be obscure. We therefore show
how the whole phase diagram, including the infinitely remote parts, can be displayed.

Projection on to a hemisphere

In Fig. 3.13, S is a hemisphere of unit radius touching the phase plane P at O. Its centre
is O∗. A representative point P on P projects from O∗ on to P ′ on the sphere. Paths on P
become paths on S; such features as spirals, nodes, and saddle points on P appear as such on
S. The orientation of curves is also unchanged provided the sphere is viewed from inside. Local
distortion occurs increasingly for features far from the origin, radial distance on P becoming
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S

P

P

Figure 3.13 Projection of the phase plane P on to the hemisphere S, and then from S on to the diametrical
plane P∗.

Figure 3.14

greatly scaled down on S. The horizontal great circle is called the horizon, and the happenings
‘at infinity’ on P occur near the horizon of S. Radial straight lines on P project on to great
circles of S in a vertical plane, cutting the horizon at right angles. Non-radial straight lines
project on to great circles which cut the horizon at other angles.
To represent on another plane the resulting pattern of lines on the hemisphere, wemay simply

take its orthogonal projection, viewed from above, on to the diametrical plane P∗ containing
the horizon, as in the following example. Figure 3.14 shows the vertical section OO∗P of
Fig. 3.13. Let OP = r and O∗P ∗ = r∗. Then r∗ = sinα and r = tanα. Consequently

r∗ = r/
√
(1+ r2).

Since x, x∗ and y, y∗ are in the same proportions as r, r∗, it follow that the coordinates in the
phase plane (x, y) and disc (x∗, y∗) are related by

x∗ = x/
√
(1+ r2), y∗ = y/

√
(1+ r2).
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P

Figure 3.15 Projection of the phase diagram of ẋ = y, ẏ = −4x − 5y on the diametrical plane P∗.

Example 3.6 Project the phase paths of ẋ = y, ẏ = −4x − 5y on to the diametrical plane
This represents a heavily damped linear oscillator. On the phase planeP, (0,0) is a stable node. y = −x, y = −4x
consist of four phase paths, and the results of Chapter 2 show that all other paths are tangent to the first at
the origin and parallel to the second at infinity. The appearance of the diametrical plane P ∗ with axes x∗, y∗
is shown in Fig. 3.15.

The paths y = −x, y = −4x on the phase plane P are radial straight lines and project into lines of
longitude through O on the sphere. Their projections on to the diametrical plane are therefore again straight
lines E1O,E′1O,E2O,E′2O of Fig. 3.15.

Since all other paths become parallel to y = −4x at large distance from the origin, their projections
enter the points E2,E

′
2 on the sphere as shown. Other mappings of the hemisphere on to a plane can be

devised. �

Detail on the horizon

In order to study the paths on the hemisphere S near the horizon we will project the paths
found on S from its centre O∗ on to the plane U : x = 1. We thus have, simultaneously, a
projection of the paths in the phase plane P on to U . Let u, z be axes with origin at N , where S
touches U : u is parallel to y and z is positive downwards, so u, z is right-handed viewed from
Ȯ∗. Points in P for x < 0 go into the left half of the lower hemisphere, then through O∗ on
to U for z < 0; and P for x > 0 goes into the right half of S, then on to U for z > 0. Points
at infinity on P go to the horizon of S, then to z = 0 on U . The points at infinity on P in
direction ±y go to points at infinity on U , as does the point O. The topological features of P
are preserved on U , except that the orientation of closed paths on the part of S corresponding
to x < 0 is reversed (see Fig. 3.16).
It can be shown easily that the transformation from P to U is given by

u = y/x, z = 1/x, (3.15)
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P

U

S

Figure 3.16 Projection of a phase diagram on P on to the vertical plane U : the hemispherical projection on to S is
also shown. The hemispherical space should be viewed from inside, and the vertical plane from the left.

with inverse

x = 1/z, y = u/z.

Example 3.7 Examine the system ẋ= y, ẏ= − 4x−5y at infinity (excluding the direction ±y).
(This is the system of Example 3.6.) The transformation (3.15) leads to

u̇ = xẏ − yẋ/x2 = −(4x2 + 5xy + y2)/x2 = −4− 5u− u2

and, similarly,

ż = −ẋ/x2 = −uz.

There are equilibrium points at E1: u = −1, z = 0, and at E2: u = −4, z = 0 and it can be confirmed in the
usual way that E1 is a saddle and E2 a node. The pattern of the paths is shown in Fig. 3.17, and should be
compared with Fig. 3.15.

To examine the phase plane at infinity in the directions ±y, S is projected on another plane V: y=1. The
corresponding axes ν, z, right-handed viewed from O∗, have their origin at the point of tangency; ν points in
the direction of −x and z is downward. The required transformation is

ν = x/y, z = 1/y, (3.16)

or

x = ν/z, y = 1/z, �
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Figure 3.17 Phase paths near the horizon for ẋ = y, ẏ = −4x − 5y.

Exercise 3.4
Find the differential equation of

ẋ = 2xy, ẏ = x2 − y2

in the diametrical plane of the hemisphere using the transformation

x∗ = x/
√
(1+ r2), y∗ = y/

√
(1+ r2), r2 = x2 + y2.

Where are the equilibrium points at infinity in the diametrical plane?

3.4 Limit cycles and other closed paths

In nonlinear systems there is particular interest in the existence of periodic solutions, and their
amplitudes, periods, and phases. If the system is autonomous, and x(t) in any solution, so
is x(t + τ) for any value of τ , which means that phase is not significant since the solutions
map on to the same phase paths. In the phase plane, periodic solutions appear as closed paths.
Conservative systems (Section 1.3) and Hamiltonian systems (Section 2.8) often contain nests
of closed paths forming centres, which we might expect since they are generally non-dissipative;
that is, friction is absent.
As we have seen (Section 1.6), a limit cycle is an isolated periodic solution of an autonomous

system, represented in the phase plane by an isolated closed path. The neighbouring paths are,
by definition, not closed, but spiral into or away from the limit cycle C as shown in Fig. 3.18.
In the case illustrated, which is a stable limit cycle, the device represented by the system (which
might be, for example, an electrical circuit), will spontaneously drift into the corresponding
periodic oscillation from a wide range of initial states. The existence of limit cycles is therefore
a feature of great practical importance.
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C

Figure 3.18 An example of a stable limit cycle, showing two phase paths approaching it from the interior and
exterior respectively.

Autonomous linear systems (i.e. with constant coefficients) cannot exhibit limit cycles (see
Section 2.6(v)). Since normally we cannot solve the nonlinear equations which might have them
it is important to be able to establish by indirect means whether a limit cycle is present in the
phase diagram. If one exists, then various approximate methods can be used to locate it. In
this section we give some simple indications and counter-indications, the question of existence
being dealt with in more detail in Chapter 11.
The index of a limit cycle C is 1 since the vector (X,Y ) is tangential to C at every point on

it, and the change in φ around C is 2π . By Theorem 3.2, therefore if C is a limit cycle then the
sum of the indices at the equilibrium points enclosed by C is 1.
This result applies to any closed path, whether isolated (i.e., a limit cycle) or not, and it

provides a negative criterion, indicating cases where such a path cannot exist. For example,
a closed path cannot surround a region containing no equilibrium points, nor one containing
only a saddle. If the sum of the indices of a group of equilibrium points does equal unity, the
result does not allow us to infer the existence of a closed-path surrounding them.
The following result is due to Bendixson (Cesari 1971) and is called Bendixson’s Negative

Criterion:

Theorem 3.5 (Bendixson’s negative criterion) There are no closed paths in a simply connected
region of the phase plane on which ∂X/∂x + ∂Y/∂y is of one sign.

Proof We make the usual assumptions about the smoothness of the vector field (X,Y ) neces-
sary to justify the application of the divergence theorem. Suppose that there is a closed phase
path C in the region D where ∂X/∂x + ∂Y/∂y is of one sign (see Fig. 3.19); we shall show that
this assumption leads to a contradiction. By the divergence theorem,∫∫

S

(
∂X

∂x
+ ∂Y

∂y

)
dx dy =

∫
C
(X,Y ) · nds,
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D

C

Figure 3.19 C is a closed phase path.

where S is the interior of C, n is the unit outward normal, and ds is an undirected line element
of C. Since on C, (X,Y ) is perpendicular to n, the integral on the right is zero. But the integrand
on the left is of one sign so its integral cannot be zero. Therefore C cannot be a path. �

An extension of this result, called Dulac’s test, is given in Problem 3.23.

Example 3.8 Show that the equation ẍ + f (x)ẋ + g(x) = 0 can have no periodic solution whose phase path
lies in a region where f is of one sign. (Such regions have only ’positive damping’ or ’negative damping’.)

The equivalent system is ẋ= y, ẏ= −f (x)y − g(x), so that (X,Y ) = (y,−f (x)y − g(x)), and

∂X

∂x
+ ∂Y

∂y
= −f (x),

which is of one sign wherever f is of one sign. �
Example 3.9 The equations

V̇1 = −σV1 + f (E − V2) = X(V1,V2),

V̇2 = −σV2 + f (E − V1) = Y (V1,V2),

describe the voltages generated over the deflection plates in a simplified triggered sweeping circuit for an
oscilloscope (Andronov and Chaikin 1949). E and σ are positive constants, and f has the shape shown in
Fig. 3.20 f is a continuous, odd function, tending to a limit as x → ∞, and f ′ is positive and decreasing on
x >0. It can be shown (Chapter 2, Problem 2.33) that there is an equilibrium point at V1=V2, =V0 say. If
moreover f ′(E−V0)> σ , then there are two others, and in this case (V0,V0) is a saddle point and the other
two are stable nodes. The sum of the indices is 1, so periodic solutions with paths surrounding the three points
are not ruled out by this test. However,

∂X

∂V1
+ ∂Y

∂V2
= −2σ ,

which is of one sign everywhere, so in fact there are no periodic solutions. �
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(  )

Figure 3.20

Exercise 3.5
Show that the system

ẋ = (x2 + y2 − 1)x + y, ẏ = (x2 + y2 − 1)y − x

has an unstable limit cycle. (Hint: express the equations in polar coordinates.)

Exercise 3.6
Explain why the following systems can have no periodic solutions:

(a) ẋ = x(y2 + 1)+ y, ẏ = (x2 + 1)(y2 + 1);

(b) ẋ = x(y2 + 1)+ y, ẏ = x2y + x.

3.5 Computation of the phase diagram

There are many computer packages available which can compute and display phase diagrams
and solution curves. Symbolic software such asMathematica™ (Wolfram, 1996) or MAPLE™
can be readily programmed to generate graphical representations. These are also dedicated
packages for dynamical systems. (see, e.g. Ermentrout (2002)).
Here we also indicate that, if such facilities are not available, quite unsophisticated methods

can work well if they are supported by analytical reasoning, and simple precautions are taken.
Some BASIC programs for computing phase diagrams are also given by Acheson (1997).
We consider autonomous equations of the form

ẋ = P(x, y), ẏ = Q(x, y). (3.17)

In plotting a phase path we proceed step-by-step in some way from the initial point x0, y0:

x(t0) = x0, y(t0) = y0. (3.18)

The simplest step-by-step method is Euler’s, using t as a supplementary variable, which we use
as the basis of discussion.
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Let the length of the time step be h, assumed small; and let (x0, y0), (x1, y1), (x2, y2), . . ., be
the points on the phase path at times t0, t0 + h, t0 + 2h, . . . . Assume that (xn, yn) is known.
Then, writing ẋ(t0 + nh) 
 (xn+1 − xn)/h, ẏ(t0 + nh) ≈ (yn+1 − yn)/h, eqn (3.17) becomes
approximately

(xn+1 − xn)/h = P(xn, yn), (yn+1 − yn)/h = Q(xn, yn),

and, after rearrangement,

xn+1 = xn + hP (xn, yn), yn+1 = yn + hQ(xn, yn). (3.19)

The point (xn+1, yn+1) is recorded and we proceed to the next step. The danger of progressively
increasing error is present, even when h is very small so that good accuracy is ostensibly being
obtained: the reader should see, for example, Cohen (1973) for a discussion of error.
The point which concerns us here is the general unsuitability of t (time) as the parameter for

the step-by-step construction of phase paths. The difficulty is shown schematically in Fig. 3.21,
where a path is shown approaching a node, and passing near a saddle. Notionally equal time
steps are marked. Since ẋ, ẏ, or P ,Q, are small near an equilibrium point, progress is very
uneven.
It is preferable to use arc length, s, as the parameter, which gives equally spaced points along

the arc. Since δs2 = δx2 + δy2, (3.17) with parameter s becomes

dx
ds
= P√

(P 2 +Q2)
= U ,

dy
ds
= Q√

(P 2 +Q2)
= V (3.20)

(s is measured increasing in the direction of t increasing). Letting h now represent the basic step
length, (3.20) leads to the iterative scheme

xn+1 = xn + hU(xn, yy), yn+1 = yn + hV (xn, yy) (3.21)

with the initial values (x0, y0) given.

Figure 3.21 Equal time steps near equilibrium points.
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Improved processes, such as the Runge–Kutta method (Cohen 1973) are generally to be
preferred, and can easily be programmed. It is desirable to have a program which prints out
only after a predetermined number of calculation steps. In this way it can be arranged, for
example, to produce a point every centimetre of arc along a phase path, the interval being
reduced if the path is turning rapidly.
In a practical plot it is helpful, if possible, to locate and classify the equilibrium points and to

know at least whether limit cycles are likely to appear. Saddle points in particular are difficult
to locate closely by plotting paths. The location of equilibrium points may be obtained by
algebraic or numerical solution of the equations P(x, y) = Q(x, y) = 0. Classification on the
basis of linear approximation may not be possible, for example when P orQ have a zero linear
expansion, or when the linear approximation predicts a centre, which may become a spiral in
the presence of nonlinear terms (as in Problem 2.7), or in certain other cases. In such cases
many exploratory plots may have to be made near the equilibrium point before an adequate
characterization is obtained.
By reversing the sign of h in the input to suitable programs, a plot ‘backwards’ from the

starting point is obtained. This is useful to complete a path (Fig. 3.22(a)) or to get close to an
unstable node (Fig. 3.22(b)) or spiral.
It may be difficult to distinguish with confidence between certain cases, for example between

a node whose paths appear to wind around it and a genuine spiral (Fig. 3.23). A display
which appears to represent a spiral may, on scaling up the neighbourhood of the origin, begin
to resemble a node, and conversely. This consideration applies, in principle, to all numer-
ical and plotted data: it is impossible to deduce from the data alone that some qualitative
deviation does not appear between the plotted points. However, in the case of equilibrium
points and limit cycles there may be genuine uncertainty, and it is preferable to estab-
lish their nature analytically and to determine the directions of separatrices when this is
possible.
A limit cycle is a feature requiring some care. The ‘model’ of a limit cycle which it is useful

to have in mind is a pattern of spirals inside and outside the cycle as in Fig. 3.18. The figure
shows a stable limit cycle, for which all nearby paths drift towards the limit cycle. If they all
recede (reverse the arrows) the limit cycle is unstable. A semi-stable limit cycle can also occur,
in which the paths approach on one side and recede on the other.

Figure 3.22 Illustrating reversal of step sign.
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Figure 3.23 (a) Small-scale plot (spiral?); (b) large-scale plot (node?).

Figure 3.24 Limit cycle for the van der Pol equation ẍ + (x2 − 1)ẋ + x = 0.

Both the limit cycle and the neighbouring paths can diverge very considerably from the
idealized pattern of Fig. 3.18; for example Fig. 3.24 shows the limit cycle for van der Pol’s
equation

ẍ + ε(x2 − 1)ẋ + x = 0

with a moderate value for the parameter ε. In general there is no way of finding a single point,
exactly lying on the cycle, from which to start; the cycle has to be located by ‘squeezing’ it
between inner and outer spirals. Clearly it is helpful to reverse the sign of t (or of h in the
program input) if necessary, so as to approach rather than recede from the cycle during the
process of locating it.
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3.6 Homoclinic and heteroclinic paths

A separatrix is, generally, a phase path which separates obvious distinct regions in the phase
plane. It could be any of the paths which enter or emerge from a saddle point; or a limit
cycle; or a path joining two equilibrium points. It is not a precise term. However, certain types
of separatrix are important in later work, and we shall define them here in the context of
equilibrium points.
Any phase path which joins an equilibrium point to itself is a form of separatrix known as

a homoclinic path, and any phase path which joins an equilibrium point to another is known
as a heteroclinic path. For plane autonomous systems this means that homoclinic paths can
only be associated with saddle points (or some generalized type of saddle) since both outgoing
and incoming paths are required of the equilibrium point. On the other hand it is possible
for heteroclinic paths to join any two hyperbolic equilibrium points, that is (see Section 2.5)
any two (including the same type) from the list of a saddle point, a node or a spiral. Phase
paths which join the same, or two different, saddles are also known as saddle connections.
Figure 3.25 shows some examples (dashed lines) of homoclinic and heteroclinic paths.

Example 3.10 Find the equations of the homoclinic phase paths of the system

ẋ = y, ẏ = x − x3. (i)

Find also the solutions for x in terms of t on the homoclinic paths.

The equilibrium points occur where y = x−x3 = 0 at (0, 0), (±1, 0). The origin is a saddle point whilst x = ±1
are both centres. The phase paths satisfy the separable differential equation

dy
dx
= x(1− x2)

y
,

Figure 3.25 Dashed curves show; (a) homoclinic path of A; (b) two heteroclinic paths joining A and B; (c) a
saddle-spiral connection; (d) two homoclinic paths of A.
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Figure 3.26 (a) Homoclinic paths of ẋ = y, ẏ = x − x3; (b) homoclinic solutions x = ±√2sech t in the (x, t) plane.

which can be integrated to give

y2 = x2 − 1
2x

4 + C,

where C is a constant. Homoclinic paths can only be associated with the saddle point at the origin. The phase
paths approach the origin only if C = 0. There are two such paths, both given by

y2 = x2 − 1
2x

4,

one over the interval 0≤ x ≤√2, and one over −√2≤ x ≤0. The homoclinic paths are shown in Fig. 3.26(a).
The time solutions for the homoclinic paths can be found by integrating

(
dx
dt

)2
= x2 − 1

2
x4.

Then separating variables ∫
dx

x
√
(1− 1

2x
2)
= ±(t − t0),

where t0 is a constant. Using the substitutions x=±√2sech u, it follows that∫
du = ±(t − t0) or u = ±(t − t0).

Hence the homoclinic solutions are x= ± 2sech (t − t0) for any t0 since x → 0 as t → ±∞. The solutions
with t0=0 are shown in Fig. 3.26(b): other choices for t0 will produce translations of these solutions in the t
direction. �
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Figure 3.27 Homoclinic bifurcation of ẍ + εẋ − x + x3 + 0 at ε = 0.

Figure 3.28 An illustration of Heteroclinic bifurcation.

Consider now a perturbation of the system in Example 3.9, namely

ẍ + εẋ − x + x3 = 0, ẋ = y,

where ε is a small parameter. If ε >0 then the term εẋ indicates damping, and if ε <0, its
effect produces negative damping. The equilibrium points at (±1, 0) become stable spirals
if ε >0, and unstable spirals if ε <0. As ε increases through zero, the path changes from a
heteroclinic spiral–saddle connection (ε <0) to a homoclinic saddle connection (ε = 0) to a
heteroclinic saddle–spiral connection (ε >0), as shown in Fig. 3.27. This transition is known
as homoclinic bifurcation. A perturbation method for detecting homoclinic bifurcation is given
in Section 5.12.
An illustration of transition through heteroclinic bifurcation as a parameter varies, is shown

in Fig. 3.28.

Problems

3.1 By considering the variation of path direction on closed curves round the equilibrium points, find the index
in each case of Fig. 3.29.

3.2 The motion of a damped pendulum is described by the equations

θ̇ = ω, ω̇ = −kω − ν2 sin θ ,

where k (>0) and ν are constants. Find the indices of all the equilibrium states.

3.3 Find the index of the equilibrium points of the following systems: (i) ẋ=2xy, ẏ=3x2− y2; (ii) ẋ = y2− x4,
ẏ = x3y; (iii) ẋ = x − y, ẏ = x − y2.
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Figure 3.29

3.4 For the linear system ẋ = ax + by, ẏ = cx + dy, where ad − bc 	=0, obtain the index at the origin
by evaluating eqn (3.7), showing that it is equal to sgn (ad − bc). (Hint: choose � to be the ellipse
(ax + by)2 + (cx + dy)2 = 1.)

3.5 The equation of motion of a bar restrained by springs (see Fig. 3.30)

Figure 3.30

and attracted by a parallel current-carrying conductor is

ẍ + c{x − λ/(a − x)} = 0,

where c (the stiffness of the spring), a and λ are positive constants. Sketch the phase paths for−x0 < x < a,
where x0 is the unstretched length of each spring, and find the indices of the equilibrium points for all
λ > 0.

3.6 Show that the equation ẍ − ε(1 − x2 − ẋ2)ẋ + x = 0 has an equilibrium point of index 1 at the origin
of the phase plane x, y with ẋ = y. (It also has a limit cycle, x = cos t). Use eqn (3.7), with � a circle of
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radius a to show that, for all a,∫ 2π

0

dθ

1− 2ε(1− a2) sin θ cos θ + ε2(1− a2)2 sin2 θ
= 2π .

3.7 A limit cycle encloses N nodes, F spirals, C centres, and S saddle points only, all of the linear type of
Section 2.5. Show that N + F + C − S = 1.

3.8 Given the system

ẋ = X(x, y) cosα − Y (x, y) sinα, ẏ = X(x, y) sinα + Y (x, y) cosα,

where α is a parameter, prove that the index of a simple closed curve which does not meet an equilibrium
point is independent of α (See also Problem 2.41).

3.9 Suppose that the system ẋ = X(x) has a finite number of equilibrium points, each of which is either a
node, a centre, a spiral, or a saddle point, of the elementary types discussed in Section 2.5, and assume
that I∞ = 0. Show that the total number of nodes, centres, and spirals is equal to the total number of
saddle points plus two.

3.10 Obtain differential equations describing the behaviour of the linear system, ẋ = ax + by, ẏ = cx + dy, at
infinity. Sketch the phase diagram and analyse the system ẋ = 2x − y, ẏ = 3x − 2y near the horizon.

3.11 A certain system is known to have exactly two equilibrium points, both saddle points. Sketch phase
diagrams in which
(i) a separatrix connects the saddle points;

(ii) no separatrix connects them.

For example, the system ẋ = 1− x2, ẏ = xy has a saddle correction joining the saddle points at (±1, 0).
The perturbed system ẋ = 1− x2, ẏ = xy + εx2 for 0 < ε  1 breaks the saddle correction (heteroclinic
bifurcation).

3.12 Deduce the index at infinity for the system ẋ = x − y, ẏ = x − y2 by calculating the indices of the
equilibrium points.

3.13 Use the geometrical picture of the field (X,Y ) in the neighbourhood of an ordinary point to confirm
Theorem 3.1.

3.14 Suppose that, for the two plane systems ẋ1 = X1(x1), ẋ2 = X2(x2), and for a given closed curve �,
there is no point on � at whichX1 andX2 are opposite in direction. Show that the index of � is the same
for both systems.

The system ẋ= y, ẏ= x has a saddle point at the origin. Show that the index of the origin for the
system ẋ = y + cx2y, ẏ = x − cy2 is likewise −1.

3.15 Use Problem 3.14 to show that the index of the equilibrium point x = 0, ẋ = 0 for the equation
ẍ + sin x = 0 on the usual phase plane has index 1, by comparing the equation ẍ + x = 0.

3.16 The system

ẋ = ax + by + P(x, y), ẏ = cx + dy +Q(x, y)

has an isolated equilibrium point at (0, 0), and P(x, y)=O(r2), Q(x, y)=O(r2) as r→0, where
r2= x2+ y2. Assuming that ad − bc 	= 0, show that the origin has the same index as its linear
approximation.

3.17 Show that, on the phase plane with ẋ= y, ẏ=Y (x, y), Y continuous, the index I� of any simple closed
curve � that encloses all equilibrium points can only be 1, −1, or zero.

Let ẋ = y, ẏ = f (x, λ), with f , ∂f /∂x and ∂f /∂λ continuous, represent a parameter-dependent system
with parameter λ. Show that, at a bifurcation point (Section 1.7), where an equilibrium point divides as
λ varies, the sum of the indices of the equilibrium points resulting from the splitting is unchanged. (Hint:
the integrand in eqn (3.7) is continuous.)
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Deduce that the equilibrium points for the system ẋ= y, ẏ=−λx+ x3 consist of a saddle point for
λ < 0, and a centre and two saddles for λ > 0.

3.18 Prove a similar result to that of Problem 3.17 for the system ẋ= y, ẏ= f (x, y, λ). Deduce that the system
ẋ = y, ẏ = −λx− ky−x3, (k > 0), has a saddle point at (0, 0) when λ < 0, which bifurcates into a stable
spiral or node and two saddle points as λ becomes positive.

3.19 A system is known to have three closed paths, C1, C2, and C3, such that C2, and C3 are interior to C1 and
such that C2, C3 have no interior points in common. Show that there must be at least one equilibrium
point in the region bounded by C1, C2, and C3.

3.20 For each of the following systems you are given some information about phase paths and equilibrium
points. Sketch phase diagrams consistent with these requirements.
(i) x2 + y2 = 1 is a phase path, (0, 0) a saddle point, (±1

2 , 0) centres.

(ii) x2 + y2 = 1 is a phase path, (−1
2 , 0) a saddle point, (0, 0) and (12 , 0) centres.

(iii) x2 + y2 = 1, x2 + y2 = 2 are phase paths, (0,±3
2 ) stable spirals, (±3

2 , 0) saddle points, (0, 0) a
stable spiral.

3.21 Consider the system

ẋ = y(z− 2), ẏ = x(2− z)+ 1, x2 + y2 + z2 = 1

which has exactly two equilibrium points, both of which lie on the unit sphere. Project the phase diagram
on to the plane z= −1 through the point (0, 0, 1). Deduce that I∞=0 on this plane (consider the
projection of a small circle on the sphere with its centre on the z axis). Explain, in general terms, why the
sum of the indices of the equilibrium points on a sphere is two.

For a certain problem, the phase diagram on the sphere has centres and saddle points only, and it has
exactly two saddle points. How many centres has the phase diagram?

3.22 Show that the following systems have no periodic solutions:
(i) ẋ = y + x3, ẏ = x + y + y3;

(ii) ẋ = y, ẏ = −(1+ x2 + x4)y − x.

3.23 (Dulac’s test) For the system ẋ = X(x, y), ẏ = Y (x, y), show that there are no closed paths in a simply
connected region in which ∂(ρX)/∂x + ∂(ρY )/∂y is of one sign, where ρ(x, y) is any function having
continuous first partial derivatives.

3.24 Explain in general terms how Dulac’s test (Problem 3.23) and Bendixson’s negative criterion may be
extended to cover the cases when ∂(ρX)/∂x+ ∂(ρY )/∂y is of one sign except on isolated points or curves
within a simply connected region.

3.25 For a second-order system ẋ=X(x), curl(X)=0 and X 	=0 in a simply connected region D. Show that
the system has no closed paths in D. Deduce that

ẋ = y + 2xy, ẏ = x + x2 − y2

has no periodic solutions.

3.26 In Problem 3.25 show that curl(X)= 0 may be replaced by curl(ψX) = 0, where ψ(x, y) is of one sign
in D.

3.27 By using Dulac’s test (Problem 3.23) with ρ = e−2x , show that

ẋ = y, ẏ = −x − y + x2 + y2

has no periodic solutions.

3.28 Use Dulac’s test (Problem 3.23) to show that ẋ= x(y−1), ẏ= x+ y−2y2, has no periodic solutions.
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3.29 Show that the following systems have no periodic solutions:

(i) ẋ = y, ẏ = 1+ x2 − (1− x)y;

(ii) ẋ = −(1− x)3 + xy2, ẏ = y + y3;

(iii) ẋ = 2xy + x3, ẏ = −x2 + y − y2 + y3;

(iv) ẋ = x, ẏ = 1+ x + y2;

(v) ẋ = y, ẏ = −1− x2;

(vi) ẋ = 1− x3 + y2, ẏ = 2xy;

(vii) ẋ = y, ẏ = (1+ x2)y + x3;

3.30 Let D be a doubly connected region in the x, y plane. Show that, if ρ(x, y) has continuous first partial
derivatives and div(ρX) is of constant sign in D, then the system has not more than one closed path in
D. (An extension of Dulac’s test Problem 3.23.)

3.31 A system has exactly two limit cycles with one lying interior to the other and with no equilibrium points
points between them. Can the limit cycles be described in opposite senses? Obtain the equations of the
phase paths of the system

ṙ = sinπr, θ̇ = cosπr

as described in polar coordinates (r, θ). Sketch the phase diagram.

3.32 Using Bendixson’s theorem (Section 3.4) show that the response amplitudes a, b for the van der Pol
equation in the ‘van der Pol plane’ (this will be discussed later in Chapter 7), described by the equations

ȧ = 1
2
ε

(
1− 1

4
r2
)
a − ω2 − 1

2ω
b,

ḃ = 1
2
ε

(
1− 1

4
r2
)
b + ω2 − 1

2ω
a + �

2π
,

r = √(a2 + b2),

have no closed paths in the circle r <
√
2.

3.33 Let C be a closed path for the system ẋ=X(x), having D as its interior. Show that∫∫
D
div(X)dx dy = 0.

3.34 Assume that van der Pol’s equation in the phase plane

ẋ = y, ẏ = −ε(x2 − 1)y − x

has a single closed path, which, for ε small, is approximately a circle, centre the origin, of radius a. Use
the result of Problem 3.33 to show that approximately

∫ a

−a

∫ √(a2−x2)
−√(a2−x2)

(x2 − 1)dy dx = 0,

and so deduce a.

3.35 Following Problems 3.33 and 3.34, deduce a condition on the amplitudes of periodic solutions of

ẍ + εh(x, ẋ)ẋ + x = 0, |ε|  1.
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3.36 For the system

ẍ + εh(x, ẋ)ẋ + g(x) = 0,

suppose that g(0) = 0 and g′(x) > 0. Let C be a closed path in the phase plane (as all paths must be) for
the equation

ẍ + g(x) = 0

having interior C. Use the result of Problem 3.33 to deduce that for small ε, C approximately satisfies∫
D
{h(x, y)+ hy(x, y)y}dx dy = 0.

Adapt this result to the equation

ẍ + ε(x2 − α)ẋ + sin x = 0,

with ε small, 0<α1, and |x|< 1
2π . Show that a closed path (a limit cycle) is given by

y2 = 2A+ 2 cos x,

where A satisfies ∫ cos−1(−A)
− cos−1(−A)

(x2 − α)
√{2A+ 2 cos x}dx = 0.

3.37 Consider the system

ẋ = X(x, y) = −(x2 + y2)y,

ẏ = Y (x, y) = bx + (1− x2 − y2)y.

Let C be the circle x2 + y2 = a2 with interior R. Show that∫∫
R

div(X,Y )dx dy = 0

only if a = 1. Is C a phase path (compare Problem 3.33)?

3.38 The equation ẍ + F0 tanh k(ẋ − 1) + x=0, F0>0, k�1, can be thought of as a plausible continuous
representation of the type of Coulomb friction problem of Section 1.6. Show, however, that the only
equilibrium point is a stable spiral, and that there are no periodic solutions.

3.39 Show that the third-order system ẋ1= x2, ẋ2= − x1, ẋ3=1− (x21 + x22 ) has no equilibrium points but
nevertheless has closed paths (periodic solutions).

3.40 Sketch the phase diagram for the quadratic system ẋ = 2xy, ẏ = y2 − x2.

3.41 Locate the equilibrium points of the system

ẋ = x(x2 + y2 − 1), ẏ = y(x2 + y2 − 1),

and sketch the phase diagram.

3.42 Find the equilibrium points of the system

ẋ = x(1− y2), ẏ = x − (1+ ex)y.

Show that the system has no closed paths.
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3.43 Show using Bendixson’s theorem that the system

ẋ = x2 + y2, ẏ = y2 + x2ex

has no closed paths in x + y > 0 or x + y < 0. Explain why the system has no closed paths in the x, y
plane.

3.44 Plot a phase diagram, showing the main features of the phase plane, for the equation ẍ + ε(1 − x2 −
ẋ2)ẋ + x = 0, using ẋ = y, ε = 0.1 and ε = 5.

3.45 Plot a phase diagram for the damped pendulum equation ẍ + 0.15ẋ + sin x = 0. See Fig. 3.31.

3��� �

Figure 3.31 Phase diagram for the pendulum equation with small damping.

3.46 The system

ẋ = − 1
2ω

y

{
(ω2 − 1)− 3

4
β(x2 + y2)

}
,

ẏ = 1
2ω

x

{
(ω2 − 1)− 3

4
β(x2 + y2)

}
+ �

2ω

occurs in the theory of the forced oscillations of a pendulum. Obtain the phase diagram when ω =
0.975,� = 0.005, β = −1

6 .

3.47 A population of rabbits R(t) and foxes F(t) live together in a certain territory. The combined birth and
death rate of the rabbits due to ‘natural’ causes is α1>0, and the additional deaths due to their being
eaten by foxes is introduced through an ‘encounter factor’ β1, so that

dR
dt
= α1R − β1RF .

The foxes die of old age with death rate β2 > 0, and the live birth rate is sustained through an encounter
factor α2, so that (compare Example 2.3)

dF
dt
= α2RF − β2F .

Plot the phase diagram, when α1= 10, β1=0.2, α2=4×10−5, β2=0.2. Also plot typical solution
curves R(t) and F(t) (these are oscillatory, having the same period but different phase).

3.48 The system

ẋ = 1
2
α

(
1− 1

4
r2
)
x − ω2 − 1

2ω
y (r2 = x2 + y2),

ẏ = ω2 − 1
2ω

x + 1
2
α

(
1− 1

4
r2
)
y + �

2ω
,
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occurs in the theory of forced oscillations of the van der Pol equation (Section 7.4, and see also
Problem 3.32). Plot phase diagrams for the cases
(i) α = 1,� = 0.75,ω = 1.2;

(ii) α = 1,� = 2.0,ω = 1.6.

3.49 The equation for a tidal bore on a shallow stream is

ε
d2η
dξ
− dη

dξ
+ η2 − η = 0,

where (in appropriate dimensions), η is the height of the free surface, and ξ = x− ct where c is the wave
speed. For 0<ε1, find the equilibrium points of the equation and classify them according to their
linear approximations.

Plot the phase paths in the plane of η,w, where

dη
dξ
= w, ε

dw
dξ
= η + w − η2

and show that a separatrix from the saddle point at the origin reaches the other equilibrium point.
Interpret this observation in terms of the shape of the wave.

3.50 Determine the nature of the equilibrium point, and compute the phase diagram for the Coulomb friction
type problem ẍ + x = F(ẋ) where

F(y) =
{−6.0(y − 1), |y − 1| ≤ 4
−[1+ 1.4 exp{−0.5|y − 1| + 0.2}]sgn(y − 1), |y − 1| ≥ 0.4.

(See Fig. 3.32, and compare the simpler case shown in Section 1.6.)

(a) F(y)

(b)

Figure 3.32 (a) Typical Coulomb dry friction force F(y) in terms of slip velocity y; (b) corresponding phase diagram.
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3.51 Compute the phase diagram for the system whose polar representation is

ṙ = r(1− r), θ̇ = sin2(12 θ).

3.52 Compute the phase diagrams for the following systems: (i) ẋ=2xy, ẏ= y2+x2; (ii) ẋ=2xy, ẏ= x2−y2;
(iii) ẋ= x3−2x2y, ẏ=2xy2− y3.

3.53 Obtain the heteroclinic phase paths for the system ẋ = y, ẏ = −x + x3. Show that their time solutions
are given by

x = ± tanh
[
1
2
√
2(t − t0)

]
.

3.54 Obtain the heteroclinic phase paths of ẍ + sin x = 0, ẋ = y. (This is a periodic differential equation in x.
If the phase diagram is viewed on a cylinder of circumference 2π , then heteroclinic paths would appear
to be homoclinic.)

3.55 Find the homoclinic paths of ẍ − x + 3x5 = 0, ẋ = y. Show that the time solutions are given by
x = ±√[sech(t − t0)].

3.56 Find all heteroclinic phase paths of ẋ = y(1− x2), ẏ = −x(1− y2), (see Example 2.1).

3.57 The problem of the bead sliding on the rotating wire was discussed in Example 1.12, where it was shown
that the equation of motion of the bead is

aθ̈ = g(λ cos θ − 1) sin θ .

Find the equations of all homoclinic and heteroclinic paths carefully distinguishing the cases 0<λ<1,
λ=1 and λ>1.

3.58 Consider the equation ẍ− x(x− a)(x− b) = 0, 0<a<b. Find the equation of its phase paths. Show that
a heteroclinic bifurcation occurs in the neighbourhood of b=2a. Draw sketches showing the homoclinic
paths for b<2a and b>2a.

Show that the time solution for the heteroclinic path (b = 2a) is

x = 2a

1+ e−a
√
2(t−t0) .

3.59 Show that

ẋ = 4(x2 + y2)y − 6xy, ẏ = 3y2 − 3x2 − 4x(x2 + y2)

has a higher-order saddle at the origin (neglect the cubic terms for ẋ and ẏ, and show that near the origin
the saddle has solutions in the directions of the straight lines y= ± x/3, x=0. Confirm that the phase
paths through the origin are given by

(x2 + y2)2 = x(3y2 − x2).

By plotting this curve, convince yourself that three homoclinic paths are associated with the saddle point
at the origin.

3.60 Investigate the equilibrium points of

ẋ = y[16(2x2 + 2y2 − x)− 1], ẏ = x − (2x2 + 2y2 − x)(16x − 4),

and classify them according to their linear approximations. Show that homoclinic paths through (0, 0)
are given by (

x2 + y2 − 1
2x
)2 − 1

16

(
x2 + y2

)
= 0,

and that one homoclinic path lies within the other.



122 3 : Geometrical aspects of plane autonomous systems

3.61 The following model differential equation exhibits two limit cycles bifurcating through homoclinic paths
into a single limit cycle of larger amplitude as the parameter ε decreases through zero:

ẍ + (ẋ2 − x2 + 1
2x

4 + ε)ẋ − x + x3 = 0.

Let |ε| < 1
2 .

(a) Find and classify the equilibrium points of the equation.

(b) Confirm that the equation has phase paths given by

ẏ = x2 − 1
2x

4 − ε, y = ẋ.

Find where the paths cut the x-axis.

(c) As ε decreases through zero what happens to the limit cycles which surround the equilibrium point
at x = ±1? (It could be quite helpful to plot phase paths numerically for a sample of ε values.) Are
they all stable?

3.62 Classify the equilibrium points of ẍ = x − 3x2, ẋ = y. Show that the equation has one homoclinic path
given by y2 = x2 − 2x3. Solve this equation to obtain the (x, t) solution for the homoclinic path.

3.63 Classify all the equilibrium points of ẋ = y(2y2 − 1), ẏ = x(x2 − 1), according to their linear
approximations. Show that the homoclinic paths are given by

2y2(y2 − 1) = x2(x2 − 2),

and that the heteroclinic paths lie on the ellipse x2+√2y2 = 1
2 (2+

√
2), and the hyperbola x2−√2y2 =

1
2 (2−

√
2). Sketch the phase diagram.

3.64 A dry friction model has the equation of motion ẍ + x = F(ẋ), where

F(y) =
{ −µ(y − 1), |y − 1| ≤ ε,
−µεsgn(y − 1) |y − 1| > ε,

where 0 < ε < 1 (see Fig. 3.33). Find the equations of the phase paths in each of the regions y >

1+ ε, 1− ε ≤ y ≤ 1+ ε, y < 1− ε.

�

�

Figure 3.33

3.65 Locate and classify the equilibrium points of

ẋ = x2 − 1, ẏ = −xy + ε(x2 − 1).

Find the equations of all phase paths. Show that the separatrices in |x| < 1 which approach x = ±1 are
given by

y = ε
[
1
2x
√
(1− x2)+ 1

2 sin−1 x ∓ 1
4π
]
/
√
(1− x2).

Sketch typical solutions for ε >,=,< 0, and confirm that a heteroclinic bifurcation occurs at ε = 0.
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Show that the displacement d(x) in the y direction between the separatrices for −1 < x < 1 is
given by

d(x) = πε

2
√
(1− x2)

.

(This displacement is zero when ε = 0 which shows that the separatrices become a heteroclinic path
joining (1, 0) and (−1, 0) at this value of ε. This separatrix method is the basis of Melnikov’s perturbation
method in Chapter 13 for detecting homoclinic and heteroclinic bifurcations.)

3.66 Classify the equilibrium points of the system

ẋ = y, ẏ = x(1− x2)+ ky2,

according to their linear approximations. Find the equations of the phase paths, and show that, if
k = −√(3/2), then there exists a homoclinic path given by

y2 = x2
(
1−√(23 )x

)
in x > 0. Show that the time solution is given by

x = √(32 )sech2 1
2 (t − t0).

3.67 An oscillator has an equation of motion given by ẍ+f (x) = 0, where f (x) is a piecewise linear restoring
force defined by

f (x) =
{ −x, |x| ≤ a,
b(x sgn(x)− a)− a, |x| > a.

where a, b > 0. Find the equations of the homoclinic paths in the phase plane.

3.68 Consider the system

ẋ = y
(
2y2 − 3x2 + 19

9 x4
)
,

ẏ = y2
(
3x − 38

9 x3
)
−
(
4x3 − 28

3 x5 + 40
9 x7
)
.

Find the locations of its equilibrium points. Verify that the system has four homoclinic paths given by

y2 = x2 − x4 and y2 = 2x2 − 10
9 x4.

Show also that the origin is a higher-order saddle with separatrices in the directions with slopes±1,±√2.
3.69 Find and classify the equilibrium points of

ẋ = a − x2, ẏ = −y + (x2 − a)(1− 2x)

for all a. Show that as a decreases through zero, a saddle point and a node coalesce at a = 0 after which
the equilibrium points disappear. Using the substitution y = z + x2 − a, determine the equations of the
phase paths. Show that the phase path connecting the saddle point and the node is y = x2 − a for a > 0.
Compute phase diagrams for a = 0 and a = ±1

4 .

3.70 Locate and classify the equilibrium points of

ẋ = 1− x2, ẏ = −(y + x2 − 1)x2 − 2x(1− x2)

according to their linear approximations. Verify that the phase diagram has a saddle-node connection
given by y = 1− x2. Find the time solutions x(t), y(t) for this connection. Sketch the phase diagram.
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3.71 Consider the piecewise linear system

ẋ = x, ẏ = −y, |x − y| ≤ 1,

ẋ = y + 1, ẏ = 1− x, x − y ≥ 1,

ẋ = y − 1, ẏ = −1− x, x − y ≤ 1.

Locate and classify the equilibrium points of the system. By solving the linear equations in each region
and matching separatrices, show that the origin has two homoclinic paths.

3.72 Obtain the differential equations for the linear system

ẋ = ax + by, ẏ = cx + dy, (ad 	= bc),

in the U-plane (Fig. 3.16) using the transformation x = 1/z, y = u/z.
Under what conditions on 
 = p2 − 4q, p = a + d, q = ad − bc does the system on the U-plane have

no equilibrium points?

3.73 Classify all the equilibrium points of the system

ẋ = X(x, y) = (1− x2)(x + 2y), ẏ = Y (x, y) = (1− y2)(−2x + y).

Draw the isoclines X(x, y) = 0 and Y (x, y) = 0, and sketch the phase diagram for the system. A phase
path starts near (but not at) the origin. How does its path evolve as t increases? If, on this path, the
system experiences small disturbances which cause it to jump to nearby neighbouring paths, what will
eventually happen to the system?
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Consider an equation of the form ẍ+ εh(x, ẋ)+ x=0 where ε is small. Such an equation is
in a sense close to the simple harmonic equation ẍ + x = 0, whose phase diagram consists of
circles centred on the origin. It should be possible to take advantage of this fact to construct
approximate solutions: the phase paths will be nearly circular for ε small enough. However,
the original equation will not, in general, have a centre at the origin. The approximate and the
exact solutions may differ only by a little over a single cycle, but the difference may prevent the
paths from closing; apart from exceptional paths, which are limit cycles. The phase diagramwill
generally consist of slowly changing spirals and, possibly, limit cycles, all being close to circular.
We show several methods for estimating the radii of limit cycles and for detecting a centre.

Extensions of the methods permit determination of the stability and the period of limit cycles,
the shape of the spiral path around limit cycles, and amplitude–frequency relations in the case
of a centre.
Similar estimates are successful even in very unpromising cases where ε is not small and

the supporting arguments are no longer plausible (see Example 4.12 and Section 4.5). In such
cases we can say that we are guided to the appropriate sense of how best to fit a circle to a
non-circular path by arguments which are valid when ε is small.

4.1 An energy-balance method for limit cycles

The nonlinear character of isolated periodic oscillations makes their detection and construction
difficult. Here we discuss limit cycles and other periodic solutions in the phase plane ẋ = y,
ẏ = Y (x, y), which allows the mechanical interpretation of Section 1.6 and elsewhere.

Consider the family of equations of the form

ẍ + εh(x, ẋ)+ x = 0 (4.1)

(note that the equation ẍ + εh(x, ẋ) + ω2x = 0 can be put into this form by the change of
variable τ = ωt). Then on the phase plane we have

ẋ = y, ẏ = −εh(x, y)− x. (4.2)

Assume that |ε|1, so that the nonlinearity is small, and that h(0, 0)=0, so that the origin
is an equilibrium point. Suppose we have reason to think that there is at least one periodic
solution with phase path surrounding the origin: an appraisal of the regions of the phase plane
in which energy loss and energy gain take place might give grounds for expecting a limit cycle.
When ε = 0, eqn (4.1) becomes

ẍ + x = 0, (4.3)
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called the linearized equation. Its general solution is x(t) = a cos(t + α), where a and α are
arbitrary constants. So far as the phase diagram is concerned, we may restrict a and α to the
cases

a > 0, α = 0.

Since different values of α simply correspond to different time origins, the phase paths and repre-
sentative points remain unchanged. The family of phase paths for (4.3) is given parametrically by

x = a cos t , y = −a sin t ,
which is the family of circles x2 + y2 = a2. The period of all these motions is equal to 2π .
For small enough ε we expect that any limit cycle, or any periodic motion, of (4.1) will be

close to one of the circular motions (4.4), and will approach it as ε → 0. Therefore, for some
value of a,

x(t) ≈ a cos t , y(t) ≈ −a sin t and T ≈ 2π (4.4)

on the limit cycle, where T is its period.
From (1.47), (with εh in place of h and g(x) = x) the change in energy,

E(t) = 1
2x

2(t)+ 1
2y

2(t),

over one period 0 ≤ t ≤ T , is given by

E(T )− E(0) = −ε
∫ T

0
h(x(t), y(t))y(t)dt .

Since the path is closed, E returns to its original value after one circuit. Therefore∫ T

0
h(x(t), y(t))y(t)dt = 0

on the limit cycle. This relation is exact. Now insert the approximations (4.4) into the integral.
We obtain the approximating energy balance equation for the amplitude a > 0 of the periodic
motion

E(2π)− E(0) = εa

∫ 2π

0
h(a cos t ,−a sin t) sin t dt = 0 (4.5)

or ∫ 2π

0
h(a cos t ,−a sin t) sin t dt = 0, (4.6)

(after getting rid of the factor (−εa)). This is an equation which, in principle, can be solved for
the unknown amplitude a of a limit cycle. In the case of a centre it is satisfied identically.

Example 4.1 Find the approximate amplitude of the limit cycle of the van der Pol equation

ẍ + ε(x2 − 1)ẋ + x = 0 (4.7)

when ε is small.
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Figure 4.1 Phase diagram for the van der Pol equation ẍ + ε(x2 − 1)ẋ + x = 0 with ε = 0.1. The limit cycle is the
outer rim of the shaded region.

Here

h(x, y) = (x2 − 1)y.

assuming that x ≈ a cos t , the energy balance equation (4.6) becomes

∫ 2π

0

{(
a2 cos2 t − 1

)
sin t
}
sin t dt = 0.

This leads to the equation 1
4a

2 − 1 = 0, with the positive solution a = 2. Figure 4.1 shows the limit cycle for
ε = 0.1, as obtained numerically.

As ε becomes larger, the shape of the limit cycle becomes significantly different from a circle although the
amplitude remains close to 2. This is shown in Fig. 4.2(a) for the case ε = 0.5. The corresponding time solution
is shown in Fig. 4.2(b); the period is slightly greater than 2π . �

By an extension of this argument the stability of a limit cycle can also be determined. Taking
the model of a limit cycle as conforming to the type shown in Fig. 4.1, we should expect
that unclosed paths near enough to the limit cycle, spiralling gradually, will also be given by
x≈ a(t) cos t , y≈−a(t) sin t , where a(t) is nearly constant over a time interval (not now an
exact ‘period’) of 0 ≤ t ≤ 2π .

Denote the approximation (4.6) by g(a)

g(a) = εa

∫ 2π

0
h(a cos t ,−a sin t) sin t dt ; (4.8)

and let a ≈ a0 (>0) on the limit cycle. Then, by (4.6)

g(a0) = 0
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Figure 4.2 (a) Phase diagram and (b) time solution for the limit cycle of the van der Pol equation ẍ+ε(x2−1)ẋ+x = 0
with ε = 0.5.

by (4.6). If the limit cycle is stable, then along nearby interior spiral segments (a < a0), energy
is gained, and along exterior segments (a > a0), energy is lost. This is to say, for some value of
δ > 0,

g(a) > 0 when a0 − δ < a < a0,

g(a) < 0 when a0 < a < a0 + δ.
(4.9)

Similarly if the signs of the inequalities are both reversed, the limit cycle is unstable. Therefore
the existence and stability of a limit cycle of amplitude a0 are determined by the conditions

g(a0) = 0, stable if g′(a0) < 0, unstable if g′(a0) > 0. (4.10)

Note that the signs of these inequalities are reversed when the sign of ε is reversed. (The case
g(a0) is >0 or <0 on both sides also implies instability, but this is not shown by testing the
sign of g′(x0), because its value is zero in these cases.)

Example 4.2 Check the stability of the limit cycle in Example 4.1.

From eqn (4.8)

g(a) = −εa2
∫ 2π

0
(a2 cos2 t − 1) sin2 t dt = −εa2π

(
1
4a

2 − 1
)
.

Therefore,

g′(a) = −επa(a2 − 2).
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Putting a0 = 2 from Example 4.1

g′(2) = −4πε.

By (4.10) the cycle is therefore stable when ε > 0, unstable when ε < 0. �
Direct differentiation of (4.8) with respect to a gives an alternative criterion for stability.

From (4.8),

g′(a) = ε

∫ 2π

0
h sin t dt + εa

∫ 2π

0

∂h

∂a
sin t dt

= ε
[
− h cos t

]2π
0
+ ε

∫ 2π

0

∂h

∂t
cos t dt + εa

∫ 2π

0

∂h

∂a
sin t dt

(integrating the first term by parts). But by the chain rule applied to h(a cos t ,−a sin t)
∂h

∂t
= −ah1 sin t − ah2 cos t

and

∂h

∂a
= h1 cos t − h2 sin t ,

where we use the notation

h1(u, v) = ∂h(u, v)
∂u

, h2(u, v) = ∂h(u, v)
∂v

.

Therefore

g′(a) = −εa
∫ 2π

0
h2(a cos t ,−a sin t)dt .

For stability we require g′(a0) < 0 which is equivalent to

ε

∫ 2π

0
h2(a0 cos t ,−a0 sin t)dt > 0, (4.11)

where a0 is a positive solution of (4.6).

Example 4.3 Check the stability of the limit cycle in Example 4.1, using (4.11).

In this case h(x, y)= (x2 − 1)y and h2(x, y)= x2− 1. The approximate solution for the limit cycle is, from
Example 4.1, x=2 cos t . Equation (4.11), with a0 = 2, gives

ε

∫ 2π

0
(4 cos2 t − 1)dt = 2πε

so that the cycle is stable if ε > 0. �
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Exercise 4.1
For |ε|  1, find the approximate amplitudes of the limit cycles if

ẍ + ε(x2 − 1)(x2 − 6)ẋ + x = 0, 0 < ε  1.

Find the function g(a) and the stability of the limit cycles.

4.2 Amplitude and frequency estimates: polar coordinates

Consider again the equation

ẍ + εh(x, ẋ)+ x = 0,

and the equivalent system

ẋ = y, ẏ = −εh(x, y)− x, (4.12)

and suppose that it has at least one periodic time solution, corresponding to a closed path.
Let any phase path of (4.12) be represented parametrically by time-dependent polar

coordinates a(t), θ(t). By eqn (1.58), the polar coordinate form of (4.12) becomes

ȧ = −εh sin θ , (4.13)

θ̇ = −1− εa−1h cos θ , (4.14)

and the differential equation for the phase paths is therefore

da
dθ
= εh sin θ

1+ εa−1h cos θ
, (4.15)

where, for brevity, h stands for h(a cos θ , a sin θ). These equations hold generally, whether ε is
small or not.
Figure 4.3(a) shows a closed path, which may be a limit cycle or one of the curves constituting

a centre. Let its time period be T . Then a(t), θ(t) and therefore h all have time period T , meaning
that along the closed path a(t0+T ) = a(t0) for every t0, and so for the other variables. Regarded
as functions of the angular coordinate θ , all the variables in the problem have θ -period 2π ,
exactly. As indicated in Fig. 4.3(b), when t increases, θ decreases. The direction along the path
for t increasing is clockwise, following the general rule for the phase plane with y = ẋ; the
positive direction for the polar coordinate θ is counterclockwise. A typical cycle of a closed
path is therefore described by the end conditions:

a = a0, θ = 2π , at t = 0,

a = a0, θ = 0, at t = T .
(4.16)
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Figure 4.3 (a) A limit cycle and its approximating phase diagram for ε=0. (b) Showing the relation between
θ and t .

Now suppose that ε is small: |ε|1. As described in the previous section, we expect that the
closed path will consist of a small distortion, or perturbation, of one of the circular paths of
the linearized system ẍ+ x = 0, or of ẋ = y, ẏ = −x, which are indicated as broken lines in
Fig. 4.3(a). We shall give more precision to this idea, and also provide estimates of the period
T and the circular frequency ω = 2π/T , by approximating to eqns (4.13), (4.14), and (4.15)
for small values of ε.
By expanding the right-hand side of (4.15) in powers of ε we obtain

da
dθ
= εh sin θ +O(ε2). (4.17)

Integrate (4.17) with respect to θ , over the range θ = 2π decreasing to θ = 0. We obtain

a(θ)− a(2π) = O(ε), or a(θ) = a0 +O(ε), (4.18)

since a(2π) = a0, from (4.16). The deviation from a circular path of radius a0 is therefore
small, of order of magnitude ε.
Integrate (4.17) over the full range of the cycle (4.16), from θ = 2π to θ = 0. We obtain

a0 − a0 = 0 = ε

∫ 0

2π
h(a cos θ , a sin θ) sin θ dθ +O(ε2),

or

0 = −
∫ 2π

0
h(a cos θ , a sin θ) sin θ dθ +O(ε),
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after cancelling the factor ε and reversing the direction of the integral. Now substitute for a
from (4.18) and expand h(a cos θ , a sin θ) under the integral sign: we have∫ 2π

0
h(a0 cos θ , a0 sin θ) sin θ dθ = O(ε).

Since the integral on the left does not depend on ε, a necessary condition for the phase path
to be closed is that ∫ 2π

0
h(a0 cos θ , a0 sin θ) sin θ dθ = 0. (4.19)

This serves as an equation for the approximate amplitude a0 of the cycle. The similar-looking
condition (4.7) is recoverable by integrating the expression (4.14) for θ̇ with respect to t ,
obtaining

θ = 2π − t +O(ε). (4.20)

When this is substituted into (4.19) and the leading term in the expansion of h retained, we
have (4.6) again.
To obtain the period of the cycle, T , put

T =
∫ T

0
dt =

∫ 0

2π

dθ

θ̇
.

From (4.14), therefore,

T =
∫ 2π

0

dθ
1+ εa−1h(a cos θ , a sin θ) cos θ

.

Substitute a = a0+O(ε), retain the leading terms, then expand 1/{1+ εa−10 h cos θ} to order ε.
We then have

T =
∫ 2π

0

{
1− εa−10 h(a0 cos θ , a0 sin θ) cos θ +O(ε2)

}
dθ

≈ 2π − ε

a0

∫ 2π

0
h(a0 cos θ , a0 sin θ) cos θ dθ ,

(4.21)

the error being of order ε2.
The circular frequency of the periodic oscillation is

ω = 2π
T
≈ 1+ ε

2πa0

∫ 2π

0
h(a0 cos θ , a0 sin θ) cos θ dθ , (4.22)

with error of order ε2.

Example 4.4 Obtain the frequency of the limit cycle of the van der Pol equation

ẍ + ε(x2 − 1)ẋ + x = 0

correct to order ε.
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Since h(x, ẋ) = (x2 − 1)ẋ and the amplitude a0 = 2 to order ε (from Example 4.1), eqn (4.22) gives

ω = 1+ ε

4π

∫ 2π

0
(4 cos2 θ − 1)(2 sin θ) cos θ dθ

= 1+ zero

(since the integrand is an odd function about θ =π ). The frequency is 1, with error O(ε2). �
Example 4.5 Obtain the relation between frequency and amplitude for moderate-amplitude swings of the
pendulum equation ẍ + sin x = 0.

At first sight this equation seems to have nothing to do with the previous theory. However, write the
approximation appropriate to moderate swings:

sin x ≈ x − 1
6x

3

(with error about 1% when x = 1, corresponding to an angular displacement of 57.3◦). The approximate
equation is

ẍ − 1
6x

3 + x = 0.

This equation is a member of the family of equations ẍ+ εx3+ x = 0, with ε = −1
6 , which is of the right type,

with

h(x, ẋ) = x3.

The equation (4.19) for the amplitude a0 becomes

a30

∫ 2π

0
cos3 θ sin θ dθ = 0.

The integrand is an odd function about θ = π , so the equation is satisfied identically for all a0. This is to be
expected since the origin x = 0, y = 0 in the phase plane is a centre.

For the frequency ω, (4.22) becomes

ω = 1+ ε

2πa0

∫ 2π

0
a30 cos4 θ dθ

for ε = −1
6 and for all a0. By carrying out the integration we obtain

ω = 1− 1
16a

2
0,

the result being closely correct for moderate amplitudes. The frequency decreases (and the period increases)
with amplitude for the pendulum. �
Example 4.6 Obtain an approximation to the amplitude and frequency of the limit cycle for Rayleigh’s
equation ẍ + ε(13 ẋ

3 − ẋ)+ x = 0.

Here, h(x, ẋ) =
(
1
3 ẋ

2 − 1
)
ẋ. Equation (4.19) becomes

∫ 2π

0

(
1
3
a20 sin2 θ − 1

)
sin2 θ dθ = 0,

which can be verified to have the solution a0=2. The frequency equation (4.22) becomes

ω = 1+ ε

4π

∫ 2π

0

(
4
3
sin2 θ − 1

)
sin θ cos θdθ
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with error O(ε2). But the integral is zero since the integrand is an odd function about θ = π . Therefore the
frequency is given by

ω = 1+O(ε2). �

Exercise 4.2
Find the approximate amplitude of the limit cycle of the system

ẍ + ε[(x2 − 1)ẋ − x3] + x = 0, 0 < ε  1.

Show that its frequency ω is given by

ω = 1− 3
2ε +O(ε2).

4.3 An averaging method for spiral phase paths

The general pattern of the phase diagram for the system

ẋ = y, ẏ = −εh(x, y)− x, |ε|  1

in a bounded region containing the origin is of slowly expanding or contracting spiral phase
paths, which may include closed paths, surrounding the origin. This is shown by eqns (4.13)
and (4.14). A representative point with polar coordinates a(t), θ(t) moves round the origin
repeatedly at an angular speed θ̇ ≈ −1, whilst the distance a(t) from the origin changes slowly.
We shall obtain an approximate differential equation for the phase paths.
Equation (4.15) for the paths in polar coordinates can be written

da
dθ
= εh(a(θ) cos θ , a(θ) sin θ) sin θ +O(ε2). (4.23)

The function h(a(θ) cos θ , a(θ) sin θ) sin θ is not in general periodic in θ because a(θ) is not
periodic on a spiral. Nevertheless we can construct an expansion of h sin θ as a pseudo-Fourier
series for all values of θ as follows.
Firstly, treat a as if it were an arbitrary constant parameter. Then h(a cos θ , a sin θ) sin θ is

periodic with period 2π , so it can be represented by an ordinary Fourier series, valid for all θ
and for every fixed value of a:

h(a cos θ , a sin θ) sin θ = p0(a)+
∞∑
n=1
{pn(a) cos nθ + qn(a) sin nθ},

in which the coefficients are given by

p0(a) = 1
2π

∫ 2π

0
h(a cos u, a sin u) sin udu; (4.24)
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and (
pn(a)

qn(a)

)
= 1

2π

∫ 2π

0
h(a cos u, a sin u) sin u

(
cos nu
sin nu

)
du

for n ≥ 1. Since these formulae are correct for every constant value of a, they still hold good if
we put a(θ) in place of a wherever it appears. The differential equation (4.23) then becomes

da
dθ
= εp0(a)+ ε

∞∑
n=1
{pn(a) cos nθ + qn(a) sin nθ} +O(ε2), (4.25)

in which a is a function of θ throughout.
Every term on the right of (4.25) contributes something to the solutions a(θ). However, we

shall show that, correct to order ε, the increment in a(θ) over any complete ‘loop’ θ0 ≤ θ ≤
θ0 + 2π of the spiralling phase paths depends only on the single term εp0(a).

On one loop of a phase path, θ0 ≤ θ ≤ θ0 + 2π , put

a(θ0) = a1, a(θ0 + 2π) = a2.

We require the increment a2 − a1. By (4.18), a(θ) = a1 + O(ε) on the loop. Substitute this
into the terms under the summation sign in (4.25), obtaining pn(a) = pn(a1)+O(ε), qn(a) =
qn(a1)+O(ε); then (4.25) becomes

da
dθ
= εp0(a)+ ε

∞∑
n=1
{pn(a1) cos nθ + qn(a1) sin nθ} +O(ε2). (4.26)

Integrate (4.26) over the range θ0 ≤ θ ≤ θ0 + 2π . The integral over each term under the
summation sign is zero, and we are left with

a2 − a1 = ε

∫ θ0+2π

θ0

p0(a(θ))dθ +O(ε2).

Therefore, to this order of accuracy, the increment over one loop depends only on p0(a). The
contribution of the higher harmonics in (4.26) to the increment is only O(ε2).

Consider now the differential equation that is left over from (4.26) after eliminating the n ≥ 1
terms which, on average, have an effect of order ε2. It is

da
dθ
= εp0(a), (4.27a)

where

p0(a) = 1
2π

∫ 2π

0
h{a(θ) cos u, a(θ) sin u} sin udu. (4.27b)

The integral (4.27b) can, in principle, be evaluated and the approximate differential equa-
tion (4.27a) solved to give a(θ).
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To interpret these equations: p0(a) is nearly equal to the average value of h sin θ over any
loop with polar coordinates a(θ), θ . Thus the function h sin θ in the original differential equa-
tion (4.23) has been replaced by this average value. The influence of the higher harmonics in
h sin θ within any particular loop is disregarded, but the curves generated by (4.27) are still
nearly circular for ε small enough, and the separation between successive loops of a phase path
from point to point is correct to order ε. This process is representative of a group of procedures
called averaging methods (Krylov and Bogoliubov 1949).
The usual equation for a limit cycle is obtained from (4.27b) by putting p0(a) = 0.
Approximate equations of the same type for the time variation of a(t), θ(t) may be derived

from (4.27). Put

da
dt
= da

dθ
dθ
dt
= −da

dθ
+O(ε)

from (4.14). From (4.27a), this becomes

da
dt
= −εp0(a) (4.28)

with p0(a) given by (4.27b).
By a process of averaging similar to that leading up to eqn (4.27a, b) we can also obtain the

equation for θ(t):

dθ
dt
= −1− εa−1r0(a)+O

(
ε2
)
, (4.29)

where

r0(a) = 1
2π

∫ 2π

0
h{a cos u, a sin u} cos udu. (4.30)

Example 4.7 Find approximate time solutions of van der Pol’s equation

ẍ + ε(x2 − 1)ẋ + x = 0,

for small positive ε.
From (4.24),

p0(a) = a

2π

∫ 2π

0
(a2 cos2 u− 1) sin2 udu = 1

2a
(
1
4a

2 − 1
)
.

We have the approximate equation (4.28), for the radial coordinate:

da
dt
= −1

2εa
(
1
4a

2 − 1
)
.

The constant solution a = 2 corresponds to the limit cycle. The equation separates, giving∫
da

a(a2 − 4)
= −1

8ε(t + C),
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where C is a constant. By carrying out the integration we obtain

−1
4 log a + 1

8 log |a2 − 4| = −1
8ε(t + C).

With the initial condition a(0) = a1, the solution is

a(t) = 2

{1− (1− (4/a21))e
−εt }1/2 ,

which tends to 2 as t →∞. It is easy to verify from eqn (4.30) that r0(a) = 0. Equation (4.29) therefore gives
θ(t) = −t + θ1 where θ1 is the initial polar angle. The frequency of the spiral motion is therefore the same as
that of the limit cycle to our degree of approximation. Finally, the required approximate time solutions are
given by

x(t) = a(t) cos θ(t) = 2 cos(t − θ1)

{1− (1− (4/a21))e
−εt }1/2 . �

Example 4.8 Find the approximate phase paths for the equation

ẍ + ε(|ẋ| − 1)ẋ + x = 0.

We have h(x, y) = (|y| − 1)y. Therefore, from (4.27b),

p0(a) = a

2π

∫ 2π

0
(|a sin θ | − 1) sin2 θ dθ

= a

2π

(∫ π

0
(a sin θ − 1) sin2 θ dθ +

∫ 2π

π
(−a sin θ − 1) sin2 θ dθ

)

= a

2π
2
∫ π

0
(a sin θ − 1) sin2 θ dθ = 1

π
a

(
4
3
a − 1

2
π

)
.

There is a limit cycle when p0(a) = 0; that is, at a = 3
8π = a0, say. Equation (4.27a) becomes

da
dθ
= 4ε

3π
a(a − a0).

The spiral path satisfying a = a1 at θ = θ1 is given in polar coordinates by

a(θ) = a0

/(
1− (1− (a0/a1)) exp

[
ε
4a0
3π

(θ − θ1)

])
.

Alternatively, eqn (4.28) gives a as a function t . �

Exercise 4.3
Find the limit cycle and approximate spiral paths of

ẍ + ε(ẋ2 − |ẋ|)ẋ + x = 0, 0 < ε  1

expressed as θ , as a function of a in polars.
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Exercise 4.4
Find the limit cycle and approximate spiral paths of

ẍ + ε(x2 + 2ẋ2 − 1)ẋ + x = 0, 0 < ε  1.

4.4 Periodic solutions: harmonic balance

One of the most straightforward practical methods for estimating periodic solutions is
illustrated by the following examples.

Example 4.9 Find an approximation to the amplitude and frequency of the limit cycle of van der Pol’s equation
ẍ + ε(x2 − 1)ẋ + x = 0.

Assume an approximate solution x = a cosωt . (The prescription of zero value for the phase is not a limitation;
in the case of an autonomous equation we are, in effect, simply choosing the time origin so that ẋ(0) = 0.) We
expect the angular frequency ω to be close to 1 for small |ε|. Write the equation in the form

ẍ + x = −ε(x2 − 1)ẋ.

Upon substituting the assumed form of solution we obtain

(−ω2 + 1)a cosωt = −ε(a2 cos2 ωt − 1)(−aω sinωt)

= εaω(14a
2 − 1) sinωt + 1

4εa
3ω sin 3ωt ,

after some reduction. The right-hand side is just the Fourier series for εh(x, ẋ): it is easier to get it this way
than to work with the equations of the last section. Now, ignore the presence of the higher-harmonic term
involving sin 3ωt , and match terms in cosωt , sinωt . We find

1− ω2 = 0

from the cosωt term, and

1
4a

2 − 1 = 0

from the sinωt term. Choosing positive values, the second equation gives a = 2, and the first ω = 1 (the signs
are equivalent), as in several earlier examples. �
Example 4.10 Obtain the amplitude–frequency approximation for the pendulum equation ẍ + x − 1

6x
3 = 0.

Assume an approximate solution of the form x = a cos ωt . We obtain, after substituting in the given equation:

−ω2a cosωt + a cosωt − 1
6a

3
(
3
4 cosωt − 1

4 cos 3ωt
)
= 0.

Ignore the higher harmonic and collect the coefficients of cos ωt . We find that

a
[
(1− ω2)− 1

8a
2
]
= 0.

Therefore the frequency–amplitude relation becomes

ω = √(1− 1
8a

2) ≈ 1− 1
16a

2
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for amplitude not too large (compare Example 4.5). The existence of solutions for ω corresponding to a range
of values of a >0 indicates that in this case the origin is a centre. �
For the general equation

ẍ + εh(x, ẋ)+ x = 0, (4.31)

suppose that there is a periodic solution close to a cos ωt and that h(a cosωt ,−aω sinωt) has
a Fourier series, the constant term (which is its mean value over a cycle) being zero:

h(x, ẋ) ≈ h(a cosωt ,−aω sinωt)

= A1(a) cosωt + B1(a) sinωt + higher harmonics,

where

A1(a) = ω

π

∫ 2π/ω

0
h(a cosωt ,−aω sinωt) cosωt dt ,

B1(a) = ω

π

∫ 2π/ω

0
h(a cosωt ,−aω sinωt) sinωt dt .

Then (4.31) becomes

(1− ω2)a cosωt + εA1(a) cosωt + εB1(a) sinωt + higher harmonics = 0. (4.32)

This equation can hold for all t only if

(1− ω2)a + εA1(a) = 0, B1(a) = 0, (4.33)

which determine a and ω.
It will not be possible in general to ensure that full matching is obtained in (4.32): since the

solution is not exactly of the form a cosωt we should ideally have represented the solution by a
complete Fourier series and matching could then in principle be completed. A way of justifying
the non-matching of the higher harmonics is to regard them as additional, neglected input (or
forcing terms) to the linear equation ẍ+x = 0. The periodic response of this equation to a force
K cos nωt is equal to−K cos nωt/(n2ω2−1), and is therefore of rapidly diminishing magnitude
as n increases.
The method can also be applied to nonlinear equations with a periodic forcing term, and is

used extensively in Chapter 7.

Exercise 4.5
Obtain the amplitude and frequency approximation for

ẍ + ε(|x|3 − 1)ẋ + x = 0, 0 < ε  1.
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4.5 The equivalent linear equation by harmonic balance

The method of harmonic balance can be adapted to construct a linear substitute for the original
nonlinear equation; the process can be described as pseudo-linearization. We illustrate the
process by an example.

Example 4.11 Obtain approximate solutions to the van der Pol equation

ẍ + ε(x2 − 1)ẋ + x = 0

using an equivalent linear equation.

The phase diagram for this by now familiar equation consists of a limit cycle and spirals slowly converging on
it when ε is small and positive. We shall approximate to ε(x2 − 1)ẋ = εh(x, ẋ) on any one ‘cycle’ of a spiral:
this nonlinear term is already small and a suitable approximation retaining the right characteristics should be
sufficient. Suppose, then, that we assume (for the purpose of approximating h only) that x = a cosωt and
ẋ = −aω sinωt , where a,ω are considered constant on the limit cycle. Then

ε(x2 − 1)ẋ ≈ −ε(a2 cos2 ωt − 1)aω sinωt

= −εaω
(
1
4a

2 − 1
)
sinωt − 1

4εa
3 sin 3ωt . (4.34)

(compare Example 4.9). As in the harmonic balance method, we neglect the effect of the higher harmonic, and
see that since −aω sinωt = ẋ on the limit cycle, eqn (4.34) can be written as

ε(x2 − 1)ẋ ≈ ε
(
1
4a

2 − 1
)
ẋ. (4.35)

We now replace this in the differential equation to give the linear equation

ẍ + ε
(
1
4a

2 − 1
)
ẋ + x = 0. (4.36)

This equation is peculiar in that it contains a parameter of its own solutions, namely the amplitude a. If
a = 2 the damping term vanishes and the solutions are periodic of the form 2 cos t ; hence ω = 1. This is an
approximation to the limit cycle.

The non-periodic solutions are spirals in the phase plane. Consider themotion for which x(0) = a0, ẋ(0) = 0:
for the next few ‘cycles’ a0 will serve as the amplitude used in the above approximation, so (4.40)may bewritten

ẍ + ε
(
1
4a

2
0 − 1

)
ẋ + x − 0.

With the initial conditions given, the solution is

x(t) = a0
β

eαt [β cosβt − α sin βt],

where

α = 1
2ε
(
1− 1

4a
2
0

)
, β = 1

2
√[

4− ε2(1− 1
4a

2
0)
]
.

It can be confirmed, by expanding both factors in powers of εt , that so long as εt  1 this ‘solution’ agrees
with the approximate solution found in Example 4.7. Damped or negatively damped behaviour of the solutions
occurs according to whether a0 > 2 or a0 < 2; that is, according to whether we start outside or inside the limit
cycle. �
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Example 4.12 Find the frequency–amplitude relation for the equation ẍ + sgn(x) = 0 and compare it with
the exact result using an equivalent linear equation.

It can be shown that the system ẋ = y, ẏ = −sgn(x) has a centre at the origin: the behaviour is that of a particle
on a spring, with a restoring force of constant magnitude as shown in Fig. 4.4(a).

sgn(x)

sgn(a cos �t)

1

1

–1

–1

(a)

(b)

x

–5�/2� –3�/2� –�/2� �/2� 3�/2� 5�/2�

t

Figure 4.4 (a) Graph of sgn(x); (b) graph of sgn(a cos(ωt)).

Suppose the oscillations have the form a cosωt approximately. Then sgn(x) = sgn(a cosωt). This has the
shape shown in Fig. 4.4(b). The period is 2π/ω and we shall approximate to sgn(a cosωt) by the first term in
its Fourier series on the interval (0, 2π/ω):

sgn(a cosωt) = A1(a) cosωt + higher harmonics

(the constant term is zero, and there is no sine term since the function is even) where

A1(a) = ω

π

∫ 2π/ω

0
sgn(a cosωt) cosωt dt

= 1
π

∫ 2π

0
sgn(a cos u) cos udu

= 1
π

(∫ π/2

0
cos udu−

∫ 3π/2

π/2
cos udu+

∫ 2π

3π/2
cos udu

)
= 4

π
.

Therefore sgn(x) is replaced by (4/π) cosωt , which in turn is replaced by (4/π)x/a. The equivalent linear
equation is then

ẍ + 4
πa

x = 0.

The solution, having any amplitude a, of the form a cosωt is

x(t) = a cos

[(
4
πa

)1/2
t

]
.

Therefore

ω = 2√
(πa)
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and the period T is given by

T = 2π
ω
= π3/2a1/2 ≈ 5.568

√
a.

The exact period can be found as follows. When x > 0, ẍ = −1. The solution for x > 0 is therefore

x(t) = −1
2 t

2 + αt + β.

The solution for which x(0) = 0 and ẋ
(
1
4Te

)
= 0, where Te is the exact period, is

(
− 1

2 t
2 + 1

4Tet
)
.

Further, x = a when t = 1
4Te, so that

Te = 4
√
(2a) ≈ 5.67

√
a,

which compares very favourably with the above estimate. �
Example 4.13 Obtain the period–amplitude relation for the Poisson–Boltzmann-type equation ẍ + (ex −
e−x) = 0 using an equivalent linear approximation.

When x = a cosωt ,

ex − e−x = ea cosωt − e−a cosωt = A1(a) cosωt + higher harmonics

(there is no sinωt term since the function is even), where

A1(a) = ω

π

∫ 2π/ω

0
(ea cosωt − e−a cosωt ) cosωt dt

= 1
π

∫ 2π

0
(ea cos u − e−a cos u) cos udu.

These integrals are expressible in terms of the modified Bessel function I1 which has the integral representation
(Abramowitz and Stegun 1965)

I1(z) = 1
π

∫ π

0
ez cos u cos udu,

and we find that

A1(a) = 4I1(a).

Neglecting the higher harmonics, we write the equation as

ẍ + (4I1(a)/a)x = 0.

The frequency ω is therefore given by

ω = 2
√
(I1(a)/a)

and the period T by

T = π
√
(a/I1(a)).

Note that a is unrestricted in these equations—it can be verified that x = 0 is a centre for the original equation
(see Problem 1.21). �
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Exercise 4.6
Find the equivalent linear equation for ẍ+ (x2+ ẋ2)x=0, and the resulting frequency-
amplitude approximation. What restrictions must be imposed on the amplitude? Find the
exact equation of the phase paths, and confirm that x2+y2 = 1 is a phase path corresponding
to frequency ω = 1, amplitude a = 1.

Problems

4.1 By transforming to polar coordinates, find the limit cycles of the systems

(i) ẋ = y + x(1− x2 − y2), ẏ = −x + y(1− x2 − y2);

(ii) ẋ= (x2+ y2−1)x− y
√
(x2+ y2), ẏ= (x2+ y2−1)y+x√(x2+ y2);

and investigate their stability.

4.2 Consider the system

ẋ = y + xf (r2), ẏ = −x + yf (r2),

where r2 = x2 + y2 and f (u) is continuous on u ≥ 0. Show that r satisfies

d(r2)
dt
= 2r2f (r2).

If f (r2) has n zeros, at r = rk , k = 1, 2, . . . , n, how many periodic solutions has the system? Discuss their
stability in terms of the sign of f ′(r2

k
).

4.3 Apply the energy balance method of Section 4.1 to each of the following equations assuming 0<ε1,
and find the amplitude and stability of any limit cycles:

(i) ẍ + ε(x2 + ẋ2 − 1)ẋ + x = 0;

(ii) ẍ + ε(13 ẋ
3 − ẋ)+ x = 0;

(iii) ẍ + ε(x4 − 1)ẋ + x = 0;

(iv) ẍ + ε sin(x2 + ẋ2) sgn(ẋ)+ x = 0;

(v) ẍ + ε(|x| − 1)ẋ + x = 0;

(vi) ẍ + ε(ẋ − 3)(ẋ + 1)ẋ + x = 0;

(vii) ẋ + ε(x − 3)(x + 1)ẋ + x = 0.

4.4 For the equation ẋ + ε(x2 + ẋ2 − 4)ẋ + x = 0, the solution x = 2 cos t is a limit cycle. Test its stability,
using the method of Section 4.1, and obtain an approximation to the paths close to the limit cycle by the
method of Section 4.3.

4.5 For the equation ẍ + ε(|x| − 1)ẋ + x = 0, find approximately the amplitude of the limit cycle and its
period, and the polar equations for the phase paths near the limit cycle.

4.6 Repeat Problem 4.5 with Rayleigh’s equation, ẍ + ε(13 ẋ
3 − ẋ)+ x = 0.

4.7 Find approximately the radius of the limit cycle, and its period, for the equation

ẍ + ε(x2 − 1)ẋ + x − εx3 = 0, 0 < ε  1.
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4.8 Show that the frequency–amplitude relation for the pendulum equation, ẍ+ sin x=0, is ω2=2J1(a)/a,
using the methods of Section 4.4 or 4.5. (J1 is the Bessel function of order 1, with representations

J1(a) = 2
π

∫ π/2

0
sin(a cos u) cos udu =

∞∑
n=0

(−1)n(12a)2n+1
n!(n+ 1)! .

Show that, for small amplitudes, ω = 1− 1
16a

2.

4.9 In the equation

ẍ + εh(x, ẋ)+ g(x) = 0

suppose that g(0)= 0, and that in some interval |x|<δ, g is continuous and strictly increasing. Show that
the origin for the equation ẍ+ g(x)=0 is a centre. Let ζ(t , a) represent its periodic solutions near the
origin, where a is a parameter which distinguishes the solutions, say the amplitude. Also, let T (a) be the
corresponding period.

By using an energy balance argument show that the periodic solutions of the original equation satisfy

∫ T (a)

0
h(ζ , ζ̇ )ζ̇ dt = 0.

Apply this equation to obtain the amplitude of the limit cycle of the equation

ẋ + ε(x2 − 1)ẋ + ν2x = 0.

4.10 For the following equations, show that, for small ε the amplitude a(t) satisfies approximately the equation
given.

(i) ẍ + ε(x4 − 2)ẋ + x = 0, 16ȧ = −εa(a4 − 16);

(ii) ẍ + ε sin(x2 + ẋ2)sgn(ẋ)+ x = 0, πȧ = −ε2a sin(a2);
(iii) ẍ + ε(x2 − 1)ẋ3 + x = 0, 16ȧ = −εa3(a2 − 6).

4.11 Verify that the equation

ẍ + εh(x2 + ẋ2 − 1)ẋ + x = 0,

where h(u) is differentiable and strictly increasing for all u, and h(0) = 0, has the periodic solutions
x = cos(t+α) for any α. Using the method of slowly varying amplitude show that this solution is a stable
limit cycle when ε > 0.

4.12 Find, by the method of Section 4.5 the equivalent linear equation for

ẍ + ε(x2 + ẋ2 − 1)ẋ + x = 0.

Show that it gives the limit cycle exactly. Obtain from the linear equation the equations of the nearby
spiral paths.

4.13 Use the method of equivalent linearization to find the amplitude and frequency of the limit cycle of the
equation

ẍ + ε(x2 − 1)ẋ + x + εx3 = 0, 0 < ε  1

Write down the equivalent linear equation.

4.14 The equation ẍ + x3 = 0 has a centre at the origin of the phase plane with ẋ = y.
(i) Substitute x = a cosωt to find by the harmonic balance method the frequency–amplitude relation

ω = √3a/2.
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(ii) Construct, by the method of equivalent linearization, the associated linear equation, and show how
the processes (i) and (ii) are equivalent.

4.15 The displacement x of relativistic oscillator satisfies

m0ẋ + k(1− (ẋ/c)2)3/2x = 0.

Show that the equation becomes ẍ+(α/a)x = 0 when linearized with respect to the approximate solution
x = a cosωt by the method of equivalent linearization, where

α = 1
π

∫ 2π

0

ka

m0
cos2 θ

(
1− a2ω2

c2
sin2 θ

)3/2
dθ .

Confirm that, when a2ω2/c2 is small, the period of the oscillations is given approximately by

2π
√ (m0

k

)(
1+ 3a2k

16m0c
2

)
.

4.16 Show that the phase paths of the equation ẍ + (x2 + ẋ2)x = 0 are given by

e−x2(y2 + x2 − 1) = constant.

Show that the surface e−x2(y2 + x2 − 1) = z has a maximum at the origin, and deduce that the origin is
a centre.

Use the method of harmonic balance to obtain the frequency–amplitude relation ω2 = 3a2/(4 − a2)
for a < 2, assuming solutions of the approximate form a cosωt . Verify that cos t is an exact solution,
and that ω = 1, a = 1 is predicted by harmonic balance.

Plot some exact phase paths to indicate where the harmonic balance method is likely to be unreliable.

4.17 Show, by the method of harmonic balance, that the frequency–amplitude relation for the periodic
solutions of the approximate form a cosωt , for

ẍ − x + αx3 = 0, α > 0,

is ω2 = 3
4α a2 − 1.

By analysing the phase diagram, explain the lower bound 2/
√
(3α) for the amplitude of periodic

motion. Find the equation of the phase paths, and compare where the separatrix cuts the x-axis, with the
amplitude 2/

√
(3α).

4.18 Apply the method of harmonic balance to the equation ẍ+ x−αx2=0, α >0, using the approximate
form of solution x= c+ a cosωt to show that,

ω2 = 1− 2αc, c = 1
2α
− 1

2α
√
(1− 2α2a2).

Deduce the frequency–amplitude relation

ω = (1− 2α2a2)1/4, a < 1/(
√
2α).

Explain, in general terms, why an upper bound on the amplitude is to be expected.

4.19 Apply the method of harmonic balance to the equation ẍ−x+x3 = 0 in the neighbourhood of the centre
at x=1, using the approximate form of solution x = 1+c+a cosωt . Deduce that the mean displacement,
frequency, and amplitude are related by

ω2 = 3c2 + 6c + 2+ 3
4a

2, 2c3 + 6c2 + c(4+ 3a2)+ 3a2 = 0.
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4.20 Consider the van der Pol equation with nonlinear restoring force

ẍ + ε(x2 − 1)ẋ + x − αx2 = 0,

where ε and α are small. By assuming solutions approximately of the form x = c + a cosωt + b sinωt ,
show that the mean displacement, frequency, and amplitude are related by

c = 2α, ω2 = 1− 4α2, a2 + b2 = 4(1− 4α2)

4.21 Suppose that the nonlinear system

ẋ = p(x), where x =
[
x

y

]

has an isolated equilibrium point at x = 0, and that solutions exist which are approximately of the form

x̃ = B

[
cosωt
sinωt

]
, B =

[
a b

c d

]
.

Adapt the method of equivalent linearization to this problem by approximating p(x̃). by its first harmonic
terms:

p{x̃(t)} = C

[
cosωt
sinωt

]
,

where C is a matrix of the Fourier coefficients. It is assumed that∫ 2π/ω

0
p{x̃(t)}dt = 0.

Substitute in the system to show that

BU = C, where U =
[

0 −ω
ω 0

]
.

Deduce that the equivalent linear system is

˙̃x = BUB−1x̃ = CUC−1x̃,

when B and C are nonsingular.

4.22 Use the method of Problem 4.21 to construct a linear system equivalent to the van der Pol equation

ẋ = y, ẏ = −x − ε(x2 − 1)y.

4.23 Apply the method of Problem 4.21 to construct a linear system equivalent to[
ẋ

ẏ

]
=
[

ε 1
−1 ε

] [
x

y

]
+
[

0
−εx2y

]
,

and show that the limit cycle has frequency given by ω2 = 1− 5ε2 for ε small.

4.24 Apply the method of Problem 4.21 to the predator–prey equation (see Section 2.2)

ẋ = x − xy, ẏ = −y + xy,

in the neighbourhood of the equilibrium point (1, 1), by using the displaced approximations

x = m+ a cosωt + b sinωt , y = n+ c cosωt + d sinωt .
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Show that

m = n, ω2 = 2m− 1 and a2 + b2 = c2 + d2.

4.25 Show that the approximate solution for oscillations of the equation

ẍ = x2 − x3

in the neighbourhood of x = 1 is x = c + a cosωt where

ω2 = c(15c2 − 15c + 4)
2(3c − 1)

, a2 = 2c2(1− c)

3c − 1
.

4.26 Use the method of Section 4.2 to obtain approximate solutions of the equation

ẍ + εẋ3 + x = 0, |ε|  1.

4.27 Suppose that the equation ẍ+ f (x)ẋ+ g(x) = 0 has a periodic solution. Represent the equation in the
(x, y) phase plane given by ẋ = y − F(x), ẏ = −g(x), where

F(x) =
∫ x

0
f (u)du

(this particular phase plane is known as the Liénard plane). Let

v(x, y) = 1
2y

2 +
∫ x

0
g(u)du,

and by considering dv/dt on the closed phase path C show that∫
C
F(x)dy = 0.

On the assumption that van der Pol’s equation ẍ+ ε(x2−1)ẋ+ x=0 has a periodic solution
approximately of the form x = A cosωt , deduce that A ≈ 2 and ω ≈ 1.

4.28 Apply the slowly varying amplitude method of Section 4.3 to

ẍ − ε sin ẋ + x = 0 (0 < ε  1),

and show that the amplitude a satisfies

ȧ = εJ1(a)

approximately. [Use the formula

J1(a) = 1
π

∫ π

0
sin(a sin u) sin udu

for the Bessel function J1(a): see Abramowitz and Stegun (1965, p. 360).
Find also the approximate differential equation for θ . Using a graph of J1(a) decide how many limit

cycles the system has. Which are stable?



This page intentionally left blank 



5 Perturbation methods

This chapter describes techniques for obtaining approximations to periodic time solutions of
nearly linear second-order differential equations subject to a harmonic forcing term, and to
limit cycles of autonomous equations. The approximations take the form of an expansion in
integer powers of a small parameter, having coefficients that are functions of time. There is some
freedom in assigning the time-dependent coefficients; this is utilized to produce uniformly valid
approximations under different circumstances, depending on the values of the main parameters
of the equation. It is also shown how a homo-clinic path can be approximated by using similar
methods. The processes reveal physical features having no analogue in linear theory, despite
the fact that the equations considered have small nonlinearities.

5.1 Nonautonomous systems: forced oscillations

Up to the present point, apart from a brief reference in Section 1.2, we have considered only
autonomous systems. Differential equations of the form

ẍ = f (x, ẋ, t), (5.1)

and first-order systems having the general form

ẋ = X(x, y, t), ẏ = Y (x, y, t), (5.2)

in which the clock time t appears explicitly, are called nonautonomous, and are themain subject
of this chapter.
The states of the system, given by the pair of values (x, ẋ) or (x, y), have the same meaning as

before (for the equation (5.1) we usually define y = ẋ). If an autonomous system passes through
a particular state (x0, y0) at time t = t0, these initial conditions determine the succession of states
in the motion uniquely independently of t0 and they constitute a unique phase path through
the point (x0, y0). However, nonautonomous equations generate an infinite number of phase
paths through every point (x0, y0); a different one, in general, for every value of t0. This can
be seen by evaluating the slope of a particular phase path passing through (x0, y0) at time t0.
From (5.2) (

dy
dx

)
(x0,y0,t0)

= ẏ

ẋ
= Y (x0, y0, t0)

X(x0, y0, t0)
.

the slope depends on the value of t0, whereas for autonomous equations it is independent of t0.
This greatly reduces the usefulness of a phase-plane representation, which no longer consists
of a pattern of distinct, non-inter-secting curves whose structure can easily be grasped.
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In this chapter we shall obtain approximations to periodic solutions of nonautonomous
equations of a particular type. Two examples are the forced pendulum equation and the forced
van der Pol equation, given by

ẍ + kẋ + ω2
0x + εx3 = F cosωt

and

ẍ + ε(x2 − 1)ẋ + ω2
0x = F cosωt ,

where ε is a small parameter. When ε = 0 these equations become linear. The term on the
right, F cosωt , is called a harmonic forcing term, and can be thought of as an external force
of amplitude F and circular frequency ω applied to a unit particle on a nonlinear spring, as
shown in Fig. 1.10. The forcing term tries to drive the system at frequency ω against its natural
tendency to perform free oscillations or other motions described by the homogeneous equations

ẍ + kẋ + ω2
0x + εx3 = 0 or ẍ + ε(x2 − 1)ẋ + ω2

0x = 0.

It will be shown that although these systems are close to linear by virtue of the smallness
of the nonlinear terms, which have a factor ε, large-scale phenomena are produced which are
quite unlike those associated with linear equations. With nonlinear equations small causes do
not necessarily produce small effects on a global scale.
For convenience of reference we summarize the properties of the solutions of the equation

that represents a damped linear oscillator with a harmonic forcing term:

ẍ + kẋ + ω2
0x = F cosωt , (5.3a)

where k >0, ω0>0, ω>0 and F are constants, and the damping coefficient k is not too large:

0 < k < 2ω0. (5.3b)

This is the equation of motion of the mechanical system in Fig. 5.1. The block has unit mass,
the stiffness of the spring is equal to ω2

0, and the friction is proportional to the velocity through
the constant k. The coordinate x is measured from the position of the mass when the spring
has its natural length.
The general solution of (5.3a) in the standard form:

Particular solution + the complementary functions

Damper

Spring

F cos �t

Unit mass

External force

Figure 5.1
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(the complementary functions consisting of the general solution of the corresponding homoge-
neous equation ẍ + kẋ + ω2

0x = 0) is

x(t) = F cos(ωt − γ )

[(ω2
0 − ω2)2 + k2ω2] 12

+ Ce−
1
2 kt cos

[(
ω2
0 −

1
4
k2
)1

2
t − φ

]
. (5.4)

In the first term, γ is equal to the polar angle of the complex number (ω2
0 − ω2) + ikω on

an Argand diagram. In the second term (the complementary functions) C and φ are arbitrary
constants, adjustable so as to conform with any given initial conditions x(t0) = x0, ẋ(t0) = y0.
This term always tends to zero as t →∞ due to the factor e−(1/2)kt ; it is described as a transient
term. All solutions of (5.3) therefore drift into the same state of steady oscillation, described
by the particular solution xp(t) where

xρ(t) = F cos(ωt − γ )/[(ω2
0 − ω2)2 + k2ω2] 12 , (5.5)

which has the same frequency as the forcing term F cosωt , but is out of phase with it by an angle
γ . This term of (5.4) is also called the forced oscillation, the second term the free oscillation,
when it is necessary to distinguish them.
The amplitude A of (5.5) is given by

A = |F |/[(ω2
0 − ω2)2 + k2ω2] 12 .

Suppose we conduct experiments on the system in Fig. 5.1. by varying the forcing frequency
ω, in order to find how the amplitude A varies in response. For a fixed value of k, A attains its
maximum value when (ω2

0 − ω2)2 + k2ω2 takes its minimum value with respect to ω2, which
occurs when

ω2 = ω2
0 − 1

2k
2,

and then

A = Amax = |F |/
[
k(ω2

0 − 1
4k

2)
1
2

]
.

Suppose now that k is very small. These expressions show that when ω takes values close to
ω0,Amax becomes very large, and the system is said to be in a state of resonance. Amore detailed
analysis shows that under these conditions the phase angle γ in (5.4) is such that the applied
force F cosωt , with ω2 = ω2

0− 1
2k

2, is timed so that it always gives the maximum reinforcement
to the tendency of the system to follow its free oscillations. In this way the amplitude builds up
to a large value.
The case when k = 0 in (5.3a) is special in that the second term in the general solution (5.4)

is not a transient; it does not decay with time. The solutions are periodic only for exceptional
values of ω and ω0 (specifically, when ω = (p/q)ω0, where p and q are integers). There is a
permanent, but erratic state of oscillation which depends on the initial conditions. The general
solution of (5.3a) when k = 0 is

x(t) = F

ω2
0 − ω2

cosωt + C cos(ω0t + φ)
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If k = 0 and ω = ω0 then (5.4) becomes meaningless, so we must revert to the differential
equation (5.3), which in this case takes the form

ẍ + ω2
0x = F cosω0t .

The general solution is

x(t) = F

2ω0
t sinω0t + C cos(ω0t − φ), (5.6)

the first term having different form from that in (5.4). The solutions consist of oscillations of
frequency ω0 whose amplitude increases to infinity as t →±∞, which amounts to an extreme
case of resonance, uncontrolled by damping.
The equation of motion of a damped pendulum with a harmonic forcing term is easy to

visualize, and leads to the consideration of an important family of nonlinear equations called
in general Duffing’s equations. In a standard form the pendulum equation is written

ẍ + kẋ + ω2
0 sin x = F cosωt , (5.7)

where, in the usual notation, x is the angular displacement from the vertical; k = α/(ma2)

where m is the mass and a the length, and αẋ is the moment of the friction about the support;
ω2
0 = g/a;F = M/(ma2) where M is the amplitude of the driving moment about the support.

The physical dimensions of the coefficients in (5.7) are [T −2].
To envisage how a regular forcing moment might be applied to a pendulum at its support,

consider Fig. 5.2. The pendulum is constructed of a spindle (the support) rigidly attached is a
rod which carries the bob. The spindle is friction-driven by a close-fitting sleeve which is caused
to rotate independently about the spindle with angular velocity A cosωt . Supposing that the
contact area is lubricated by a viscous liquid, the driving moment M is proportional to the

Oscillating
sleeve

m

mg

Spindle

x

Figure 5.2 Friction-driven pendulum.
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relative angular velocity between the spindle and the sleeve:

M = α(A cosωt − ẋ),

where A is a constant. By adjusting (in imagination) the constants α and A, the equation (5.7)
may be generated for any value of F and any value of k > 0.

5.2 The direct perturbation method for the undamped
Duffing’s equation

Consider first the forced oscillation of an undamped pendulum,

ẍ + ω2
0 sin x = F cosωt , (5.8)

in which, without loss of generality, we can suppose that ω0>0, ω>0, and F >0 (since F <0
implies a phase difference that can be eliminated by a change of time origin and corresponding
modification of initial conditions).
Put

sin x ≈ x − 1
6x

3

to allow for moderately large swings, which is accurate to 1% for |x| < 1 radian (57◦). Then
eqn (5.8) becomes, approximately,

ẍ + ω2
0x − 1

6ω
2
0x

3 = F cosωt . (5.9)

Standardize the form of (5.9) by putting

τ = ωt , �2 = ω2
0/ω

2 (� > 0), � = F/ω2. (5.10)

Then we obtain

x′′ +�2x − 1
6�

2x3 = � cos τ , (5.11)

where dashes represent differentiation with respect to τ . This is a special case of Duffing’s
equation, which is characterized by a cubic nonlinear term. If this eqn (5.11) actually arises by
consideration of a pendulum, the coefficients and variables are all dimensionless.
The methods to be described depend on the nonlinear terms being small. Here we assume

that 1
6�

2 is small and write

1
6�

2 = ε0. (5.12)

Then (5.11) becomes

x′′ +�2x − ε0x
3 = � cos τ . (5.13)

Instead of taking (5.13) as it stands, with �, �, ε0 as constants, we consider the family of
differential equations

x′′ +�2x − εx3 = � cos τ , (5.14)
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where ε is a parameter occupying an interval Iε which includes ε = 0. When ε = ε0 we recover
(5.13), and when ε = 0 we obtain the linearized equation corresponding to the family (5.14):

x′′ +�2x = � cos τ . (5.15)

The solutions of (5.14) are now to be thought of as functions of both ε and τ and we will write
x(ε, τ).
The most elementary version of the perturbation method is to attempt a representation of

the solutions of (5.14) in the form of a power series in ε:

x(ε, τ) = x0(τ )+ εx1(τ )+ ε2x2(τ )+ · · · , (5.16)

whose coefficients xi(τ ) are functions only of τ . To form equations for xi(τ ), i = 0, 1, 2, . . . ,
substitute the series (5.16) into eqn (5.14):

(x′′0 + εx′′1 + · · · )+�2(x0 + εx1 + · · · )− ε(x0 + εx1 + · · · )3 = � cos τ .

Since this is assumed to hold for every member of the family (5.14), that is for every ε on Iε
the coefficients of powers of ε must balance and we obtain

x′′0 +�2x0 = � cos τ , (5.17a)

x′′1 +�2x1 = x30 , (5.17b)

x′′2 +�2x2 = 3x20x1, (5.17c)

and so on.
We shall be concerned only with periodic solutions having the period, 2π , of the forcing

term. (There are periodic solutions having other periods: see Chapter 7; also, by a modification
of the present procedure as in Section 5.4, we shall find yet more solutions having period 2π .)
Then, for all ε on Iε and for all τ ,

x(ε, τ + 2π) = x(ε, τ). (5.18)

By (5.16), it is sufficient that for all τ

xi(τ + 2π) = xi(τ ), i = 0, 1, 2, . . . . (5.19)

Equations (5.17) together with the conditions (5.19) are sufficient to provide the solutions
required. The details will be worked out in Section 5.3; for the present, note that (5.17a) is the
same as the ‘linearized equation’ (5.15): necessarily so, since putting ε0 = 0 in (5.13) implies
putting ε = 0 in (5.16). Themajor term in (5.16) is therefore a periodic solution of the linearized
equation (5.15). It is therefore clear that this process restricts us to finding the solutions of the
nonlinear equation which are close to (or branch from, or bifurcate from) the solution of the
linearized equation. The method will not expose any other periodic solutions. The zero-order
solution x0(τ ) is known as a generating solution for the family of eqns (5.14).
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Exercise 5.1
Substitute the perturbation series

x(ε, τ) = x0(τ )+ εx1(τ )+ ε2x2(τ )+ · · ·
into the equation

x′′ +�2x + εf (x) = � cos τ , 0 < ε  1,

where f (x) is a smooth odd function of x. Obtain the differential equation for x0, x1, x2,
and x3.

5.3 Forced oscillations far from resonance

Suppose that

� 	= an integer. (5.20)

We now solve (5.17) subject to the periodicity condition (5.19). The solutions of (5.17a) are

a0 cos�τ + b0 sin�τ + �

�2 − 1
cos τ , (5.21)

where a0, b0 are constants. Since � is not an integer the only solution having period 2π is
obtained by putting a0 = b0 = 0 in (5.21); that is,

x0(τ ) = �

�2 − 1
cos τ . (5.22)

Equation (5.17b) then becomes

x′′1 +�2x1 =
(

�

�2 − 1

)3
cos3 τ = �3

(�2 − 1)3

(
3
4
cos τ + 1

4
cos 3τ

)
.

The only solution with period 2π is given by

x1(τ ) = 3
4

�3

(�2 − 1)4
cos τ + 1

4
�3

(�2 − 1)3(�2 − 9)
cos 3τ

by eqn (5.20).
The first two terms of the expansion (5.16) provide the approximation

x(ε, τ) = �

�2 − 1
cos τ + ε

(
3
4

�3

(�2 − 1)4
cos τ

+ 1
4

�3

(�2 − 1)3(�2 − 9)
cos 3τ

)
+O(ε2). (5.23)
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The series continues with terms of order ε2, ε3 and involves the harmonics cos 5τ , cos 7τ , and
so on. For the pendulum, ε = ε0 = 1

6�
2, by (5.12).

The method obviously fails if �2 takes one of the values 1, 9, 25, . . . , since certain terms
would then be infinite, and this possibility is averted by condition (5.20). However, the series
would not converge well if �2 were even close to one of these values, and so a few terms of
the series would describe x(ε, τ) only poorly. Such values of � correspond to conditions of
near-resonance. � ≈ 1 is such a case; not surprisingly, since it is a value close to resonance for
the linearized equation. The other odd-number values of� correspond to nonlinear resonances
caused by the higher harmonics present in x3(ε, τ), which can be regarded as ‘feeding-back’
into the linear equation like forcing terms. This idea is exploited in Chapter 7.
If � is an even integer the straightforward procedure fails because (5.21) has period 2π for

all values of a0, b0. Their required values can only be established by carrying the terms forward
into the second stage (5.17b), as is done in Section 5.4 for a similar situation.

Example 5.1 Obtain an approximation to the forced response, of period 2π , for the equation x′′ + 1
4x +

0.1x3 = cos τ .

Consider the family x′′ + 1
4x + εx3 = cos τ : this is eqn (5.13) with � = 1

2 and ε0 = −0.1. Assume that
x(ε, τ) = x0(τ ) + εx1(τ ) + · · · . The periodicity condition is met if x0(τ ), x1(τ ), . . . , have period 2π . The
equations for x0, x1 are (see (5.17a,b))

x′′0 + 1
4x0 = cos τ ,

x′′1 + 1
4x1 = −x30 .

The only 2π -periodic solution of the first equation is

x0(τ ) = −4
3 cos τ ,

and the second becomes

x′′1 + 1
4x1 = 16

9 cos τ + 16
27 cos 3τ

The 2π -periodic solution is

x1(τ ) = −64
27 cos τ − 64

945 cos 3τ .

Therefore,

x(ε, τ) = −4
3 cos τ − ε

(
64
27 cos τ + 64

945 cos 3τ
)
+O(ε2).

With ε = 0.1,

x(ε, τ) ≈ −1.570 cos τ − 0.007 cos 3τ . �
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Exercise 5.2
The perturbation procedure described above is applied to the equation

x′′ + 2
5x − 1

6x
3 = � cos τ

to find the 2π -period solution. What is the maximum value that � can take in order that
the leading coefficient of cos τ in (5.23) is accurate to within 5% to order ε2?

5.4 Forced oscillations near resonance with weak excitation

Not only does the method of the previous sections fail to give a good representation near certain
critical values of �, but it does not reveal all the solutions having the period 2π of the forcing
term. The only solution it can detect is the one which bifurcates from the one-and-only solution
having period 2π of the linearized eqn (5.15). More solutions can be found by, so to speak,
offering the nonlinear equation a greater range of choice of possible generating solutions by
modifying the structure so that a different linearized equation is obtained.
We will include damping in the approximate pendulum equation:

ẍ + kẋ + ω2
0x − 1

6ω
2
0x

3 = F cosωt . (5.24)

Corresponding to eqn (5.13) we have

x′′ +Kx′ +�2x − ε0x
3 = � cos τ , (5.25a)

where

τ = ωt , �2 = ω2
0/ω

2, ε0 = 1
6�

2, K = k/ω, � = F/ω2. (5.25b)

Assume that � is small (weak excitation), and K is small (small damping) and therefore put

� = ε0γ , K = ε0κ (γ , κ > 0). (5.26)

Suppose also that � is close to one of the critical resonance values 1, 3, 5, . . .. Consider the
simplest case� ≈ 1, which corresponds to near-resonance of the linearized equation, and write

�2 = 1+ ε0/β. (5.27)

Equation (5.25) becomes

x′′ + x = ε0(γ cos τ − κx′ − βx + x3). (5.28)

Now consider the family of equations

x′′ + x = ε(γ cos τ − κx′ − βx + x3), (5.29)
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with parameter ε, in which γ , κ,β retain the constant values given by (5.26) and (5.27). When
ε = ε0 we return to (5.28). When ε = 0 we obtain the new linearized equation x′′ +x = 0. This
has infinitely many solutions with period 2π , offering a wide choice of generating solutions
(compare (5.15) in which only one presents itself).
Now assume that x(ε, τ) may be expanded in the form

x(ε, τ) = x0(τ )+ εx1(τ )+ ε2x2(τ )+ · · · , (5.30)

where (by the same argument as led up to (5.19)), for all τ

xi(τ + 2π) = xi(τ ), i = 0, 1, 2, . . . . (5.31)

Substitute (5.30) into (5.29). By the argument leading to (5.17) we obtain

x′′0 + x0 = 0, (5.32a)

x′′1 + x1 = γ cos τ − κx′0 − βx0 + x30 , (5.32b)

x′′2 + x2 = −κx′1 − βx1 + 3x20x1, (5.32c)

and so on.
The solution of (5.32a) is

x0(τ ) = a0 cos τ + b0 sin τ (5.33)

for every a0, b0. Now put (5.33) into (5.32b). After writing (see Appendix E)

cos3 τ = 3
4 cos τ + 1

4 cos 3τ , sin3 τ = 3
4 sin τ − 1

4 sin 3τ

and making other similar reductions† we have

x′′1 + x1 = {γ − κb0 + a0[−β + 3
4 (a

2
0 + b20)]} cos τ

+ {κa0 + b0[−β + 3
4 (a

2
0 + b20)]} sin τ

+ 1
4a0(a

2
0 − 3b20) cos 3τ + 1

4b0(3a
2
0 − b20) sin 3τ . (5.34)

The solution x1(τ ) is required to have period 2π , but unless the coefficients of cos τ and
sin τ in (5.34) are zero, there are no periodic solutions, since any solution would contain terms
of the form τ cos τ , τ sin τ (compare eqn (5.6)). Such non-periodic or otherwise undesirable
constituents of a solution are often called secular terms. We eliminate the secular terms by

† Often, the easiest way to carry out such calculations is to write the solution of (5.32a) as A0eiτ + Ā0e−iτ . Then

x30 = (A0eiτ + Ā0e−iτ )3 = A3
0e

3iτ + 3A2
0Ā0eiτ + complete conjugate.

The substitution A0 = 1
2 (a0 − ib0), a0 real, b0 real, is left to the very end.
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requiring the coefficients of cos τ and sin τ to be zero:

κa0 − b0{β − 3
4 (a

2
0 + b20)} = 0, (5.35a)

κb0 + a0{β − 3
4 (a

2
0 + b20)} = γ . (5.35b)

These equations settle the values of a0 and b0. To solve them, let r0 be the amplitude of the
generating solution:

r0 = √(a20 + b20) > 0. (5.36)

By squaring and adding eqns (5.36a) and (5.36b), we obtain the following cubic amplitude
equation for r20 :

r20

{
κ2 +

(
β − 3

4r
2
0

)2} = γ 2. (5.37)

When (5.37) is solved for r0, a0 and b0 can be obtained from (5.35) and (5.36).
Equation (5.37) will be analysed in the next section. For the present, note that there may be

as many as three positive values of r20 (hence of r0 > 0) satisfying (5.37). This indicates that
for certain ranges of κ,β, γ there may be three distinct 2π-periodic solutions of (5.24), (5.28),
or (5.29), each bifurcating from one of three distinct generating solutions.
Having selected a pair of values a0 and b0 satisfying (5.35), we solve (5.28) to give

x1(τ )= a1 cos τ + b1 sin τ − 1
32a0(a

2
0 −3b20) cos 3τ − 1

32b0(3a
2
0 − b20) sin 3τ ,

where a1 and b1 are any constants. This expression is substituted into eqn (5.32c); the require-
ment that x2(τ ) should have period 2π provides equations determining a1, b1, as before. In this
and subsequent stages the determining equations for ai , bi are linear equations, so no further
multiplicity of solutions is introduced and the process is much less complicated.

Exercise 5.3
Establish that the latter assertion is true for a1 and b1, that is, that they are given by linear
equations: the differential equation for x2 is given by (5.32c). [Hints: many higher harmon-
ics can be discarded since interest is only in the coefficients of cos τ and sin τ ; symbolic
computation using trigonometric reduction has to be used to handle the algebra.]

5.5 The amplitude equation for the undamped pendulum

Suppose that the damping coefficient is zero; then in (5.24), (5.25), (5.29)

k = K = κ = 0. (5.38)
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Instead of seeking r0 through (5.37), the coefficients a0, b0 can be found directly from (5.35):
the only solutions are given by

b0 = 0, (5.39a)

a0(β − 3
4a

2
0) = γ . (5.39b)

We shall consider in detail only the pendulum case with ε = ε0 = 1
6�

2. The original parameters
ω, ω0 and F of eqn (5.24) can be restored through (5.25) to (5.27). Equation (5.39b) becomes

a0(ω
2 − ω2

0 + 1
8ω

2
0a

2
0) = −F . (5.40)

The solutions a0 can be obtained by drawing a cubic curve

z = a0(ω
2 − ω2

0 + 1
8ω

2
0a

2
0) = f (a0) (5.41)

on a graph with axes a0, z for any fixed value of ω and ω0, then finding the intersections with
the lines z = −F for various F > 0, as in Fig. 5.3.

The main features revealed are as follows:

(i) When ω2>ω2
0 (Fig. 5.3(a)), there is exactly one periodic oscillation possible. When F is

small, the amplitude approximates to the linear response (5.22), and to the ‘corrected linear
response’ (5.23), unless ω ≈ ω2

0 (very near to resonance) in which case it is considerably
different (Fig. 5.3(b)). These responses are 180◦ out of phase with the forcing term.

(ii) When ω2 < ω2
0 (Fig. 5.3(c)), there is a single response, 180◦ out of phase, when F is

relatively large. When F is smaller there are three distinct periodic responses, two in
phase and one out of phase with the forcing term. The response marked ‘A’ in Fig. 5.3(c)
corresponds to the response (5.22) of the linearized equation, and to the corrected linear
response (5.23).

(a) (b) (c)

z z
z

z

z
(    ) z (    ) z (    )

z

2
0

2 2
0

22
0

2

Figure 5.3 Illustrating eqn (5.41).
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(iii) All three of the responses described in (ii) will be of small amplitude if the intersections of
the curve z= f (a0) with the a0 axis (Fig. 5.3(c)) occur close to the origin. These intersec-
tions are at a0=0, a0= ± 2

√
2(1−ω2/ω2

0)
1/2. Three intersections are actually achieved

provided

F < 4
3
√2

3ω
2
0(1− ω2/ω2

0)
3/2

(recalling that F is positive). This result can also be obtained from the properties of the
cubic equation (5.40) in a0 (see Appendix E). Therefore, by choosing ω2/ω2

0 sufficiently
near to 1 (near to resonance) and F correspondingly small, the amplitudes of all the three
responses can be made as small as we wish. In particular, they can all be confined in what
we should normally regard as the linear range of amplitude for the pendulum.

(iv) Despite there being no damping, there are steady, bounded oscillations even when ω = ω0
(unlike the linearized case). The nonlinearity controls the amplitude in the following way.
The amplitude increases indefinitely if the forcing term remains in step with the natural
oscillation and reinforces it cycle by cycle. However (e.g., Example 4.10), the frequency
of the natural (nonlinear) oscillation varies with amplitude due to the nonlinearity and
therefore does not remain in step with the forcing term.

(v) Whether a steady oscillation is set up or approached at all, and if it is, which of the
possible modes is adopted, depends on the initial conditions of the problem, which are not
considered at all here (see Chapter 7).

(vi) Whether a particular mode can be sustained in practice depends on its stability, of which
an indication can be got as follows. If, in the neighbourhood of amplitude a0, the forcing
amplitudeF required to sustain a0 increases / decreases as a0 increases / decreases, we expect
a stable solution, inwhich an accidental small disturbance of amplitude cannot be sustained
and amplified. If, however, F increases / decreases as a0 decreases / increases, the conditions
are right for growth of the disturbance and instability results. Further justification is given
for this argument in Section 9.5. In anticipation of the analysis of Chapters 7 and 9, the
stable and unstable branches are indicated in Figs 5.3 and 5.4.

>

Figure 5.4 Amplitude–frequency curves for the undamped pendulum (eqn (5.40)).
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The nature of the solutions of (5.40) as a function of the parameters ω, ω0, with F given,
can be exhibited on a single ‘response diagram’, Fig. 5.4. The figure can be plotted directly by
writing (5.40) in the form

ω = √{ω2
0(1− 1

8a
2
0)− F/a0}.

For each value of F >0 the amplitudes lie on two smooth branches; a typical pair is indicated
on the figure. F increases on ‘contours’ increasingly distant from the curve F =0 (which gives
the amplitude–frequency curve for free oscillations, and is part of an ellipse) on both sides of
it. Note that

dω
da0
= 1

2ω

(
−1
4
a0ω

2
0 +

F

a20

)
.

Therefore, if a0 < 0 (and F > 0), dω/da0 is never zero, whilst if a0 > 0 (and F > 0), dω/da0
is zero for a value of a0 and ω < ω0 as shown in Fig. 5.4.

Example 5.2 Investigate the forced periodic solutions of the equation

x′′ + (9+ εβ)x − εx3 = � cos τ ,

where ε is small and β,� are not too large.

This is a case where �2 = 9+ εβ (eqn (5.14)) has a value which causes the direct expansion (5.23) to fail. The
given equation may be rewritten as

x′′ + 9x = � cos τ + ε(x3 − βx).

Write x(ε, τ) = x0(τ )+ εx1(τ )+ · · · , where x0(τ ), x1(τ ), . . . have period 2π . Then

x′′0 + 9x0 = � cos τ ,

x′′1 + 9x1 = x30 − βx0,

and so on. These have the same form as (5.17), but since 9 is the square of an integer, the first equation has
solutions of period 2π of the form

x0(τ ) = a0 cos 3τ + b0 sin 3τ + 1
8� cos τ .

When this is substituted into the equation for x1, terms in cos 3τ , sin 3τ emerge on the right-hand side,
preventing periodic solutions unless their coefficients are zero. The simplest way to make the substitution is to
write.

x0(τ ) = A0e
3iτ + Ā0e

−3iτ + 1
16�e

iτ + 1
16�e

−iτ ,

where A0 = 1
2a0 − 1

2 ib0. We find

x30 − βx0 =
[(

�3

163
+ 6�2

162
A0 + 3A2

0Ā0 − βA0

)
e3iτ + complete conjugate

]

+ other harmonics.
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Therefore, we require

A0

(
3A0Ā0 − β + 6�2

162

)
= − �3

163
.

This implies that A0 is real: b0 = 0, A0 = 1
2a0, and the equation for a0 is

1
2
a0

(
3
4
a20 − β + 6�2

162

)
+ �3

163
= 0. �

Exercise 5.4
Find the leading approximation of the undamped system

x′′ + x = ε(54 cos τ − 2x + x3).

Show that there are three possible amplitudes.

Exercise 5.5
Find the leading approximation of

x′′ + x = ε(γ sin τ − βx + x3).

5.6 The amplitude equation for a damped pendulum

The amplitude equation (5.37) translated into the parameters of eqn (5.24) by (5.25), (5.26),
and (5.27), becomes

r20

{
k2ω2 +

(
ω2 − ω2

0 + 1
8ω

2
0r

2
0

)2} = F 2. (5.42)

Only solutions with r0 > 0 are valid (see eqn (5.36)). Solving the quadratic equation for ω2

given by (5.42) we find that

ω2 = 1
2

{
2ω2

0

(
1− 1

8r
2
0

)
− k2 ±√

{
k4 − 4ω2

0k
2
(
1− 1

8r
2
0

)
+ 4F 2/r20

}}
.

Typical response curves are shown in Fig. 5.5 for fixed values of k and ω0, and selected values
of F > 0. k was chosen fairly small so that comparison might be made with the undamped
case shown in Fig. 5.4. The figure is similar to Fig. 5.4, with some important differences. There
are no longer two distant branches corresponding to each value of F : the branches join up to
make continuous curves. In the near neighbourhood of the point ω=ω0, r0=0 the curves do
not turn over: that is to say, a certain minimum value of F is required before it is possible
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0O

Figure 5.5 Amplitude (r0)–frequency (ω) curves for the damped pendulum (eqn (5.42)): on each curve F is constant.

to have three alternative forced responses (see Problem 5.10). The response curves for small F
represent the approximately linear response, as can be seen from (5.35).
The ‘jump effect’ associated with the response curves is presented in detail in Section 7.3.

5.7 Soft and hard springs

We have so far been concerned with equations of the type

ẍ + kẋ + cx + εx3 = F cosωt ,

which arise from an approximation to the pendulum equation. In the general case this is called
a Duffing’s equation with a forcing term. Now consider

ẍ + kẋ + cx + εg(x) = F cosωt , (5.43)

where k >0, c >0, and |ε|1. This can be interpreted as the equation of forced motion with
damping of a particle on a spring, the spring providing a restoring force which is almost but
not quite linear. This is a useful physical model, since it leads us to expect that the features of
linear motion will be to some extent preserved; for example, if k=0 and F =0 we guess that
solutions for small enough amplitude will be oscillatory, and that the effect of small damping
is to reduce the oscillations steadily to zero.
Important classes of cases are represented by the example g(x)= x3, with ε >0 and ε <0.

The corresponding (symmetrical) restoring forces are illustrated in Fig. 5.6(a) and (b). When
ε is negative the restoring force become progressively weaker in extension than for the linear
spring: such a spring is called soft. A pendulum is modelled by a soft spring system. When ε is
positive the spring becomes stiffer as it extends and is called a hard spring.
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(a) (b) (c)

>0 > 0 > 0

Figure 5.6 Restoring force functions for (a) a soft spring; (b) a hard spring; (c) an unsymmetrical case.

�

>0 >
0= 0

Figure 5.7 Amplitude–frequency curves for Duffing’s equation ẍ + kẋ + cx + εx3 = F cosωt , k > 0, c > 0.

The nature of the response diagrams for the forced oscillations, period 2π/ω, of (5.43) in the
case of a soft spring (ε < 0), a linear spring (ε = 0), and a hard spring (ε > 0) are shown in
Fig. 5.7.
There are various ways in which the restoring force can be unsymmetrical: an important case

is shown in Fig. 5.6(c) where g(x) = −x2 and ε > 0. The spring is ‘soft’ for x > 0 and ‘hard’
for x < 0. Problem 5.22 shows that for free oscillations (F = 0 in (5.43)) the effect is to shift
the centre of oscillation to small positive x values, as the diagram suggests; the same occurs
when the oscillation is forced, as is shown in the following example.

Example 5.3 Obtain approximately the solutions of period 2π of the equation ẍ+�2x−εx2 = � cos t , ε > 0.

First, suppose that� is not close to an integer (i.e., it is far from resonance). Writing x(ε, t) = x0(t)+εx1(t)+· · · ,
the required sequence of equations is

ẍ0 +�2x0 = � cos t ,

ẍ1 +�2x1 = x20 ,

and so on. The periodic solution of the first is

x0(t) = �

�2 − 1
cos t ,

and the second becomes

ẍ1 +�2x1 = �2

2(�2 − 1)2
(1+ cos 2t)



166 5 : Perturbation methods

whose solutions are

x1(t) = �2

2�2(�2 − 1)2
+ �2

2(�2 − 1)2(�2 − 4)
cos 2t + a1 cos�t + b1 sin�t .

For x1(t) to have period 2π , a1 = b1 = 0: therefore

x(ε, t) = �

�2 − 1
cos t + ε�2

2�2(�2 − 1)2
+ ε�2

2(�2 − 1)2(�2 − 4)
cos 2t .

Now suppose � ≈ 1 (i.e., close to resonance), and � small. Put

�2 = 1+ εβ, � = εγ .

The equation becomes

ẍ + x = ε(γ cos t + x2 − βx).

Assume that x(ε, τ) = x0(τ )+ εx1(τ )+ · · · . The first two equations are

ẍ0 + x0 = 0,

ẍ1 + x1 = γ cos t + x20 − βx0.

The solution of the first equation, of period 2π , is a0 cos t + b0 sin t , where a0, b0 are to be determined. The
second equation becomes

ẍ1 + x1 = 1
2 (a

2
0 + b20)+ (γ − βa0) cos t − βb0 sin t

+ 1
2 (a

2
0 − b20) cos 2t + a0b0 sin 2t .

Secular terms vanish only if

b0 = 0, a0 = γ /β.

Then the equation for x1 simplifies to

ẍ1 + x1 = γ 2

2β2
(1+ cos 2t),

which has the 2π -period solution

x1 = γ 2

2β2
− γ 2

6β2
cos 2t + a1 cos t + b1 sin t .

To order ε,

x(ε, t) ≈ γ

β
cos t + ε

(
1
2
γ 2

β2
− 1

6
γ 2

β2
cos 2t + a1 cos t + b1 sin t

)
.

The constants a1 and b1 can be determined by eliminating secular terms in the equation for x2. �

Exercise 5.6
In Example 5.3, write down the equation for x2. By eliminating secular terms in this
equation, find a1 and b1 which arise in the solution for x1.
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5.8 Amplitude–phase perturbation for the pendulum equation

In Section 5.4, we stopped at the first approximation to a solution because of the rapidly
developing complexity of the algebra. The following method allows a higher approximation to
be obtained rather more efficiently.
Consider again the family (5.29):

x′′ + x = ε(γ cos τ − κx′ − βx + x3). (5.44)

Instead of seeking, as in Section 5.4, solutions in effect of the form

(a0 + εa1 + · · · ) cos τ + (b0 + εb1 + · · · ) sin τ + higher harmonics

We shall arrange for them to appear in the form

x(ε, τ) = (r0 + εr1 + · · · ) cos(τ + α0 + εα1 + · · · )+ higher harmonics, (5.45)

where

α = α0 + εα1 + · · ·
is the phase difference between the response and forcing term. α0 is expected to be the phase
of the generating solution and r0 its amplitude.

It is more convenient for manipulative reasons to have the unknown phase, α, appear in the
equation itself. Therefore we discuss instead the equation

X′′ +X = ε(γ cos(s − α)− κX′ − βX +X3), (5.46)

where we have put s = τ+α andX(ε, s) = x(ε, τ) = x(ε, s−α) into (5.44) with differentiation
now with respect to s.
Assume that for all small enough ε

X(ε, s) = X0(s)+ εX1(s)+ · · · ,
α = α0 + εα1 + · · · .

(5.47)

We require solutions X(ε, s) having the period, 2π , of the forcing term, which implies that
for all s,

Xi(s + 2π) = Xi(s), i = 1, 2, . . . . (5.48)

Finally we shall impose the extra conditionX′(ε, 0) = 0. This is not a real restriction: we simply
adjust the time origin, and hence the phase, so that it is so. Therefore

X′i (0) = 0, i = 0, 1, . . . . (5.49)

Substitute (5.47) into (5.46), using the Taylor series

cos(s − α) = cos(s − α0)+ εα1 sin(s − α0)+ · · · .
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By assembling powers of ε and equating their coefficients to zero we obtain

X′′0 +X0 = 0, (5.50a)

X′′1 +X1 = γ cos(s − α0)− κX′0 − βX0 +X3
0, (5.50b)

X′′2 +X2 = γα1 sin(s − α0)− κX′1 − βX1 + 3X2
0X1, (5.50c)

and so on.
The periodic solutions of (5.50a) satisfying (5.49) are

X0(s) = r0 cos s, r0 > 0 (5.51)

where we choose r0 > 0 by later adjusting the phase α0. From (5.50b)

X′′1 +X1 = (γ cosα0 − βr0 + 3
4r

3
0 ) cos s

+ (κr0 + γ sinα0) sin s + 1
4r

3
0 cos 3s, (5.52)

since cos3 s = 3
4 cos s + 1

4 cos 3s. For there to be a periodic solution the secular terms (in cos s
and sin s) must be eliminated, so

βr0 − 3
4r

3
0 = γ cosα0, (5.53a)

κr0 = −γ sinα0. (5.53b)

By squaring and adding we obtain eqn (5.37) again:

r20

{
κ2 +

(
β − 3

4r
2
0

)2} = γ 2. (5.54)

α0 is then obtainable from (5.53). Considering only −1
2π ≤ α0 ≤ 1

2π

α0 = − sin−1(κr0/γ ). (5.55)

Equation (5.52) becomes

X′′1 +X1 = 1
4r

3
0 cos 3s,

with solutions

X1(s) = r1 cos s − 1
32r

3
0 cos 3s, r1 > 0, (5.56)

satisfying (5.48) and (5.49). Substitute (5.56) into (5.50c):

X′′2 +X2 =
(
−γα1 sinα0 − βr1 + 9

4r
2
0 r1 − 3

128r
5
0

)
cos s

+ (γ α1 cosα0 + κr1) sin s +
(
3
4r

2
0 r1 − 3

64r
5
0 + 1

32βr
3
0

)
cos 3s

− 3
32κr

3
0 sin 3s − 3

128r
5
0 sin 5s, (5.57)
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using the identity cos2 s cos 3s = 1
4 cos s + 1

2 cos 3s + 1
4 cos 5s. Periodicity requires that the

coefficients of cos s and sin s should be zero, which leads to the results

r1 = 3
128r

5
0/
(
9
4r

2
0 − β + κ tanα0

)
, (5.58a)

α1 = − 3
128

κr50

γ cosα0

/(
9
4
r20 − β + κ tanα0

)
. (5.58b)

The solution to eqn (5.44) is then

x(ε, τ) = (r0 + εr1) cos(τ + α0 + εα1)− εr20 cos 3(τ + α0)+O(ε2). (5.59)

5.9 Periodic solutions of autonomous equations (Lindstedt’s method)

Consider the oscillations of the autonomous pendulum-type equation (a form of Duffing’s
equation)

d2x
dt2
+ x − εx3 = 0. (5.60)

For a soft spring ε > 0, and for a hard spring ε < 0. The system is conservative, and the method
of Section 1.3 can be used to show that all motions of small enough amplitude are periodic.
In this case of unforced vibration, the frequency, ω, is not known in advance, but depends

on the amplitude. It reduces to 1 when ε = 0. Assume that

ω = 1+ εω1 + · · · , (5.61)

x(ε, t) = x0(t)+ εx1(t)+ · · · . (5.62)

We could substitute these into (5.60) and look for solutions of period 2π/ω, but it is
mechanically simpler to cause ω to appear as a factor in the differential equation by writing

ωt = τ . (5.63)

Then (5.60) becomes

ω2x′′ + x − εx3 = 0. (5.64)

By this substitution we have replaced eqn (5.60), which has unknown period, by eqn (5.64)
which has known period 2π . Therefore, as before, for all τ ,

xi(τ + 2π) = xi(τ ), i = 0, 1, . . . . (5.65)

Equation (5.64) becomes

(1+ ε2ω1 + · · · )(x′′0 + εx′′1 + · · · )+ (x0 + εx1 + · · · ) = ε(x0 + εx1 + · · · )3,
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and by assembling powers of ε we obtain

x′′0 + x0 = 0, (5.66a)

x′′1 + x1 = −2ω1x
′′
0 + x30 , (5.66b)

and so on.
To simplify the calculations we can impose the conditions

x(ε, 0) = a0, x′(ε, 0) = 0 (5.67)

without loss of generality (only in the autonomous case!). This implies that

x0(0) = a0, x′0(0) = 0, (5.68a)

and

xi(0) = 0, x′i (0) = 0, i = 1, 2, . . . . (5.68b)

The solution of (5.66a) satisfying (5.68a) is

x0 = a0 cos τ . (5.69)

Equation (5.66b) then becomes

x′′1 + x1 = (2ω1a0 + 3
4a

3
0) cos τ + 1

4a
3
0 cos 3τ . (5.70)

The solutions will be periodic only if

ω1 = −3
8a

2
0. (5.71)

From (5.70), (5.71),

x1(τ ) = a1 cos τ + b1 sin τ − 1
32a

3
0 cos 3τ ,

and (5.68b) implies

b1 = 0, a1 = 1
32a

3
0.

Therefore,

x1(τ ) = 1
32a

3
0(cos τ − cos 3τ). (5.72)

Finally, from (5.69) and (5.72),

x(ε, τ) ≈ a0 cos τ + 1
32εa

3
0(cos τ − cos 3τ)+O(ε2). (5.73)

Returning to the variable t (eqn (5.63)), we have the approximation

x(ε, t) ≈ a0 cos ωt + 1
32εa

3
0(cos ωt − cos 3ωt), (5.74a)

where

ω ≈ 1− 3
8εa

2
0; (5.74b)

this gives the dependence of frequency on amplitude.
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Exercise 5.7
Find the frequency–amplitude relation for periodic solutions of

ẍ + x − ε(x3 + x5) = 0, x(ε, 0) = a0, ẋ(ε, 0) = 0,

using Lindstedt’s method. (Use the trigonometric identities in Appendix E.)

5.10 Forced oscillation of a self-excited equation

Consider the van der Pol equation with a forcing term:

ẍ + ε(x2 − 1)ẋ + x = F cosωt . (5.75)

The unforced equation has a limit cycle with radius approximately 2 and period approximately
2π (see Sections 4.1 and 4.2). The limit cycle is generated by the balance between internal
energy loss and energy generation (see Section 1.5), and the forcing term will alter this balance.
If F is ‘small’ (weak excitation), its effect depends on whether or not ω is close to the natural
frequency. If it is, it appears that an oscillation might be generated which is a perturbation of
the limit cycle. If F is not small (hard excitation) or if the natural and imposed frequency are
not closely similar, we should expect that the ‘natural oscillation’ might be extinguished, as
occurs with the corresponding linear equation.
Firstly, write

ωt = τ ; (5.76)

then (5.75) becomes

ω2x′′ + εω(x2 − 1)x′ + x = F cos τ , (5.77)

where the dashes signify differentiation with respect to τ .

Hard excitation, far from resonance

Assume that ω is not close to an integer. In (5.77), let

x(ε, τ) = x0(τ )+ εx1(τ )+ · · · . (5.78)

The sequence of equations for x0, x1, . . . begins

ω2x′′0 + x0 = F cos τ , (5.79a)

ω2x′′1 + x1 = −(x20 − 1)x′0, (5.79b)

x0(τ ), x1(τ ) having period 2π .
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The only solution of (5.79a) having period 2π is

x0(τ ) = F

1− ω2 cos τ ,

and therefore

x(ε, τ) = F

1− ω2 cos τ +O(ε). (5.80)

The solution is therefore a perturbation of the ordinary linear response and the limit cycle is
suppressed as expected.

Soft excitation, far from resonance

This case is similar to hard excitation above but with F = εF0, and is left as Problem 5.20.
However, this solution is normally unstable (see Section 7.4), and there is no limit cycle.

Soft excitation, near-resonance

For soft excitation write in (5.77)

F = εγ (5.81)

and for near-resonance

ω = 1+ εω1. (5.82)

The expansion is assumed to be

x(ε, τ) = x0(τ )+ εx1(τ )+ · · · . (5.83)

Equations (5.80), (5.81), and (5.82) lead to the sequence

x′′0 + x0 = 0, (5.84a)

x′′1 + x1 = −2ω1x
′′
0 − (x20 − 1)x′0 + γ cos τ , (5.84b)

and so on. We require solutions with period 2π . Equation (5.84a) has the solutions

x0(τ ) = a0 cos τ + b0 sin τ . (5.85)

After some manipulation, (5.84b) becomes

x′′1 + x1 = {γ + 2ω1a0 − b0(
1
4r

2
0 − 1)} cos τ

+ {2ω1b0 + a0(
1
4r

2
0 − 1)} sin τ + higher harmonics, (5.86)

where

r0 = √(a20 + b20) > 0. (5.87)
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For a periodic solution we require

2ω1a0 − b0(
1
4r

2
0 − 1) = −γ , (5.88a)

2ω1b0 − a0(
1
4r

2
0 − 1) = 0. (5.88b)

By squaring and adding these two equations we obtain

r20

{
4ω2

1 +
(
1
4r

2
0 − 1

)2} = γ 2 (5.89)

which give the possible amplitudes r0 of the response for given ω1 and γ. The structure of this
equation is examined in Chapter 7 in a different connection: it is sufficient to notice here its
family resemblance to (5.37) for the pendulum equation. Like (5.37), it may have as many as
three real solutions for r0 > 0. The limit cycle is extinguished.

Exercise 5.8
The frequency–amplitude equation (5.89) for the forced van der Pol equation under near-
resonance soft excitation is

r20 {4ω2
1 + (14r

2
0 − 1)2} = γ 2.

If ω1= 1
4r >0, find all a0, b0 in the leading term for the periodic solution.

5.11 The perturbation method and Fourier series

In the examples given in Sections 5.3 and 5.4 the solutions emerge as series of sines and cosines
with frequencies which are integer multiples of the forcing frequency. These appeared as a
result of reorganizing terms like x3, but by making a direct attack using Fourier series we can
show that this form always occurs, even when we are not involved with polynomial terms, or
harmonic forcing.
Consider the more general forced equation

x′′ +�2x = F(τ)− εh(x, x′), (5.90)

where ε is a small parameter. Suppose that F is periodic, with the time variable already scaled
to give it period 2π , and that its mean value is zero so that there is zero constant term in its
Fourier series representation (meaning that its time-averaged value of F is zero over a period)
so that we may expand F is the Fourier series

F(τ) =
∞∑
n=1

(An cos nτ + Bn sin nτ), (5.91)
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in which the Fourier coefficients are given by

An = 1
π

∫ 2π

0
F(τ) cos nτ dτ , Bn = 1

π

∫ 2π

0
F(τ) sin nτ dτ .

We shall allow the possibility that � is close to some integer N by writing

�2 = N2 + εβ (5.92)

(N =1 in Section 5.4). The perturbation method requires that the periodic solutions emerge
from periodic solutions of some appropriate linear equation. If (5.91) has a nonzero term of
order N then (5.90), with ε = 0, is clearly not an appropriate linearization, since the forcing
term has a component equal to the natural frequency N and there will be no periodic solutions.
However, if we write

AN = εA, BN = εB, (5.93)

the term in F giving resonance is removed from the linearized equation and we have a possible
family of generating solutions. Now rearrange (5.90), isolating the troublesome term in F by
writing

f (τ) = F(τ)− εA cos Nτ − εB sin Nτ =
∑
n	=N

(An cos nτ + Bn sin nτ). (5.94)

Equation (5.90) becomes

x′′ +N2x = f (τ)+ ε{−h(x, x′)− βx + A cosNτ + B sinNτ }. (5.95)

The linearized equation is now x′′ +N2x = f (τ), with no resonance.
Now write as usual

x(ε, τ) = x0(τ )+ εx1(τ )+ · · · , (5.96)

where x0, x1, . . . have period 2π . By expanding h in (5.90) in powers of ε we have

h(x, x′) = h(x0, x′0)+ εh1(x0, x′0, x1, x
′
1)+ · · · , (5.97)

where h1 can be calculated, and by substituting (5.96) and (5.97) into (5.95) we obtain the
sequence

x′′0 +N2x0 =
∑
n	=N

(An cos nτ + Bn sin nτ), (5.98a)

x′′1 +N2x1 = −h(x0, x′0)− βx0 + A cosNτ + B sinNτ , (5.98b)

x′′2 +N2x2 = −h1(x0, x′0, x1, x′1)− βx1, (5.98c)
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and so on. The solution of (5.98a) is

x0(τ ) = a0 cosNτ + b0 sinNτ +
∑
n	=N

An cos nτ + Bn sin nτ
N2 − n2

= a0 cosNτ + b0 sinNτ + φ(τ), (5.99)

say; a0, b0 are constants to be determined at the next stage.
We require x0, as determined by (5.99), to be such that (5.98b) has 2π -periodic solutions.

This is equivalent to requiring that its right side has no Fourier term of order N , since such a
term would lead to resonance. We required therefore that

βa0 =− 1
π

∫ 2π

0
h(a0 cosNτ + b0 sinNτ + φ(τ),

− a0N sinNτ + b0N cosNτ + φ′(τ )) cosNτ dτ + A, (5.100a)

βb0 =− 1
π

∫ 2π

0
h(a0 cosNτ + b0 sinNτ + φ(τ),

− a0N sinNτ + b0N cosNτ + φ′(τ )) sinNτ dτ + B, (5.100b)

which constitute two equations for the unknowns a0, b0. The reader should confirm that
the resulting equations are the same as those for the first order approximation, with N = 1,
obtained in Section 5.4.
Each equation in the sequence (5.98) has solutions containing constants a1, b1, a2, b2, . . . ,

whose values are similarly established at the succeeding step. However, the equations for subse-
quent constants are linear: the pair (5.100) are the only ones which may have several solutions
(compare the remark at the end of Section 5.4).

5.12 Homoclinic bifurcation: an example

For autonomous systems a homoclinic path is a phase path which joins a saddle point to itself.
An example is given in Section 3.6. Homoclinic bifurcation takes place when a change of a
parameter in a system causes a homoclinic path to appear for a specific value of the parameter,
and then disappear again as illustrated in Fig. 3.27.
Consider the equation

ẍ + ε(αx2 − β)ẋ − x + x3 = 0 (α > β > 0), (5.101)

which has van der Pol ‘damping’ and a negative restoring force for x small. It is assumed that
0 < ε  1. The equation has three equilibrium points, at y = 0, x = 0, ±1. Near x = 0, x
satisfies

ẍ − εβẋ − x = 0,
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which has the characteristic equation

m2 − εβm− 1 = 0.

Both roots are real but of opposite sign, indicating a saddle point at the origin in the phase
plane. Close to x=1, let x=1+ ξ so that, approximately,

ξ̈ + ε(α − β)ξ̇ + 2ξ = 0.

For α > β, this equilibrium point is a stable spiral for ε sufficiently small. Similarly it can be
shown that the equilibrium point at x = −1 is also a stable spiral.

For ε = 0, the unperturbed system

ẍ − x + x3 = 0

has homoclinic paths meeting at the origin given by

y2 = x2 − 1
2x

4,

and a time solution for x > 0 of

x = x0(t) = √2sech t , −∞ < t <∞ (5.102)

(see Example 3.9 and Fig. 3.26). The intention here is to investigate, using a perturbation
method, whether there are any values of the parameters α and β for which homoclinic paths
persist. Physically this seems likely since the damping term in (5.101) will be negative for small
x, but become positive for larger x so that perhaps a balance will be achieved over the range
of a homoclinic path.
Consider the following perturbation scheme:

x = x0 + εx1 + · · · (−∞ < t <∞).

Substitute this series into (5.101), and collect terms in like powers of ε. The first two
equations are

ẍ0 − x0 + x30 = 0, (5.103)

ẍ1 + (3x20 − 1)x1 = (β − αx20)ẋ0, (5.104)

where the solution of (5.103) is given by (5.102). For a homoclinic solution the required bound-
ary conditions are that x, ẋ → 0, t → ±∞, which means that for each term in the series
xn, ẋn→ 0 (n = 0, 1, 2, . . .) as t →±∞. This condition is already satisfied by x0.

Equation (5.104) is a forced linear second-order equation for x1(t). A direct solution of
(5.104) can be obtained, at least as an integral, but whatwe require from (5.104) is the condition
that the phase path is homoclinic to order ε. Multiply both sides of (5.104) by ẋ0, giving

ẍ1ẋ0 + (3x20 − 1)x1ẋ0 = (β − αx20)ẋ
2
0 .
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From (5.103), this may be written as

d
dt

(ẋ1ẋ0)− ẋ1ẍ0 + x1
d
dt

(x30 − x0) = (β − αx20)ẋ
2
0 ,

or, from (5.103), as

d
dt

(ẋ1ẋ0)+ ẋ1(x
3
0 − x0)+ x1

d
dt

(x30 − x0) = (β − αx20)ẋ
2
0 ,

or

d
dt
[ẋ1ẋ0 + x1(x

3
0 − x0)] = (β − αx20)ẋ

2
0 ,

Now integrate from t = −∞ to t = τ :

ẋ1(τ )ẋ0(τ )+ x1(τ )[x30(τ )− x0(τ )] =
∫ τ

−∞
[β − αx20(t)]ẋ20(t)dt . (5.105)

Since x0(t) = √2 sech t , then x0(τ ) = O(e−τ ) and x30(τ )−x0(τ ) = O(e−τ ) as τ →∞. It follows
also that ∫ τ

−∞
[β − αx20(t)]ẋ20(t)dt = I (α,β)−

∫ ∞
τ

[β − αx20(t)]ẋ20(t)dt

= I (α,β)+O(e−2τ ),

where

I (α,β) =
∫ ∞
−∞
[β − αx20(t)]ẋ20(t)dt .

Multiply (5.105) through by eT , and examine the order of the terms in x0, so that

ẋ1(τ )(2
√
2+O(e−τ ))+ x1(τ )(−2√2+O(e−τ )) = eτ I (α,β)+O(e−τ ). (5.106)

If I (α,β) = 0, then the right-hand side of (5.105) is O(e−τ ). On the left-hand side, x1(τ ) =
eτ +O(1) is not possible since it would then be O(1), nor is x1(τ ) = A+O(e−τ ) possible with
a non-zero constant. We conclude that x1(τ ) = O(e−τ ), which ensures that

I (α,β) =
∫ ∞
−∞
[β − αx20(t)]ẋ20(t)dt = 0

is a necessary and sufficient condition for a homoclinic path to O(ε2).
In our example, it follows from (5.102) (switching back to the variable t instead of τ ),

ẋ0(t) = −√2 sech2t sinh t .
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Hence (5.105) becomes

2β
∫ ∞
−∞

sech4t sinh2 t dt − 4α
∫ ∞
−∞

sech6t sinh2 t dt = 0. (5.107)

The last two integrals can be evaluated as follows. Using the substitution u = tanh t in both
cases,

∫ ∞
−∞

sech4t sinh2 t dt =
∫ 1

−1
u2du = 2

3 ,∫ ∞
−∞

sech6t sinh2 t dt =
∫ 1

−1
u2(1− u2)du = 2

3 − 2
5 = 4

15 .

Hence, to order ε, a homoclinic path in x > 0 exists if

β = 4
5α (5.108)

from (5.107). It can be shown also that a homoclinic path in x < 0 exists for the same parameter
ratio.
Figure 5.8 shows a computed phase diagram for eqn (5.101) for ε=0.3, α=1 and β =0.801.

This value of β should be compared with the value of β = 0.8 predicted by eqn (5.108). The
agreement is good for 0 < ε < 0.3 but the perturbation method will become less accurate as
ε increases further. As β increases through the critical value 4

5α for any fixed α, a homoclinic
bifurcation takes place (see section 3.6).
A more general perturbation method valid also for forced systems will be developed in

Section 13.7.

Figure 5.8 Homoclinic paths for ẍ + ε(αx2 − β)ẋ − x + x3 = 0 for ε = 0.3, α = 1, β = 0.801.
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Exercise 5.9
Verify that the system ẍ + x − x3 = 0 has the heteroclinic solutions x = ±tanh(t/√2)
connecting the saddle points at x = ±1. In the equation

ẍ + ε(αx2 − β)ẋ + x − x3 = 0, 0 < ε  1,

let x = x0 + εx1 + · · · . Show that a heteroclinic bifurcation occurs for α ≈ 3β.

Problems

5.1 Find all the periodic solutions of ẍ+�2x=� cos t for all values of �2.

5.2 Find the first two harmonics of the solutions of period 2π of the following

(i) ẍ − 0.5x3 + 0.25x = cos t ;

(ii) ẍ − 0.1x3 + 0.6x = cos t ;

(iii) ẍ − 0.1ẋ2 + 0.5x = cos t .

5.3 Find a first approximation to the limit cycle for Rayleigh’s equation

ẍ + ε(13 ẋ
3 − ẋ)+ x = 0, |ε|  1,

using the method of Section 5.9.

5.4 Use the method of Section 5.9 to order ε to obtain solutions of period 2π , and the amplitude–frequency
relation, for

(i) ẍ − εxẋ + x = 0;

(ii) (1+ εẋ)ẍ + x = 0.

5.5 Apply the perturbation method to the equation ẍ +�2 sin x = cos t by considering ẍ+�2x+ ε�2

(sin x − x)= cos t , with ε = 1, and assuming that � is not close to an odd integer to find 2π-periodic
solutions. Use the Fourier expansion

sin(a cos t) = 2
∞∑
n=0

(−1)nJ2n+1(a) cos{(2n+ 1)t},

where J2n+1 is the Bessel function of order 2n+ 1. Confirm that the leading terms are given by

x = 1

�2 − 1
[1+�2 − 2�2J1{1/(�2 − 1)}] cos t + 2

�2 − 9
J3{1/(�2 − 1)} cos 3t .

5.6 For the equation ẍ+�2x− 0.1x3= cos t , where � is not near 1, 3, 5, . . . , find to order ε the ratio of the
magnitudes of the first two harmonics.

5.7 In the equation ẍ +�2x + εf (x) = � cos t � is not close to an odd integer, and f (x) is an odd function
of x, with expansion

f (a cos t) = −a1(a) cos t − a3(a) cos 3t − · · · .

Derive a perturbation solution of period 2π , to order ε.
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5.8 The Duffing equation near resonance at � = 3, with weak excitation, is

ẍ + 9x = ε(γ cos t − βx + x3).

Show that there are solutions of period 2π if the amplitude of the zero-order solution is 0 or 2
√
(β/3).

5.9 From eqn (5.40), the amplitude equation for an undamped pendulum is

−F = a0(ω
2 − ω2

0 + 1
8ω

2
0a

2
0).

When ω0 is given, find for what values of ω there are three possible responses. (Find the stationary values
of F with respect to a0, with ω fixed. These are the points where the response curves of Fig. 5.4 turn
over.)

5.10 From eqn (5.42), the amplitude equation for the damped pendulum isF2 = r20 {k2ω2+(ω2−ω2
0+ 1

8ω
2
0r

2
0 )}.

By considering d(F2)/d(r20 ), show that if (ω2 − ω2
0)

2 ≤ 3k2ω2, then the amplitude equation has only

one real root r0 for all F, and three real roots if (ω2 − ω2
0)

2 > 3k2ω2.

5.11 Find the equivalent linear form (Section 4.5) of the expression ẍ+�2x−εx3, with respect to the periodic
form x = a cos t . Use the linear form to obtain the frequency–amplitude relation for the equation

ẍ +�2x − εx3 = � cos t .

Solve the equation approximately by assuming that a = a0+ εa1, and show that this agrees with the first
harmonic in eqn (5.23). (Note that there may be three solutions, but that this method of solution shows
only the one close to {�/(1−�2)} cos t .)

5.12 Generalize the method of Problem 5.11 for the same equation by putting x = x(0) + x(1) + · · · , where
x(0) and x(1) are the first two harmonics to order ε, a cos t and b cos 3t , say, in the expansion of the
solution. Show that the linear form equivalent to x3 is(

3
4a

2 + 3
4ab + 3

2b
2
)
x(0) +

(
1
4a

3 + 3
2a

2b + 3
4b

3
)
x(1)/b.

Split the pendulum equation into the two equations

ẍ(0) +
{
�2 − ε

(
3
4a

2 + 3
4ab + 3

2b
2
)}

x(0) = � cos t ,

ẍ(1) +
{
�2 − ε

(
1
4a

3 + 3
2a

2b + 3
4b

3
)
/b
}
x(1) = 0.

Deduce that a and b must satisfy

a
{
�2 − 1− ε

(
3
4a

2 + 3
4ab + 3

2b
2
)}
= �,

b
{
�2 − 9− ε

(
1
4a

3 + 3
2a

2b + 3
4b

3
)}
= 0.

Assume that a ≈ a0 + εa1, b ≈ εb1 and obtain a0, a1, and b1 (giving the perturbation solution (5.23)).

5.13 Apply the Lindstedt method, Section 5.9, to van der Pol’s equation ẍ + ε(x2 − 1)ẋ + x = 0, |ε|  1.
Show that the frequency of the limit cycle is given by ω = 1− 1

16ε
2 + 0(ε3).

5.14 Investigate the forced periodic solutions of period 2
3π for the Duffing equation in the form ẍ+(1+εβ)x−

εx3 = � cos 3t .

5.15 For the equation ẍ + x + εx3 = 0, |ε|  1, with x(0) = a, ẋ(0) = 0, assume an expansion of the form
x(t) = x0(t) + εx1(t) + . . . , and carry out the perturbation process without assuming periodicity of the
solution. Show that

x(t) = a cos t + εa3
{
−3

8 t sin t + 1
32 (cos 3t − cos t)

}
+O(ε2).
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(This expansion is valid, so far as it goes. Why is it not so suitable as those already obtained for describing
the solutions?)

5.16 Find the first few harmonics in the solution, period 2π , of ẍ +�2x + εx2=� cos t , by the direct method
of Section 5.2. Explain the presence of a constant term in the expansion.

For what values of � does the expansion fail? Show how, for small values of �, an expansion valid
near � = 1 can be obtained.

5.17 Use the method of amplitude–phase perturbation (Section 5.8) to approximate to the solutions, period
2π , of ẍ + x = ε(γ cos t − xẋ − βx).

5.18 Investigate the solutions, period 2π , of ẍ + 9x + εx2 = � cos t obtained by using the direct method of
Section 5.2. If x = x0 + εx1 + · · · , show that secular terms first appear in x2.

5.19 For the damped pendulum equation with a forcing term,

ẍ + kẋ + ω2
0x − 1

6ω
2
0x

3 = F cosωt ,

show that the amplitude–frequency curves have their maxima on

ω2 = ω2
0(1− 1

8 r
2
0 )− 1

2k
2.

5.20 Show that the first harmonic for the forced van der Pol equation ẍ + ε(x2 − 1)ẋ + x = F cosωt is the
same for both weak and hard excitation, far from resonance.

5.21 The orbital equation of a planet about the sun is

d2u

dθ2
+ u = k(1+ εu2),

where u= r−1 and r, θ , are polar coordinates, k= γm/h2, γ is the gravitational constant, m is the mass
of the planet and h is its moment of momentum, a constant. εku2 is the relativistic correction term.

Obtain a perturbation expansion for the solution with initial conditions u(0)= k(e+1), u̇(0)=0. (e
is the eccentricity of the unperturbed orbit, and these are initial conditions at the perihelion: the nearest
point to the sun on the unperturbed orbit.) Note that the solution of the perturbed equation is not periodic,
and that ‘secular’ terms cannot be eliminated. Show that the expansion to order ε predicts that in each
orbit the perihelion advances by 2k2πε.

5.22 Use the Lindstedt procedure (Section 5.9) to find the first few terms in the expansion of the periodic
solutions of ẍ + x + εx2 = 0. Explain the presence of a constant term in the expansion.

5.23 Investigate the forced periodic solutions of period 2π of the equation

ẍ + (4+ εβ)x − εx3 = � cos t ,

where ε is small and β and � are not too large. Confirm that there is always a periodic solution of the
form a0 cos 2t + b0 sin 2t + 1

3� cos t where

a0(
3
4 r

2
0 + 1

6�
2 − β) = b0(

3
4 r

2
0 + 1

6�
2 − β) = 0.

5.24 Investigate the equilibrium points of ẍ+ ε(αx4−β)ẋ− x+ x3=0, (α >β >0) for 0<ε1. Use the
perturbation method of Section 5.12 to find the approximate value of β/α at which homoclinic paths
exist.

5.25 Investigate the equilibrium points of

ẍ + ε(αx2 − β)ẋ − x + 3x5 = 0 (α, β > 0)

for 0<ε1. Confirm that the equation has an unperturbed time solution

x0 = √[sech 2t].
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(see Problem 3.55). Use the perturbation method of Section 5.12 to show that a homoclinic bifurcation
takes place for β ≈ 4α/(3π).

5.26 The equation ẍ + εg(x, ẋ)ẋ + f (x) = 0, ẋ = y, 0 < ε  1, is known to have a saddle point at (0, 0) with
an associated homoclinic trajectory with solution x = x0(t) for ε = 0. Work through the perturbation
method of Section 5.12, and show that any homoclinic paths of the perturbed system occur where∫ ∞

−∞
g(x0, ẋ0) ẋ

2
0 dt = 0.

If g(x, ẋ) = β−αx2− γ ẋ2 and f (x) = −x+ x3, show that homoclinic bifurcation occurs approximately
where

β = 28α + 12γ
35

for small ε.

5.27 Apply Lindstedt’s method to ẍ + εxẋ + x = 0, 0<ε1, where x(0) = a0, ẋ(0) = 0. Show that the
frequency–amplitude relation for periodic solutions is given by ω = 1− 1

24a
3
0ε

2 +O(ε3).

5.28 Find the first three terms in a direct expansion for x in powers of ε for the 2π -period solutions of equation

ẍ +�2x − εẋ2 = cos t ,

where 0 < ε  1 and � 	= an integer.



6 Singular perturbation
methods

This chapter is concerned with approximating to the solutions of differential equations
containing a small parameter ε in what might be called difficult cases where, for one rea-
son or another, a straightforward expansion of the solution in powers of ε is unobtainable
or unusable. Often in such cases it is possible to modify the method so that the essential fea-
tures of such expansions are redeemed. Ideally, we wish to be able to take a few terms of an
expansion, and to be able to say that for some small fixed numerical value of ε supplied in a
practical problem the truncated series is close to the required solution for the whole range of
the independent variable in the differential equation. Failure of this condition is the rule rather
than the exception. In fact the examples of Chapter 5 do not give useful approximations if we
work solely from the initial conditions (see Problem 5.15): for satisfactory approximation we
must use the technically redundant information that the solutions are periodic.
This chapter illustrates several other methods which have been used in such cases. If one

method fails, another maywork, or perhaps a combination of methodsmaywork, but generally
speaking the approach is tentative. For a treatment of the whole topic, not restricted to ordinary
differential equations, see, for example, Nayfeh (1973), van Dyke (1964), O’Malley (1974),
and Kevorkian and Cole (1996).

6.1 Non-uniform approximations to functions on an interval

The solutions of the differential equations we are considering,

ẍ = f (x, ẋ, t , ε),

are functions of t and ε. Some of the problems which may arise in approximating to them can
be illustrated by considering simple functions which are not necessarily associated with any
particular differential equation. For example, consider the function

x(ε, t) = e−εt (6.1)

on t ≥ 0, where ε lies in a neighbourhood of zero. The first three terms of the Taylor expansion
in powers of ε are

1− εt + 1
2ε

2t2, (6.2)

where the error is

O(ε3). (6.3)
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Figure 6.1 The function e−εt (6.1) and its three-term Taylor series (6.2) compared for ε = 0.05 and ε = 0.1.

The error estimate (6.3) implies that for any fixed t , however large, we can choose ε small
enough for the error to be as small as we please, and, indeed, smaller than the smallest term in
the approximation, 1

2ε
2t2. However, the trend of the terms shows clearly that if ε is fixed, at

however small a value (which is the usual situation), t may be chosen large enough to destroy
the approximation completely (see Fig. 6.1).
Consider now a function which appears in Section 6.4 as part of the solution to a differential

equation:

x(ε, t) = cos
{
(1− ε)1/2t

}
, 0 ≤ t <∞, (6.4)

where ε lies in a neighbourhood of zero. The first three terms of the Taylor series for small ε
give

cos t + 1
2εt sin t + 1

8ε
2(t sin t − t2 cos t) (6.5)

with error O(ε3). Once again, for t large enough the approximation fails. We can see that
it fails when t is so large that εt ceases to be small. The condition that (6.5) should be an
approximation for fixed ε is that

t  ε−1. (6.6)

If this is satisfied, then the error, which is dominated by a term like ε3t3, is small. It is also small
compared with each term in (6.5), unless t has a fortuitous value making one of these terms
very small or zero. The same conclusion is reached no matter how many terms of the Taylor
series we take: if more terms are taken the approximation may be better while it lasts, but is
still fails when t becomes comparable with ε−1. Note that if the series is asymptotic rather than
convergent as ε→0, the approximation does not necessarily improve by taking more terms
(Copson 1965).
We say that (6.5) does not provide an approximation that is uniformly valid on t ≥ 0. Failure

of the ordinary perturbation method to produce a uniform approximation to the solution
of a differential equation is very common, and the occasions of failure are called singular
perturbation problems.
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Formally, we require an approximation x∗(ε, t) to a function x(ε, t), usually to be valid for
an infinite range of t :

x(ε, t) = x∗(ε, t)+ E(ε, t), t0 ≤ t <∞,

with error E(ε, t) where limε→0E(ε, t) = 0 uniformly on t0 ≤ t <∞. That is to say, given any
δ > 0, there exists η > 0 independent of t such that

|ε| < η ⇒ |E(ε, t)| < δ.

The general question of uniform approximation to functions is further illustrated in
Section 6.6.

6.2 Coordinate perturbation

Consider the family of Duffing equations with parameter ε:

ẍ + x = εx3. (6.7)

The expansion

x(ε, t) = x0(t)+ εx1(t)+ · · ·
leads to

ẍ0 + x0 = 0,

ẍ1 + x1 = x30 ,

and so on. The general solution of the first equation can be written

x0(t) = A cos(t − α),

where A and α are arbitrary constants. For the second equation

ẍ1 + x1 = x30 = 3
4A

3 cos(t − α)+ 1
4A

3 cos 3(t − α), (6.8)

so that secular terms of the form t cos(t −α) (Section 5.4) begin to appear in the solution. They
cannot be eliminated: only if A = 0 are they absent. Therefore a series similar in form to (6.5)
emerges, and the truncated series does not approximate x(ε, t) uniformly on t ≥ 0.
This problem was treated in Section 5.9. There, the difficulty was avoided by anticipating a

periodic solution of period 2π/ω in t , ω being unknown; we put

ω = 1+ εω1 + ε2ω2 + · · ·
where ω1,ω2, . . . , are unknown constants, and then changed the variable from t to τ

τ = ωt , (6.9)
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so that the equation in τ had known period 2π (the Lindstedt procedure). Equation (6.9) intro-
duced sufficient free constants ωi to allow the secular terms to be eliminated. This method can
be looked on as a device for obtaining uniform approximations by adopting prior knowledge
of the periodicity of the solutions.
We can look at this procedure in another way. Write (6.9) in the form

t = τ/ω = τ/(1+ εω1 + ε2ω2 + · · · ) = τ(1+ ετ1 + ε2τ2 + · · · ), (6.10)

where τ1, τ2, . . . , are unknown constant coefficients. Also put, as in the earlier method,

x(ε, t) = X(ε, τ) = X0(τ )+ εX1(τ )+ ε2X2(τ )+ · · ·, (6.11)

and substitute (6.10) and (6.11) into (6.7). We know this leads to an expansion uniform on t ≥ 0
since it is equivalent to the Lindstedt procedure. However, the interpretation is now different:
it appears that by (6.10) and (6.11) we have made a simultaneous expansion in powers of ε of
both the dependent and the independent variables, generating an implicit relation between x

and t through a parameter τ . The coefficients can be adjusted to eliminate terms which would
give non-uniformity (in fact, the ‘secular terms’), and so a uniformly valid (and, as it turns out,
a periodic) solution is obtained.
We were guided to the form (6.10) by the prior success of the Lindstedt procedure, which

suggests its appropriateness. If however we assume no prior experience, we have to abandon
the assumption of constant coefficients in (6.10). Therefore let us take, instead of the constants
τ1, τ2, . . . , a set of unknown functions T1, T2, . . . , of τ , and see what happens. We have

x(ε, t) = X(ε, τ) = X0(τ )+ εX1(τ )+ ε2X2(τ )+ · · · (6.12a)

and

t = T (ε, τ) = τ + εT1(τ )+ ε2T2(τ )+ · · ·. (6.12b)

The first term in the expansion of t remains as τ , since this is appropriate when ε→0: τ is called
a strained coordinate, or a perturbed coordinate. The technique is also known as Poincaré’s
method of strained coordinates.
Equations (6.12a) and (6.12b) are the basis of Lighthill’s method (see Section 6.3), in which

the expansions are substituted directly into the differential equation. Here we show a different
approach. The ordinary perturbation process is fairly easy to apply, and gives a series of the
form

x(ε, t) = x0(t)+ εx1(t)+ ε2x2(t)+ · · ·. (6.13)

A finite number of terms of this series will not generally give an approximation of x(ε, t) holding
uniformly for all t , but when (6.12b) is substituted into (6.13), it may be possible to choose
T1(τ ), T2(τ ), so as to force (6.13) into a form which does give a uniform approximation. This
process is called coordinate perturbation (Crocco 1972), and will be carried out in the following
two examples.

Example 6.1 Obtain an approximate solution of the family of autonomous equations

ẍ + x = εx3,
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with x(ε, 0) = 1, ẋ(ε, 0) = 0, and error O(ε3) uniformly on t ≥ 0, by the method of coordinate
pertubation.

The expansion (6.13), together with the initial conditions, gives

ẍ0 + x0 = 0, x0(0) = 1, ẋ0(0) = 0;

ẍ1 + x1 = x30 , x1(0) = 0, ẋ1(0) = 0;

ẍ2 + x2 = 3x20x1, x2(0) = 0, ẋ2(0) = 0;

and so on. Then

x(ε, t) = cos t + ε
(

1
32 cos t + 3

8 t sin t − 1
32 cos 3t

)

+ ε2
(

23
1024 cos t + 3

32 t sin t − 9
128 t

2 cos t − 3
128 cos 3t

− 9
256 t sin 3t + 1

1024 cos 5t
)
+O(ε3). (6.14)

The expansion is clearly non-uniform on t ≥ 0.
Now put

t = τ + εT1(τ )+ ε2T2(τ )+ · · · (6.15)

into (6.14), expand the terms in powers of ε , and rearrange:

X(ε, τ) = cos τ + ε
(

1
32 cos τ − T1 sin τ + 3

8 τ sin τ − 1
32 cos 3τ

)

+ ε2
(

23
1024 cos τ − 1

2T
2
1 cos τ + 11

32T1 sin τ − T2 sin τ

+ 3
8 τT1 cos τ + 3

32 τ sin τ − 9
128 τ

2 cos τ − 3
128 cos 3τ

+ 3
32T1 sin τ − 9

128 τ
2 cos τ − 3

128 cos 3τ + 3
32T1 sin 3τ

− 9
256 τ sin 3τ + 1

1024 cos 5τ
)
+O(ε3).

To avoid the form τ sin τ in the ε term, which would given an obvious non-uniformity, define T1 by

T1(τ ) = 3
8 τ . (6.16)

The ε2 coefficient then becomes

23
1024 cos τ − T2 sin τ + 57

256 τ sin τ − 3
128 cos 3τ + 1

1024 cos 5τ ,

and we must have

T2(τ ) = 57
256 τ (6.17)

to eliminate the non-uniformity τ sin τ . On the assumption that this step-by-step process could in principle
continue indefinitely we have

x = X(ε, τ) = cos τ + 1
32ε(cos τ − cos 3τ)+ ε2(

23
1024 cos τ − 3

128 cos 3τ + 1
1024 cos 5τ

)
+O(ε3), (6.18a)
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−

Figure 6.2 Comparison between the numerically computed solution of ẍ+x = 1
4x

3(ε = 1 in (6.7)) and the coordinate
perturbation given by (6.18): a slight divergence in the periods is beginning to show at t ≈ 50.

where

t = τ
(
1+ 3

8ε + 57
256ε

2
)
+O(ε3). (6.18b)

In Fig. 6.2 the numerical solution of the differential equation with ε=1 for 0≤ t ≤50 is shown. On this
scale the error in the approximation (6.18a) is almost imperceptible. �
Example 6.2 (Lighthill’s equation) Find an approximation, uniform on 0 ≤ t ≤ 1, to the solution x(ε, t) of

(εx + t)ẋ + (2+ t)x = 0, ε ≥ 0, (6.19)

satisfying x(ε, 1) = e−1.
Begin by noting certain features of the solution curve in the interval 0 ≤ t ≤ 1 (see Fig. 6.3). Since dx/dt =
−(2+ t)x/(εx + t) and x(ε, 1) = e−1, we have

x > 0 and ẋ < 0 at t = 1.

	x+ t = 0

− −

Figure 6.3 Diagram showing the numerical solution of the equation in Example 6.2 and the approximation for
ε = 0.15. Note that the continuation of the solution terminates with infinite slope at the point where εx + t = 0.

We show that x is bounded on the interval [0, 1] by proving that dx/dt is bounded on [0, 1]. An infinity can
only occur when εx + t = 0, or at t = −εx. Moving from t = 1 towards the left, let t = t0 be the first point at
which the solution curve crosses the t axis and becomes negative. To the right of this point x is continuously
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differentiable. However, x is non-decreasing and positive on t0 < t ≤ 1 (towards the left) since it is increasing
and positive at t = 1, and the first turning point is where dx/dt = 0, that is, at t = −2, which is out of the
range [0, 1]. Therefore t0 is out of range. Therefore x is bounded on 0 ≤ t ≤ 1, and non-increasing as we move
from t = 0 to t = 1.

The direct approach, writing

x(ε, t) = x0(t)+ εx1(t)+ ε2x2(t)+ · · · (6.20)

leads to the sequence of linear equations

t ẋ0 + (2+ t)x0 = 0, x0(1) = e−1; (6.21a)

t ẋ1 + (2+ t)x1 = −x0ẋ0, x1(1) = 0; (6.21b)

t ẋ2 + (2+ t)x2 = −ẋ0x1 − x0ẋ1, x2(1) = 0; (6.21c)

and so on. The solution of (6.21a) is

x0(t) = e−t /t2 (6.22)

(predicting, incorrectly, that x(0) = ∞). Equation (6.21b) becomes

ẋ1 +
(
2
t
+ 1
)
x1 = e−2t

(
2

t6
+ 1

t5

)
.

Therefore,

x1(t) = e−t
t2

∫ t

1
e−u
(

2

u4
+ 1

u3

)
du. (6.23)

This is of order 1/t5 at t = 0, and is even more singular than (6.22). A similar treatment of (6.21c) produces
a singularity O(1/t8) as t → 0. The approximation (6.20):

x(ε, t) ≈ x0(t)+ εx1(t),

with error O(ε2) for fixed t , is clearly not uniform on 0 < t ≤ 1 and breaks down completely at t = 0.
As in the last example, write the near-identity transformation

t = T (ε, τ) = τ + εT1(τ )+ ε2T2(τ )+ · · ·. (6.24)

Then

e−t
t2
= e−τ

τ2

{
1− εT1(τ )

(
2
τ
+ 1
)}
+O(ε2) (6.25)

(O(ε2) refers to fixed τ , not fixed t) and∫ t

1
e−u
(

2

u4
+ 1

u3

)
du =

∫ τ

1
e−u
(

2

u4
+ 1

u3

)
du

+
∫ τ+εT1(τ )+···
τ

e−u
(

2

u4
+ 1

u3

)
du

=
∫ τ

1
e−u
(

2

u4
+ 1

u3

)
du+O(ε). (6.26)
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From (6.22), (6.23), (6.25), and (6.26) we find, to O(ε2) (referring to fixed τ ),

x = e−τ
τ2

{
1+ ε

[∫ τ

1
e−u
(

2

u4
+ 1

u3

)
du− T1(τ )

(
2
τ
+ 1
)]}
+O(ε2). (6.27)

The best thing we can do is to choose T1 to eliminate the worst singularity for small τ arising from the
integral. This comes from the term

2
∫ τ

1

e−u
u4

du = −2
3

∫ τ

1
e−u d

du

(
1

u3

)
du

= −2
3

[
e−u
u3

]τ
1
+ 2

3

∫ τ

1

e−u
u3

du

= −2e−τ
3τ3

+O

(
1

τ2

)

as τ → 0. The choice

T1(τ ) = − 1

3τ2
(6.28)

eliminates this singularity (of course, we are left with one of order τ−2).
Finally, from (6.27), (6.24), and (6.28)

x = e−τ /τ2 (6.29a)

together with

t = τ − ε

3τ2
(6.29b)

give a uniform approximation for 0 ≤ t ≤ 1 (Fig. 6.3).
Note that there is now no infinity predicted at t = 0: from (6.29b), t = 0 corresponds to τ = (ε/3)1/3, and

x(0) therefore has the value approximately (ε/3)−2/3. The error in (6.29a,b) is O(ε2) for fixed τ , but only
O(ε1/3) for fixed t . �

Exercise 6.1
Obtain an approximation solution of

ẍ + x = εxẋ2, x(ε, 0) = 1, ẋ(ε, 0) = 0

with error O(ε2) uniformly on t ≥ 0, by the method of coordinate perturbation.

6.3 Lighthill’s method

We reconsider the equation (see Example 6.2)

(εx + t)ẋ + (2+ t)x = 0, (6.30a)

x(ε, 1) = e−1, (6.30b)
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on 0≤ t ≤1, using the direct attack suggested in the previous section. A systematic procedure
known as Lighthill’s method is developed. Substitute

x = X(ε, τ) = X0(τ )+ εX1(τ )+ · · · (6.31a)

and

t = T (ε, τ) = τ + εT1(τ )+ · · · (6.31b)

into the differential equation and boundary condition.
First, we do not expect that t = 1will correspondwith τ = 1. Suppose that t = 1 corresponds

to τ = τ ∗(ε). Then we must solve (6.31b) for τ ∗; that is

1 = τ ∗ + εT1(τ
∗)+ · · ·. (6.32)

Then (6.30b), (6.31a) give the transformed boundary condition

e−1 = X0(τ
∗)+ εX1(τ

∗)+ · · ·. (6.33)

To solve (6.32), assume τ ∗ is close to 1 for ε small and has the expansion

τ ∗ = 1+ ετ1 + · · ·, (6.34)

where τ1, . . . are constants. Equation (6.32) becomes (writing T1(τ
∗) = T1(1)+ ετ1T

′
1(1)+ · · · )

1 = 1+ ε(τ1 + T1(1))+ · · ·
so τ1 = −T1(1), and from (6.34), the boundary t = 1 corresponds to τ = τ ∗, where

τ ∗ = 1− εT1(1)+ · · ·.
Therefore, by expanding X0(τ

∗) and X1(τ
∗) in (6.33), the boundary condition (6.33) becomes

e−1 = X0(1)+ εX1(1)−X′0(1)T1(1))+ · · ·. (6.35)

Next, the derivative in (6.30a) is transformed by

dx
dt
= dX

dτ

/
dT
dτ
= X′0 + εX′1 + · · ·

1+ εT ′1 + · · ·
= X′0 + ε(X′1 −X′0T

′
1)+ · · ·. (6.36)

Thus eqn (6.30a) becomes, to order ε,

(εX0 + τ + εT1)(X
′
0 + ε{X′1 −X′0T

′
1})+ (2+ τ + εT1)(X0 + εX1) = 0. (6.37)

Equations (6.35) and (6.37) give

τX′0 + (2+ τ)X0 = 0, X0(1) = e−1; (6.38a)

τX′1 + (2+ τ)X1 = −T1(X′0 +X0)+ τX′0T
′
1 −X0X

′
0,

X1(1) = X′0(1)T1(1).

}
(6.38b)
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From (6.38a) the zero-order approximation is

X0(τ ) = e−τ /τ2. (6.39)

Then (6.38b) becomes

τX′1 + (2+ τ)X1 = 2e−τ

τ3
T1 − e−τ

(
2
τ2
− 1

τ

)
T ′1 + e−2τ

(
2
τ5
− 1

τ4

)
, (6.40)

with initial condition

X1(1) = −3e−1T1(1).
We now have a free choice of T1(τ ): it could be chosen to make the right-hand side of (6.40)

zero, for example; this would lead to a solution for (6.40) of the type (6.39) again, but is in
any case impracticable. We shall choose T1 to nullify the worst visible singularity on the right
of (6.40), which is of order 1/τ5. We attempt this by writing e−τ , e−2τ ≈ 1 for small τ and
solving

2
τ3

T1 − 2
τ2

T ′1 +
2
τ5
= 0.

The simplest solution is

T1(τ ) = − 1
3τ2

(6.41)

(compare (6.28)). We have therefore achieved the same result as in the last section; though, in
this example, at considerably more effort. Note that throughout the argument we have regarded
the equation as a member of a family of equations with parameter ε, as in Chapter 5.

Exercise 6.2
Find the general solution of

(εx + t)ẋ + (2+ t)x = 0, x(ε, 1) = e−1

when ε = 0. How does the solution behave near t = 0?

6.4 Time-scaling for series solutions of autonomous equations

Consider, for illustration, the family of linear differential equations with parameter ε,

ẍ + εx + x = 0, t ≥ 0, (6.42a)

and initial conditions

x(0) = 1, ẋ(0) = 0, (6.42b)
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where |ε|  1. The exact solution is

x(t , ε) = cos(1+ ε)1/2t . (6.43)

Equation (6.42a) is of the type ẍ + εh(x, ẋ) + x = 0 (where h(x, ẋ) = x) and the discussion is
to a large extent representative of equations of this type.
We may carry out a perturbation process for small ε to obtain the solution (6.43) as a power

series in ε by substituting the series

x(t , ε) = x0(t)+ εx1(t)+ · · ·
into the differential equation and the initial conditions and matching the coefficients of εn, n =
0, 1, . . . successively to generate a sequence of differential equations for x0(t), x1(t), . . . . This
process gives the same result as we should get by expanding the exact solution (6.43) as a Taylor
series in powers of ε. Up to the term in ε2 we have

x(t , ε) = cos(1+ ε)1/2t ≈ cos t − 1
2εt sin t + 1

8ε
2(t sin t − t2 cos t). (6.44)

The accuracy of this approximation depends upon the balance between the range of ε, close
to zero, and the range of t , which we should like to be as large as possible. The indications are
that it will be useless for any fixed value of ε as soon as t becomes so large that the three terms
cease to diminish rapidly in magnitude. The combinations of ε and t that occur in (6.44) are
εt , ε2t and ε2t2. Failure occurs as soon as εt ceases to be small, so the approximation (6.44) is
useful only so long as

εt  1. (6.45)

If ε is reduced the breakdown is delayed, but there is no fixed number of terms in the series and
no fixed value of ε which will deliver a good approximation for all t ≥ 0.
However, there exist other representations of x(t , ε) in series form that are satisfactory for a

much larger range of t . The Taylor expansion for (1+ ε)1/2 can be expressed as

(1+ ε)1/2 = 1+ 1
2ε − 1

8ε
2 + 1

16ε
3 +O(ε4).

Use the leading terms to expand x(t , ε) in a Taylor series centred on the value (1+ 1
2ε)t ; then

x(t , ε) = cos
{(

1+ 1
2ε
)
t − 1

8ε
2t + 1

16ε
3t2 +O(ε4t)

}

= cos
(
1+ 1

2ε
)
t + 1

8ε
2t sin

(
1+ 1

2ε
)
t − 1

16ε
3t sin(1+ εt)

− 1
128ε

4t2 cos
(
1+ 1

2ε
)
t +O(ε4t). (6.46)

For given values of ε in the range |ε|  1, consider values of t which may be very large, but
are still restricted to the finite range

0 ≤ t ≤ κ

ε
, (6.47a)
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where κ is a constant, so that we may write

t = O(1/ε), or εt = O(1), as ε→ 0. (6.47b)

Now introduce a new parameter η, called slow time, defined by

η = εt = O(1) (6.47c)

when t = O(1/ε), by (6.47b). Then the series (6.46) may be written in the form

x(t , ε) = cos
(
t + 1

2η
)
+ 1

8εη sin
(
t + 1

2η
)

− 1
16ε

2
{
η sin
(
t + 1

2η
)
− 1

8η
2 cos
(
t + 1

2η
)}
+O(ε3). (6.48)

A series in powers of ε is emerging whose coefficients are all O(1) when the range of t is
O(ε−1). This range is an order of magnitude greater than that permitted in the more elementary
representation, (6.44).
We have shown the possibility of an improved representation of a solution of a differential

equation by choosing one for which we know the exact solution. This, of course, will not
usually be available. We now show how to obtain such a form for the solution by working
directly from a differential equation without referring to the exact solution. For the purpose of
illustration, however, we shall use the same differential equation, (6.42a), as before.
Consider again the initial value problem

ẍ + εx + x = 0; x(0, ε) = 1, ẋ(0, ε) = 0, (6.49)

where this is regarded as a family of problems with parameter ε, where |ε|1. Taking the lead
from the previous discussion, we shall aim at obtaining approximations valid over a range of
t given by

t = O(ε−1). (6.49a)

Introduce a slow-time parameter η:

η = εt = O(1). (6.49b)

Then we shall seek a form of solution

x(t , ε) = X(t , η, ε)

= X0(t , η)+ εX1(t , η)+ ε2X2(t , η)+O(ε3), (6.50a)

(and assume it may be continued in the same way) in which

X0(t , η),X1(t , η),X2(t , η), . . . = O(1) (6.50b)

provided that t = O(ε−1) as ε→ 0.
Since η = εt , the variables η and t are not independent in the original problem. However,

X(t , η, ε) is certainly a particular solution of some partial differential equation in which t and
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η figure as independent variables. We obtain this equation in the following way. We have, for
all t and ε

x(t , ε) ≡ X(t , εt , ε) (6.51a)

when x(t , ε) is the required solution. Therefore,

dx
dt
≡ d

dt
X(t , εt , ε) = ∂X

∂t
+ ε

∂X

∂η
, (6.51b)

and

d2x
dt2
= ∂2X

∂t2
+ 2ε

∂2X

∂η∂t
+ ε2

∂2X

∂η2
. (6.51c)

Since x(t , ε) satisfies (6.49), X(t , η, ε) satisfies

∂2X

∂t2
+ 2ε

∂2X

∂t∂η
+ ε2

∂2X

εη2
+ (1+ ε)X = 0. (6.52)

This is the required partial differential equation. The initial conditions in (6.49) become, using
(6.51a), (6.51b),

X(0, 0, ε) = 1,
∂X

∂t
(0, 0, ε)+ ε

∂X

∂η
(0, 0, ε) = 0. (6.53)

The initial conditions (6.53), together with the requirements (6.50a) and (6.50b), are sufficient
to isolate the required solution of the partial differential equation (6.52) for all |ε|  1. We
shall use an abbreviated notation for the partial derivatives:

X(t) = ∂X

∂t
, X(t ,η) = ∂2X

∂t∂x
, X(t ,t) = ∂2X

∂t2
,

and so on.
Substitute the series (6.50a) into the differential equation (6.52); this must hold good for all

ε, so the coefficients of the powers of ε are zero. For terms up to ε2 we obtain the sequence

X
(t ,t)
0 +X0 = 0; (6.54a)

X
(t ,t)
1 +X1 = −2X(t ,η)

0 −X0; (6.54b)

X
(t ,t)
2 +X2 = −2X(t ,η)

1 −X1 −X
(η,η)
0 . (6.54c)

From (6.53) we have, similarly, the sequence

X0(0, 0) = 1, X
(t)
0 (0, 0) = 0; (6.55a)

X1(0, 0) = 0, X
(t)
1 (0, 0)+X

η

0(0, 0) = 0; (6.55b)

X2(0, 0) = 0, X
(t)
2 (0, 0)+X

(η)

1 (0, 0) = 0. (6.55c)
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We further require, by (6.50b), that X0,X1,X2 should be O(1) when t = O(ε−1). This will
produce a further condition: that the terms on the right of (6.54b) and (6.54c) (and in any
subsequent equations) are zero.
Start with (6.54a). The general solution is

X0(t , η) = a0(η) cos t + b0(η) sin t , (6.56a)

where a0 and b0 are arbitrary functions of η. The initial conditions (6.55a) are satisfied if

a0(0) = 1, b0(0) = 0. (6.56b)

Substitute (6.56a) into the right-hand side of (6.54b); this becomes

X
(t ,t)
1 +X1 = (2a′0 − b0) sin t − (2b′0 + a0) cos t .

Unless the right-hand side is zero for all t , the solutions X1 will contain terms behaving like
t sin t and t cos t , and these terms cannot be O(1) when t = O(ε−1). Therefore

2a′0 − b0 = 0 and 2b′0 + a0 = 0.

The solutions of these equations that satisfy the initial conditions (6.56b) are

a0(η) = cos 1
2η, b0(η) = − sin 1

2η. (6.56c)

This process is analogous to the elimination of secular terms in Section 5.4. Finally, from
(6.56c) and (6.56a) we obtain

X0(t , η) = cos 1
2η cos t − sin 1

2η sin t

= cos(t + 1
2η). (6.56d)

We now have (6.54b) in the form

X
(t ,t)
1 +X1 = 0.

The general solution is

X1 = a1(η) cos t + b1(η) sin t . (6.57a)

The initial conditions (6.55b) require

a1(0) = 0, b1(0) = 0. (6.57b)

Looking ahead, eqn (6.54c) forX2 must not generate secular terms, so the right-hand side must
be zero. By substituting (6.57a) and (6.56a) into the right-hand side we obtain

2X(t ,η)
1 +X1 −X

(η,η)
0 = (−2a′1 + b1) sin t + (2b′1 + a1) cos t

− 1
4cos

1
2η cos t + 1

4sin
1
2η sin t .

This must be zero for all t , so

−2a′1 + b1 = −1
4sin

1
2η, 2b′1 + a1 = 1

4cos
1
2η.
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The solution of these equations which satisfies the initial conditions (6.57b) is

a1 = 1
8η sin

1
2η, b1 = 1

8η cos
1
2η. (6.57c)

Therefore, from (6.57a),

X1(t , η) = 1
8η sin

1
2 + 1

8η cos
1
2η

= 1
8η sin(t + 1

2η). (6.57d)

From (6.56d) and (6.57d) we obtain the approximation

x(t , ε) = X(t , η, ε) ≈ X0(t , η)+ εX1(t , ε)

= cos(t + 1
2εt)+ 1

8ε
2t sin(t + εt). (6.58)

This matches the first two terms of the enhanced Taylor expansion of the exact solution,
eqn (6.46). By looking forward, without calculation, to the conditions governing X2 and X3,
it can be seen that the error in (6.58) is O(ε3) for t = (ε−1).
In the following example the differential equation is nonlinear. A variant on the previous

procedure is adopted, in which a general solution approximation is found first and the initial
conditions are applied to this subsequently. Also, the algebra involved is simplified by expressing
the solutions of (6.54a) in the form

A0(η)eit + Ā0(η)e−it ,

where A0 is a complex function.

Example 6.3 Obtain the general solution of Rayleigh’s equation

ẍ + ε(13 ẋ
3 − ẋ)+ x = 0 (i)

with error O(ε) so long as t = O(ε−1). Deduce the particular solution for which x(0, ε) = a, ẋ(0, ε) = 0. Find
the zero order approximation to the limit cycle.

Suppose that x(t , ε) has an expansion of the form

x(t , ε) = X(t , η, ε) = X0(t , η)+ εX1(t , η)+O(ε2) (ii)

as ε→0, when t =O(ε−1). By substituting (6.51b) and (6.51c) into eqn (i), retaining terms up to order ε after
substituting the expansion (ii), and matching powers of ε, we obtain

∂2(X0)

∂t2
+X0 = 0, (iii)

∂2X1

∂t2
+X1 = ∂X0

∂t
− 1

3

(
∂X0
∂t

)3
− 2

∂2X0
∂t∂η

. (iv)

Equation (iii) has the general solution

X0(t , η) = A0(η)e
it + Ā0(η)e

−it , (v)
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where A0 is an arbitrary complex function of η. Equation (iv) becomes

∂2X1

∂t2
+X1 = ieit (A0 − A2

0Ā0 − 2A′0)+ 1
3 iA

3
0e

3it + complex conjugate. (vi)

(For calculating this result, note that (z+ z̄)3 = (z3 + 3z2z̄)+ complex conjugate.)
Secular terms would arise only from the presence of the terms in (vi) containing eit and e−it . They are

eliminated by requiring that

A′0 − 1
2A0 + 1

2A
2
0Ā0 = 0 (vii)

(the conjugate equation is then automatically satisfied).
To solve (vii), write

A0(η) = ρ(η)eiα(η), (viii)

where ρ and α are real. From (vii) we obtain, by equating real and imaginary parts to zero,

dρ/dη = 1
2ρ − 1

2ρ
3 and dα/dη = 0.

The solutions are

ρ(η) = (1+ a0e
−η)−1/2, α(η) = α0,

where a0 and α0 are real arbitrary constants.
Equations (v) and (viii) give the zero-order approximation to X(t , η, ε): replacing η by εt we have

x0(t , ε) ≡ X0(t , εt) = 2(1+ a0e
−εt )−1/2 cos(t + α0), (ix)

where a0 and α0 are arbitrary. This is the approximation to the general solution, valid for t = O(ε−1).
From the initial conditions x(0, ε) = a, ẋ(0, ε) = 0. we obtain

a = 2(1+ a0)
−1/2 cosα0, 0 = −2(1+ a0)

−1/2 sinα0.

Therefore

α0 = 0, a0 = −1+ 4/a2,

so

x(t , ε) = 2{1− (1− 4/a2)e−εt }−1/2 cos t +O(ε),

when t = O(ε−1). The limit cycle corresponds to a = 2. �

Exercise 6.3
Using the slow time η= εt , obtain the general solution of

ẍ + ε(x2 + ẋ2 − 1)ẋ + x = 0

with error O(ε) so long as t = O(ε−1). Assume the initial conditions x(0, ε) = a > 0,
ẋ(0, ε) = 0 to find the zero-order approximation to the limit cycle. (Refer back to
Example 1.9.)
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6.5 The multiple-scale technique applied to saddle points and nodes

As a model for the procedure we consider the linear equation

ẍ + εẋ − x = 0, 0 ≤ ε  1. (6.59)

The origin in the phase plane with ẋ = y is a saddle point. The problem discussed is to
approximate to the solutions that correspond to the two separatrices which enter the origin.
The incoming separatrices are given exactly by

y = mx,

(on either side of the origin) where

m = −1
2 {ε + (4+ ε2)1/2}. (6.60)

These two phase paths correspond to the family of time solutions

x(t , ε) = Cemt , (6.61)

where C is an arbitrary constant.
We shall aim at an approximation which is valid when t ≥ 0 and

t = O(ε−1) as ε→ 0+, (6.62)

that is, where 0 ≤ t ≤ kε−1 for some constant value of k. Expand the expression (6.60) for m
as a Taylor series; we obtain

m = −1− 1
2ε − 1

8ε
2 +O(ε4).

The solutions (6.61) become

x(t , ε) = Ce−t−
1
2 εt− 1

8 ε
2t +O(ε4t). (6.63)

Now introduce two levels of ‘slow time’ defined by

η1 = εt , η2 = ε2t . (6.64)

So long as t = O(ε−1), η1 = O(1) and η2 = O(ε) as ε→ 0. The solutions (6.63) may be written

x(t , ε) = Ce−t−
1
2η1− 1

8η2 +O(ε3η1) = Ce−t−
1
2η1− 1

8η2 +O(ε3), (6.65)

valid for t = O(ε−1).
With (6.65) as a point of referencewe solve (6.59) by a procedure similar to that of Section 6.4,

but involving the two levels of ‘slow time’, η1 and η2. We seek solutions of the form x(t , ε) =
X(t , η1, η2, ε), where

X(t , η1, η2, ε) = X0(t , η1, η2)+ εX1(t , η1, η2)+ ε2X2(t , η1, η2)+ · · ·, (6.66a)
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and

X0,X1,X2, . . . = O(1) when t = O(ε−1). (6.66b)

The function X(t , η1, η2, ε) in which t , η1, η2, are treated as independent variables satisfies a
certain partial differential equation, which is obtained as follows.
By putting dx(t , ε)/dt = dX(t , εt , ε2t , ε)/dt , we obtain the differential operators

d
dt

x(t , ε) =
(
∂

∂t
+ ε

∂

∂η1
+ ε2

∂

∂η2

)
X(t , η1, η2, ε),

d2

dt2
x(t , ε) =

(
∂

∂t
+ ε

∂

∂η1
+ ε2

∂

∂η2

)2
X(t , η1, η2, ε),

where the index (· · · )2 indicates that the operation is repeated: the ‘square’ follows ordinary
algebraical rules. Up to order ε2 we obtain

ẋ = X(t) + εX(η1) + ε2X(η2) +O(ε3), (6.67a)

ẍ = X(t ,t) + 2εX(t ,η1) + ε2(2X(t ,η2) +X(η1,η2))+O(ε3). (6.67b)

(These formulae are used repeatedly in this section and the next.)
Substitute the expansion (6.66a) for X into the original differential equation ẍ+ εẋ+ x = 0,

retaining terms upto O(ε2). Since the resulting equation must hold good for all 0 ≤ ε  1,
we may equate the coefficients of ε0, ε1, . . . to zero. After some rearrangement the following
system is obtained:

X
(t ,t)
0 −X0 = 0, (6.68a)

X
(t ,t)
1 −X1 = −(2X(t ,η1)

0 +X
(t)
0 ), (6.68b)

X
(t ,t)
2 −X1 = −(2X(t ,η1)

1 +X
(t)
1 )− (2X(t ,η2)

0 +X
(η1,η1)
0 +X

(η1)
0 ). (6.68c)

(It is of interest to see how the pattern develops. The next term would be

X
(t ,t)
3 −X3 = −(2X(t ,η1)

2 +X2)− (2X(t ,η2)
1 +X

(η1,η1)
1 +X(η1))

− (2X(t ,η3)
0 + 2X(η1,η2)

0 +X
(η2)
0 )

in which η3 = ε3t . If we do not want η3, the term X
(t ,η3)
0 is absent.)

These equations are to be solved successively, and at each stage the terms on the right-hand
side put to zero. If this is not done then extra factors, which involve powers of t , will appear in
the expansion (6.66a): this would invalidate (6.66b), changing the orders of magnitude of the
terms in (6.66a) when t is large.
The solutions of (6.68a) which satisfy the boundedness condition (6.66b) are

X0 = a0(η1, η2)e−t , (6.69a)
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where the arbitrary function a0(η1, η2) is settled when we eliminate the secular terms on the
right of (6.68b) and (6.68c) we require

2X(t ,η1)
0 +X

(t)
0 = 0.

From (6.69a) we obtain, equivalently,

2a(η1)0 + a0 = 0,

so that

a0(η1, η2) = b0(η2)e−
1
2η1 .

Therefore

X0 = b0(η2)e−t−
1
2η1 , (6.69b)

where b0 will be further restricted at the next stage.
The solutions of (6.68b), with zero on the right, take the form

X1 = a1(η1, η2)e−t . (6.70a)

We require the right-hand side of (6.68c) to be zero identically. From (6.70a) and (6.69b) we
obtain

−(2a(η1)1 + a1)−
(
2b(η2)0 + 1

4b0

)
e−

1
2η1 = 0.

By using the fact that a1 = a1(η1, η2) and b0 = b0(η2) it can be shown that the bracketed terms
must be zero separately if secular terms are to be absent. Therefore

2a(η1)1 + a1 = 0, 2b(η2)0 + b0 = 0,

so that

a1 = b1(η2)e−
1
8η1 , b0 = C0e−

1
8η2 ,

where C0 is a constant. From (6.69b) and (6.70a) we obtain

X0 = C0e−t−
1
2η1− 1

8η2 , (6.71)

and

X1 = b1(η2)e−t−
1
2η1 . (6.72)

The right-hand side of (6.68c) must be zero:

2X(t ,η1)
1 +X

(t)
1 = 0.

Therefore, from (6.72a),

2b(η2)1 − 1
4b1 = 0, so b1 = C1e−

1
8η2 ,
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where C1 is a constant. Finally, we have obtained

X(t , η1, η2, ε) = X0(t , η1, η2)+ εX1(t , η1, η2)+O(ε2)

= Ce−t−
1
2η1− 1

8η2 +O(ε2), (6.73)

where C=C0+ εC1. The right-hand sides of the sequence (6.68a) to (6.68c) and beyond imply
no further restriction on C0 and C1, so C is an arbitrary constant. Equation (6.73) may be
written as

x(t , ε) = Ce−t−
1
2 εt− 1

8 ε
2t +O(ε2), (6.74a)

so long as

t = O(ε−1). (6.74b)

We have therefore recovered the expression (6.65), which was obtained from the exact solution
of (6.59).
The method may be extended to take in further terms in the series (6.66a) for X, with

t = O(ε−1) as before. By introducing further levels of slow time, η3 = ε3t etc, the range of t
may be extended to O(ε−2) etc.

The following example shows the same technique applied to a nonlinear differential equation
with initial conditions. The problem is motivated by considering how to obtain a fairly accurate
starting point for a numerical calculation or a plot of a separatrix which enters the origin in the
phase plane. We are free to select the value of x(0, ε), but need also to find the value of ẋ(0, ε)
for this particular curve.

Example 6.4 The equation

ẍ + ε(1− x2)ẋ − x = 0, (i)

with 0 ≤ ε  1 has a saddle point at the origin. (a) Obtain the general time solution for the two phase paths
that approach the origin, with error O(ε2) when t = O(ε−1). (b) At t = 0 a point with abscissa x(0, ε) = x0
(given), and ordinate ẋ(0, ε) = y(0, ε) = y0 + εy1 (unknown), lies on one of the paths in (a). Obtain y0, y1
and the corresponding time solution, in terms of x0.

(a) Introduce the scaled times

η1 = εt , η2 = ε2t , (ii)

and let

x(t , ε) ≡ X(t , η1, η2, ε) = X0(t , η1, η2)+ εX1(t , η1, η2)+O(ε2), (iii)

where it is supposed that

t = O(ε−1) as ε→ 0, (iv)

and that the coefficients in (iii) are O(1). Use eqns (6.67a) and (6.67b) to express ẋ and ẍ in terms of X0
and X1, and substitute into the given differential equation (i). By assembling the coefficients of ε0, ε1, ε2 and
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rearranging we obtain the sequence

X
(t ,t)
0 −X0 = 0, (v)

X
(t ,t)
1 −X1 = −

(
2X(t ,η1)

0 +X
(t)
0

)
+X

(t)
0 X2

0, (vi)

X
(t ,t)
2 −X2 = −

(
2X(t ,η2)

0 +X
(η1)
0

)
−
(
2X(t ,η1)

1 +X
(t)
1 +X

(η1,η1)
1

)
+
{
X
(t)
0 (X2

0 + 2X0X1)+X
(η1)
0 X2

0

}
. (vii)

The solutions of (v) which tend to zero have the form

X0 = a0(η1, η2)e
−t . (viii)

The term X
(t)
0 X2

0 on the right of (vi) becomes

X
(t)
0 X2

0 = −a30(η1, η2)e−3t (ix)

and therefore does not affect the order of magnitude of X1, when t = O(ε−1). The bracketed terms must be
eliminated, so 2X(t ,η1)

0 +X
(t)
0 = 0. Therefore, by (viii),

2a(η1)0 + a0 = 0,

so

a0 = b0(η2)e
− 1

2 η1 .

Therefore,

X0 = b0(η2)e
−t− 1

2 η1 , (x)

and the equation for X1 becomes (using (ix))

X
(t ,t)
1 −X1 = −b30e−3t−

3
2 η1 .

The appropriate solutions are given by

X1 = a1(η1, η2)e
−t − 1

8b0(η2)e
−3t− 3

2 η1 . (xi)

By following a similar argument in connection with the right-hand side of (vii), we obtain

b0(η2) = C0e
− 1

8 η2 , a1(η1, η2) = b1(η2)e
− 1

2 η1 . (xii)

where C0 is a constant. Finally we have

X = X0 + εX1 −O(ε2)

= C0e
−t− 1

2 η1− 1
8 η2 + ε

{
b1(η2)e

−t− 1
2 η1 − 1

8C
3
0e
−3t− 3

2 η1
}
+O(ε2) (xiii)

when t = O(ε−1); and in terms of t and ε:

x(t , ε) ≈ C0e
−t− 1

2 εt− 1
8 ε

2t + ε
{
b1(ε

2t)e−t− 1
2 εt − 1

8C
3
0e
−3t− 3

2 εt
}
, (xiv)

with an error O(ε2) when t = O(ε−1).
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(b) To apply the initial conditions we require x(0, ε) and ẋ(0, ε), maintaining an error of O(ε2). Note that
db1/dt = O(ε2); also write

b1(0) = C1.

Then from (xiv) we obtain

x(0, ε) = C0 + ε(C1 − 1
8C

3
0 ) = x0,

y(0, ε) = −C0 + ε(−C1 − 1
2C0 + 3

8C
3
0 ) = y0 + εy1,

in which C0 and C1 are disposable constants, and the initial values are x0 and y0+εy1. From the first equation
we obtain

C0 = x0, C1 = 1
8C

3
0 = 1

8x
3
0 . (xv)

and from the second,

y0 = −C0 = −x0, y1 = −1
2x0 + 1

4x
3
0 . (xvi)

The constants in (xv) produce the time solution from (xiii); and (xvi) defines the required ordinate to O(ε2).
The graph of

y = y0 + εy1 = −x0 + ε(−1
2x0 + 1

4x
3
0 )

is shown in Fig. 6.4, where comparison is made with its computed separatrix. �

−

−

−

Figure 6.4 Stable separatrix in x > 0, y < 0 computed numerically, and the track of initial values given by eqn (xv):
y = y0 + εy1 = −x0 + ε(− 1

2x
2
0 + 1

4x
3
0 ) for ε = 0.2.

In the following example the differential equation is not of the type x + εh(x, ẋ) ± x = 0
considered up to this point. The linear equation ẍ + ẋ + εx = 0, where ε is small and positive
(nonzero), is taken to illustrate the principles.

Example 6.5 (a) By working from the exact solution of the initial value problem
ẍ + ẋ + εx = 0, x(0, ε) = x0, ẋ(0, ε) = 0, 0 < ε  1, (i)

show that x(t , ε) = x0{e−εt−ε2t + ε(e−εt − e−t+εt )} +O(ε2) as ε→ 0, when t = O(ε−1). (b) Obtain the same
result by using the two time scales η1 = εt , η2 = ε2t .

(a) The characteristic equation of (i) is m2 +m+ ε = 0, with roots m1,m2, where for small ε

m1 = 1
2 {−1+ (1− 4ε)1/2} = −ε + ε2 +O(ε3),

m2 = 1
2 {−1− (1− 4ε)1/2} = −1+ ε − ε2 +O(ε3).
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Since these are real and negative, the origin in the phase plane is a stable node. The exact solution of the initial
value problem is

x(t , ε) = x0{m2e
m1t −m1e

m2t }/(m2 −m1).

Substitute the approximations for m1,m2 (noting that when t = O(ε−1), then ε2t = O(ε) so that e−ε2t =
1+O(ε)); then

x(t , ε) = x0{e−εt−ε
2t + ε(e−εt − e−t+εt )} +O(ε2) (ii)

is the required approximation, valid when t = O(ε−1).
(b) Proceed as usual, putting x(t , ε) = X(t , η1, η2, ε) and

X(t , η1, η2, ε) = X0(t , η1, η2)+ εX1(t , η1, η2)+ ε2X2(t , η1, η2)+O(ε3),

where X0,X1,X2, . . . are O(1) when t = O(ε−1). We obtain

X
(t ,t)
0 +X

(t)
0 = 0, (iii)

X
(t ,t)
1 +X

(t)
1 = −(2X

(t ,η1)
0 +X

(η1)
0 +X0), (iv)

X
(t ,t)
2 +X

(t)
2 = −(2X

(t ,η1)
1 +X

(η1)
1 +X1)− (2X(t ,η2)

0 +X
(η1,η1)
0 +X

(η2)
0 ). (v)

The solutions of (iii) take the form

X0 = p0(η1, η2)+ q0(η1, η2)e
−t . (vi)

The right-hand side of (iv) then becomes

−(p(η1)
0 + p0)+ (q

(η1)
0 − q0)e

−t .

Without further action eqn (iv) will therefore have solutions involving t and te−t . Since we need t = O(ε−1)
these terms must not occur, so we require

p
(η1)
0 + p0 = 0, q

(η1)
0 − q0 = 0.

Therefore

p0 = r0(η2)e
−η1 , q0 = s0(η2)e

η1 ,

and so from (vi)

X0 = r0(η2)e
−η1 + s0(η2)e

−t+η1 . (vii)

The solutions of (iv), with zero now on the right-hand side, are

X1 = p1(η1, η2)+ q1(η1, η2)e
−t . (viii)

By substituting (vii) and (viii), the right-hand side of (v) reduces to

−(p(η1)
1 + p1)+ (q

(η1)
1 − q1)e

−t − (r
(η2)
0 + r0)+ (s

(η2)
0 + s0)e

−t+η1 .

Solutions of (v) containing terms of the form t and te−t are eliminated by equating each of the four brackets
to zero. We obtain

r0 = C0e
−η2 , s0 = D0e

−η2 , (ix)
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where C0 and D0 are constants, and

p1 = u1(η2)e
−η1 , q1 = v1(η2)e

η1 . (x)

Substituting these results in (vii) and (viii) we have

X0 = C0e
−η1−η2 +D0e

−t+η1−η2

and

X1 = u1(η2)e
−η1 + v1(η2)e

−t+η1 .

Therefore

X = C0e
−η1−η2 +D0e

−t+η1−η2 + ε{u1(η2)e−η1 + v1(η2)e
−t+η1 },

or

x(t , ε) = C0e
−εt−ε2t +D0e

−t+εt−ε2t + ε{u1(ε2t)e−εt + v1(ε
2t)e−t+εt }, (xi)

this being valid to an error O(ε2) when t = O(ε−1).
Direct application of the initial conditions x(0, ε) = x0, ẋ(0, ε) = 0 (noting that du/dt and dv/dt are O(ε2))

gives the equations

x0 = C0 +D0 + ε(u1(0)+ v1(0)),

0 = −D0 + ε(−C0 +D0 + u1(0)− v1(0)),

from which we obtain, by matching coefficients,

C0 = x0, D0 = 0, u(0) = x0, υ(0) = −x0. (xii)

Since also u1(ε
2t) = u1(0)+O(ε2t) = u1(0)+O(ε) for t = O(ε−1), and similarly for v1(ε2t), we obtain from

(xi) the solution

x(t , ε) = x0{e−εt−ε
2t + ε(e−εt − e−t+εt )} +O(ε2) (xiii)

as ε→ 0 and t = O(ε−1). This agrees with the form (ii) derived from the exact solution. �

6.6 Matching approximations on an interval

In this section we shall mainly be concerned with boundary-value problems, and we conform
with the literature by using y as the dependent and x as the independent variable. For fuller
information on the methods of this section the reader is referred to Nayfeh (1973), O’Malley
(1974) and Hinch (1991).
As in Section 6.1, we shall illustrate the problem by looking at the approximation to a

particular function y:

y(ε, x) = e−
1
2 x − e

1
2 xe−2x/ε, 0 ≤ x ≤ 1, 0 < ε  1. (6.75)

(The particular form chosen appears in the solution to a differential equation later on.) We
shall look at the structure of this function as ε→0.
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Figure 6.5 Inner approximation yI and the outer approximation yO to the function y(ε, x) in (6.75).

Note that, for x > 0,

lim
ε→0+

(e−2x/ε/εn) = 0

for every positive n: the function tends to zero very rapidly as ε → 0+. Therefore, for every
fixed x > 0

y(ε, x) ≈ e−
1
2 x = yO, say, (6.76)

with error O(εn) for every n > 0. But by looking back at (6.75) it can be seen that as x takes
smaller and smaller values, smaller and smaller values of ε are required before (6.76) becomes
an acceptable approximation. It fails altogether at x = 0, where (6.75) gives zero and (6.76)
gives 1. Therefore (6.76) is not a uniform approximation on 0 ≤ x ≤ 1, and another form
is needed near x = 0. Figure 6.5 shows the nature of the approximation for some particular
values of ε; as ε decreases the interval of good fit becomes extended, but it is always poor near
x = 0. The approximation begins to fail when x becomes comparable with ε in magnitude.
The region of failure is called a boundary layer (from a hydrodynamical analogy), having in
this case thickness of order ε. The function yO defined in (6.76) is called the outer approxi-
mation to y.
To get an approximation near x = 0 it is no use trying to work with x fixed: this is covered

by (6.76). We therefore consider x tending to zero with ε by putting, say,

x(ε) = ξε, (6.77)

where ξ may take any value. ξ is called a stretched variable: from one point of view we are
magnifying the boundary layer to thickness O(1). Then

y(ε, x) = e−
1
2 ξε − e

1
2 ξεe−2ξ ≈ 1− e−2ξ , (6.78)

where e± 1
2 ξε = 1+O(ε). The error is O(ε) for every fixed ξ , though naturally it works better

when ξ is not too large. We can express this idea alternatively by saying

y(ε, x) ≈ 1− e−2x/ε = yI, say, (6.79)
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Figure 6.6 Regions of validity for the approximations (6.76) (outer approximation) and (6.79) (inner approximation)
with error E: (a) E = 0.05; (b) E = 0.01.

with error O(ε) so long as x = O(ε) (which includes the case x = o(ε) too). This is rather like
the situation described for t > 0 at the beginning of Section 6.1. The approximation (6.79) is
shown in Fig. 6.5. The function yI defined in (6.79) is called the inner approximation to y.
If our information about y considered only of the approximations (6.76) and (6.79), together

with the associated error estimates, it would be pure guesswork, given a value of x and a value
of ε, to decide which to use, since an error of low order in ε is not necessarily small for any
given small value of ε . We can see what the regions of validity look like in a general way by
experimenting and displaying the results in the plane of ε, x. The regions in which (6.76) and
(6.79) give errors of less than 0.05 and 0.01 are shown in Fig. 6.6.
The error boundary of the outer region is given by

|y(x, ε)− yO| = e
1
2 xe−2x/ε = E,

where E > 0 is a specified error. Thus the boundary CO is given by

x = 2ε lnE
ε − 4

.

The error boundary of the inner region is given by

|y(x, ε)− yI| = |e− 1
2 x − 1+ e−2x/ε(1− e

1
2 x)| = E.

This equation can be solved for ε (but not explicitly for x) to give the inner error boundary CI:

ε = −2x/ ln
(
1− E − e− 1

2 x

1− e
1
2 x

)
.

The two boundaries are shown in Fig. 6.6 for the errors E = 0.05 and E = 0.01.
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The figures show that there is a region on the ε, x plane where (6.76) and (6.79) both give a
small error. We therefore expect that there may be cases ‘between’ the cases x = constant and
x = O(ε), in which both approximations have a small remainder. For example, if

x = η
√
ε, η constant, (6.80)

y(ε, x) becomes

e−
1
2η
√
ε − e−

1
2η
√
εe−2η/

√
ε = 1+O(

√
ε); (6.81)

also (6.76) becomes

yO = e−
1
2η
√
ε = 1+O(

√
ε) (6.82)

and (6.79) becomes

yI = 1− e−2η/
√
ε = 1+O(

√
ε) (6.83)

(in fact, 1+O(
√
ε)). Thus the original function and both approximations have an error tending

to zero with ε when x = η
√
ε, η fixed. We say that the functions ‘match’ toO(1) in the ‘overlap

region’.
Figure 6.7 indicates the progress of a point (ε, η

√
ε) = (ε, x) as it moves into regions where

the two approximations (6.76) and (6.79) have in common an error diminishing to zero with
ε. It is desirable to show that there are no ‘gaps’ in the postulated ‘common region’. Instead of
(6.80), therefore, consider the more general case

x(ε) = ζψ(ε),

x =

√	

Figure 6.7 As ε → 0, the point (ε, η
√
ε) (η constant) always lies ultimately in the ‘overlap region’ for the

approximations (6.76) and (6.79). Here the path is shown for η ≈ 0.4 and errors E = 0.05, 0.03, 0.01.
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where ζ is any constant and ψ tends to zero, but more slowly than ε, so that

lim
ε→0

ε/ψ(ε) = 0.

Then y, from (6.75), becomes

y(ε, x) = e−
1
2 ζψ(ε) − e

1
2 ζψ(ε)e−2ζψ(ε)/ε = 1+ o(1).

The outer approximation (6.76) gives

e−
1
2 x = e−

1
2 ζψ(ε) = 1+ o(1),

and the inner approximation (6.79) gives

1− e−2x/ε = 1− e−2ζψ(ε)/ε = 1+ o(1).

These are in agreement to o(1).
The following example shows how the assumption of a ‘common region’ is used in connection

with differential equations to establish an unknown constant. In this case we have put

ψ(ε) = ε1−δ, 0 < δ < 1,

to give a certain generality.

Example 6.6 A function y has the two approximations on 0 ≤ x ≤ 1: an inner approximation

y(ε, x) ≈ A+ (1− A)e−x/ε = yI, say, (6.84)

with error O(ε) when x = O(ε), and an outer approximation

y(ε, x) ≈ e1−x = yO, say, (6.85)

with error O(ε) for x constant. Find the value of A.

Assuming that both approximations are valid simultaneously (though possibly with a larger error) for

x = ηε1−δ , 0 < δ < 1, η constant, 0 ≤ x ≤ 1,

we must have at least

lim
ε→0

(η constant)

[A+ (1− A)e−η/εδ ] = lim
ε→0

(η constant)

e1−ηε1−δ .

Therefore A = e1 = e. �
Example 6.7 From (6.84) and (6.85) make up a single approximate expression applying uniformly on
0 ≤ x ≤ 1.

Write, (with A = e),

yI + yO = e+ (1− e)e−x/ε + e1−x .

When x is constant and ε→ 0, we obtain

e+ e1−x
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instead of e1−x required by (6.85); and when x = ξε and ε→ 0 (ξ constant), we obtain

2e+ (1+ e)e−ξ

instead of e+ (1− e)e−ξ required by (6.84). Therefore the required uniform expansion is given by

yI + yO − e = (1− e)e−x/ε + e1−x . �

Exercise 6.4
Find the outer and inner approximations to

y = 1− e−x/ε cos x, 0 ≤ x ≤ 1
2π , 0 < ε  1.

Sketch a graph showing the approximations and y.

6.7 A matching technique for differential equations

In the following problems the solution has different approximations in different (x, ε) regions
as described in Section 6.5. Characteristic of these is the presence of ε as the coefficient of
the highest derivative appearing in the equation. The term in the highest derivative is, then,
negligible except where the derivative itself is correspondingly large. Thus, over most of the
range the equation is effectively of lower order, and can satisfy fewer boundary conditions.
However, in certain intervals (boundary layers) the derivative may be large enough for the
higher order term to be significant. In such intervals, y will change very rapidly, and may be
chosen to satisfy another boundary condition.

Example 6.8 (An initial-value problem) Find a first-order approximation to the solution of

ε
dy
dx
+ y = x, x > 0, 0 < ε  1, (6.86)

subject to

y(ε, 0) = 1. (6.87)

The obvious first step is to put ε = 0 into (6.86): this gives the ‘outer approximation’

y ≈ yO = x. (6.88)

The error is O(ε), as can be seen by viewing it as the first step in a perturbation process. It is not clear where
this holds, but assume we have numerical or other indications that it is right except near x = 0, where there is
a boundary layer. We do not know how thick this is, so we allow some freedom in choosing a new, stretched
variable, ξ , by writing

x = ξφ(ε), (6.89)

where

lim
ε→0

φ(ε) = 0.
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Equation (6.86) becomes

ε

φ(ε)

dy
dξ
+ y = ξφ(ε). (6.90)

The choice of φ(ε) which retains dy/dξ as a leading term in order of magnitude, and which gives an equation
which can describe a boundary layer is

φ(ε) = ε; (6.91)

and (6.90) becomes

dy
dξ
+ y = εξ . (6.92)

The first approximation (ε = 0) to the solution fitting the initial condition (6.87) (the inner approximation), is
given by

y ≈ yI = e−ξ (6.93)

with error O(ε) for ξ constant. This may be interpreted as

yI = e−x/ε, x = O(ε). (6.94)

There is no scope for ‘matching’ yO and yI here: either they are approximations to the same solution or they
are not; there are no arbitrary constants left to be settled. We note, however, that in an ‘intermediate region’
such as

x = η
√
ε

for η constant, both approximations do agree to order
√
ε.

To construct a uniform approximation, start with the form yI + yO as in Example 6.7

yI + yO = e−x/ε + x. (6.95)

This agrees to order ε with eqns (6.88) and (6.93) for x = constant and x = ξε respectively, so that eqn (6.95)
is already a uniform approximation. The reader should compare the exact solution

y(ε, x) = x − ε + e−x/ε + εe−x/ε. �
Example 6.9 (A boundary-value problem) Find a first approximation to the equation

ε
d2y

dx2
+ 2

dy
dx
+ y = 0, 0 < x < 1 (6.96)

subject to

y(0) = 0, y(1) = 1. (6.97)

Putting ε = 0 in (6.96) (or finding the first term in an ordinary perturbation process), gives the differential
equation for the outer approximation yO(ε, x):

2
dyO
dx
+ yO = 0. (6.98)

Since this is first order, only one boundary condition can be satisfied. We shall assume (if necessary by showing
that the contrary assumption leads to failure of the method) that (6.98) holds approximately at x = 1. We
require yO(ε, 1) = 1, so

y ≈ y0(x, ε) = e
1
2 e− 1

2 x (6.99)
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with error O(ε). The non-uniformity is not self-evident, but certainly the boundary condition at x = 0 is not
satisfied. Assuming that the condition is attained by a sudden change in the nature of the solution near x = 0,
introduce a new, stretched, variable ξ , where

x = ξφ(ε), (6.100)

ξ fixed, where

lim
ε→0

φ(ε) = 0. (6.101)

Equation (6.96) becomes

ε

φ2(ε)

d2y

dξ2
+ 2

φ(ε)

dy
dξ
+ y = 0. (6.102)

The choice φ(ε) = ε, which makes the first two terms in (6.101) have the same order in ε, yields the equation

d2y

dξ2
+ 2

dy
dξ
+ εy = 0. (6.103)

This simplifies to the equation for the inner approximation yI:

d2yI
dξ2

+ 2
dyI
dξ
= 0 (6.104)

with error order ε. The boundary condition is

yI(ξ , 0) = 0. (6.105)

Therefore

y ≈ yI(ε, x) = A(1− e−2ξ ). (6.106)

When ξ is constant the error is O(ε).
The value of A must be determined by the condition that (6.99) and (6.106) should both approximate

to the same function (the solution): if there is an ‘overlapping region’ of approximation to some order, the
approximations themselves must agree to this order, and there is only one choice of A making this agreement
possible.

Allow the behaviour of x to be given by

x = ηψ(ε), (6.107)

where η is any constant, and

lim
ε→0

ψ(ε) = 0 (6.108)

but where ψ does not tend to zero so fast as φ, so that

lim
ε→0

φ(ε)/ψ(ε) = lim
ε→0

ε/ψ(ε) = 0. (6.109)

Choose ψ(ε) = √ε, which satisfies these conditions. Then

yO(ε, x) = e
1
2 e− 1

2 ηψ(ε) = e
1
2 +O(ψ) (6.110)

by (6.108), and

yI(ε, x) = A(1− e−2ηψ/ε) = A+ o(1) (6.111)
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by (6.109). Agreement is only possible if A = e
1
2 , so finally

y ≈ yO(ε, x) = e
1
2 e− 1

2 x for x = O(1) (6.112)

and

y ≈ yI(ε, x) = e
1
2 (1− e−2x/ε) for x = O(ε). (6.113)

To find an approximation uniform on 0 ≤ x ≤ 1, form

yO + yI − e
1
2 e− 1

2 x + e
1
2 (1− e−2x/ε).

Then for x = O(1) this becomes e
1
2 e− 1

2 x + e
1
2 as ε → 0; that is it has the unwanted term e

1
2 in it. Similarly,

when x = ξε it becomes e
1
2 + e

1
2 (1 − e−2ξ ) as ε → 0, which again contains an unwanted e

1
2 . Therefore the

function yC given by

yC ≈ yO + yI − e
1
2 = e

1
2 (e− 1

2 x − e−2x/ε) (6.114)

is a uniform approximation on 0 ≤ x ≤ 1, known as the composite solution.
The reader should compare the exact solution

y(ε, x) = (eλ1x − eλ2x)/(eλ1 − eλ2), (6.115)

where λ1, λ2 are the roots of ελ2 + 2λ+ 1 = 0: their expansions are

λ1 = −1
2 − 1

8ε − · · · ,
λ2 = −2

ε + 1
2 + 1

8ε + · · ·
to order ε. Figure 6.8 shows the exact solution and the approximations for ε = 0.1. �

Figure 6.8 Exact solution of (6.96) and its inner, outer and composite approximations are shown for ε = 0.1. The
exact solution and the composite approximation are almost indistinguishable.

The expansion and matching process may be extended to take in terms beyond the first-order
terms we have considered here. Details are given by Nayfeh (1973).
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Example 6.10 Find the equilibrium points of

εẍ + kẋ − x + x2 = 0, ẋ = y, k > 2
√
ε, (6.116)

and classify their linear approximations. Consider the initial-value problem with x(0) = 0, ẋ(0) = α/ε where
0 < α ≤ 1

2 . Find matched inner and outer expansions for 0 < ε  1.

There are two equilibrium points, at (0, 0) and (1, 0). The former is a saddle point, and the latter a stable node.
To obtain the outer solution use the regular expansion

x = xO = f0(t)+ εf1(t)+ · · ·,
so that to the lowest order in eqn (6.116), f0 satisfies

kḟ0 − f0 + f 2
0 = 0.

Hence ∫
k df0

f0(1− f0)
=
∫

dt = t + C,

or

ln
∣∣∣∣ f0
1− f0

∣∣∣∣ = 1
k
(t + C),

where C is a constant. Then,

x = xO ≈ f0(t) = 1

1+ e−(t+C)/k

where xO is the leading order term of the outer solution. Note that xO → 1 as t →∞.
For the inner solution let t = ετ so that

x′′ + kx′ − ε(x − x2) = 0 (′= d/dτ). (6.117)

Now use the expansion

x = xI = g0(τ )+ εg1(τ )+ · · ·
so that, after substitution in (6.117), g0 satisfies

g′′0 + kg′0 = 0.

Hence

g0(τ ) = A+ Be−kτ .

The initial conditions imply g0(0) = 0, g′0(0) = α. Therefore

B = −A, −Bk = α,

which leads to the inner solution xI:

xI = g0(τ ) ≈ α

k
(1− e−kτ ).
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The constant C in xO above is to be determined by matching xO and xI. Introduce the time-scaling t = ηεβ

with 0 < β < 1. Thus τ = ηεβ−1. In terms of η,

xO = 1

1+ e−(t+C)/k
= 1

1+ e−C/ke−εβη/k

= 1

1+ e−C/k
+O(εβ)

for fixed η. Also

xI = α

k
(1− e−kεβ−1η) = α

k
+ o(1).

as ε→ 0. To lowest order these are equal if

1

1+ e−C/k
= α

k
or e−C/k = k − α

α
.

Hence, the matched inner and outer expansions to leading orders are

xO = α

α + (k − α)e−t/k ,

xI = α

k
(1− e−kt/ε).

A composite approximation can be obtained from

xC = xI + xO − lim
ε→0

g0(t/ε) (or lim
ε→0

f0(ετ ))

= α

k
(1− ekt/ε)+ α

α + (k − α)e−t/k − lim
ε→0

α

k
(1− e−t/ε)

= α

k
(1− ekt/ε)+ α

α + (k − α)e−t/k −
α

k
.

Simplifying this expression, we obtain a composite solution valid over t ≥ 0:

xC = α

k

[
1− e−kt/ε + (k − α)(1− e−t/k)

k + α(1− e−t/k)

]
.

Figure 6.9 shows the exact computed solution and the expansions xI, xO and xC for ε = 0.1, α = 0.5 and
k = 0.8. �
The previous examples contain versions of van Dyke’s matching rule which is a useful work-

ing method for determining constants, with the advantage of avoiding intermediate variables.
We give a two-term version of the method. Suppose that the outer solution to a problem is

yO = f0(x)+ εf1(x),

and that the inner approximation is

yI = g0(η)+ εg1(η), η = x/ε.

The rule goes as follows. Put the inner variable η into yO, and expand in powers of ε to two
terms, and then change η back to x:

yO = f0(εη)+ εf1(εη) ≈ f0(0)+ xf ′0(0)+ εf1(0). (6.118)
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Figure 6.9 Numerical solution of (6.116), and the inner, outer and composite approximations for ε = 0.1, α = 0.5,
and k = 0.8.

In the inner expansion substitute the outer variable x and expand in powers of ε:

yI = g0(x/ε)+ εg1(x/ε) ≈ p0(x)+ εp1(x). (6.119)

Now compare the expansions (6.118) and (6.119). If they can be made consistent in terms of
x by appropriate choices for any constants then matching is possible, and the inner and outer
expansions can be found. It may be that the expansions are not consistent, in which case an
alternative form for η might be considered. Further details of Van Dyke’s matching rule can be
found in the book by Hinch (1991).

Exercise 6.5
Find and classify the equilibrium points of

εẍ + kẋ − sin x = 0, x(0) = 0, ẋ(0) = α/ε

assuming 0<ε1. Find the leading order outer and inner approximations.

Problems

6.1 Work through the details of Example 6.1 to obtain an approximate solution of ẍ + x = εx3, with
x(ε, 0) = 1, ẋ(ε, 0) = 0, with error O(ε3) uniformly on t ≥ 0.

6.2 How does the period obtained by the method of Problem 6.1 compare with that derived in Problem 1.34?

6.3 Apply the method of Problem 6.1 to the equation

ẍ + x = εx3 + ε2αx5

with x(ε, 0) = 1, ẋ(ε, 0) = 0. Obtain the period to order ε3, and confirm that the period is correct for
the pendulum when the right-hand side is the first two terms in the expansion of x− sin x. (Compare
the result of Problem 1.33. To obtain the required equations simply add the appropriate term to the
right-hand side of the equation for x2 in Example 6.1.)

6.4 Use a substitution to show that the case considered in Problem6.1 covers all boundary conditions x(ε, 0) =
a, ẋ(ε, 0) = 0.
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6.5 The equation for the relativistic perturbation of a planetary orbit is

d2u

dθ2
+ u = k(1+ εu2)

(see Problem 5.21). Apply the coordinate perturbation technique to eliminate the secular term in u1(θ)
in the expansion u(ε, θ) = u0(θ)+ εu1(θ)+· · · , with θ = φ+ εT1(φ)+· · · . Assume the initial conditions
u(0) = k(1+e), du(0)/dθ = 0. Confirm that the perihelion of the orbit advances by approximately 2πεk2

in each planetary year.

6.6 Apply the multiple-scale method to van der Pol’s equation ẍ+ ε(x2−1)ẋ+x = 0. Show that, if x(0) = a,
and ẋ(0) = 0, then for t = O(ε−1),

x = 2{1+ ((4/a2)− 1)e−εt }−1/2 cos t .
6.7 Apply themultiple-scalemethod to the equation ẍ+x−εx3 = 0, with initial conditions x(0) = a, ẋ(0) = 0.

Show that, for t = O(ε−1),

x(t) = a cos{t(1− 3
8εa

2)}.
6.8 Obtain the exact solution of Example 6.9, and show that it has the first approximation equal to that

obtained by the matching method.

6.9 Consider the problem εy′′ + y′ + y = 0, y(ε, 0) = 0, y(ε, 1) = 1, on 0 ≤ x ≤ 1, where ε is small and
positive.
(a) Obtain the outer approximation

y(ε, x) ≈ yO = e1−x , x fixed, ε→ 0+;
and the inner approximation

y(ε, x) ≈ yI − C(1− e−x/ε), x = O(ε), ε→ 0+,
where C is a constant.

(b) Obtain the value of C by matching yO and yI in the intermediate region.

(c) Construct from yO and yI a first approximation to the solution which is uniform on 0 ≤ x ≤ 1.

6.10 Repeat the procedure of Problem 6.9 for the problem

εy′′ + y′ + xy = 0, y(0) = 0, y(1) = 1

on 0 ≤ x ≤ 1.

6.11 Find the outer and inner approximations of

εy′′ + y′ + y sin x = 0, y(0) = 0, y(12 τ) = 1.

6.12 By using the method of multiple scales, with variables x and ξ = x/ε, obtain a first approximation
uniformly valid on 0≤ x ≤1 to the solution of

εy′′ + y′ + xy = 0, y(ε, 0) = 0, y(ε, 1) = 1,

on 0 ≤ x ≤ 1, with ε > 0. Show that the result agrees to order ε with that of Problem 6.10.

6.13 The steady flow of a conducting liquid between insulated parallel plates at x = ±1 under the influence
of a transverse magnetic field satisfies

w′′ +Mh′ = −1, h′′ +Mw′ = 0, w(±1) = h(±1) = 0,

where, in dimensionless form, w is the fluid velocity, h the induced magnetic field, andM is the Hartmann
number. By putting p = w+h and q = w−h, find the exact solution. Plot w and h against x forM = 10.
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This diagram indicates boundary layer adjacent to x = ±1. From the exact solutions find the outer and
inner approximations.

6.14 Obtain an approximation, to order ε and for t = O(ε−1), to the solutions of ẍ+2εẋ+ x=0, by using
the method of multiple scales with the variables t and η = εt .

6.15 Use the method of multiple scales to obtain a uniform approximation to the solutions of the equation
ẍ + ω2x + εx3 = 0, in the form

x(ε, t) ≈ a0 cos[{ω0 + (3εa20/8ω0)}t + α],

where α is a constant. Explain why the approximation is uniform, and not merely valid for t = O(ε−1).
6.16 Use the coordinate perturbation technique to obtain the first approximation

x = τ−1, t = τ + 1
2ετ(1− τ−2)

to the solution of

(t + εx)ẋ + x = 0, x(ε, 1) = 1, 0 ≤ x ≤ 1.

Confirm that the approximation is, in fact, the exact solution, and that an alternative approximation

x = τ−1 + 1
2ετ
−1, t = τ − 1

2ετ
−1

is correct to order ε, for fixed τ . Construct a graph showing the exact solution and the approximation
for ε = 0.2.

6.17 Apply the method of multiple scales, with variables t and η = εt , to van der Pol’s equation ẍ + ε(x2 −
1)ẋ + x = 0. Show that, for t = O(ε−1),

x(ε, t) = 2a
1
2
0 e

1
2 εt

√
(1+ a0eεt )

cos(t + α0)+O(ε),

where a0 and α0 are constants.

6.18 Use the method of matched approximations to obtain a uniform approximation to the solution of

ε

(
y′′ + 2

x
y′
)
− y = 0, y(ε, 0) = 0, y′(ε, 1) = 1,

(ε > 0) on 0 ≤ x ≤ 1. Show that there is a boundary layer of thickness O(ε1/2) near x = 1, by putting
1− x = ξφ(ε).

6.19 Use the method of matched approximations to obtain a uniform approximation to the solution of the
problem

ε(y′′ + y′)− y = 0, y(ε, 0) = 1, y(ε, 1) = 1,

(ε > 0) given that there are boundary layers at x = 0 and x = 1. Show that both boundary layers have
thickness O(ε1/2). Compare with the exact solution.

6.20 Obtain a first approximation, uniformly valid on 0 ≤ x ≤ 1, to the solution of

εy′′ + 1
1+ x

y′ + εy = 0, with y(ε, 0) = 0, y(ε, 1) = 1.

6.21 Apply the Lighthill technique to obtain a uniform approximation to the solution of

(t + εx)ẋ + x = 0, x(ε, 1) = 1, 0 ≤ x ≤ 1.

(Compare Problem 6.16.)
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6.22 Obtain a first approximation, uniform on 0 ≤ x ≤ 1, to the solution of

εy′ + y = x, y(ε, 0) = 1,

using inner and outer approximations. Compare the exact solution and explain geometrically why the
outer approximation is independent of the boundary condition.

6.23 Use the method of multiple scales with variables t and η = εt to show that, to a first approximation, the
response of the van der Pol equation to a ‘soft’ forcing term described by

ẍ + ε(x2 − 1)ẋ + x = εγ cos ωt

is the same as the unforced response assuming that |ω| is not near 1.
6.24 Repeat Problem 6.23 for ẍ+ ε(x2−1)ẋ+ x=� cosωt , ε >0, where �=O(1) and |ω| is not near 1. Show

that

x(ε, t) = �

1− ω2
cosωt +O(ε), �2 ≥ 2(1− ω2)2;

and that for �2 < 2(1− ω2)2

x(ε, t) = 2

{
1− �2

2(1− ω2)2

}1/2
cos t + �

1− ω2
cosωt +O(ε).

6.25 Apply the matching technique to the damped pendulum equation

εẍ + ẋ + sin x = 0, x(ε, 0) = 1, ẋ(ε, 0) = 0.

for ε small and positive. Show that the inner and outer approximations given by

xI = 1, xO = 2 tan−1{e−t tan 1
2 }.

(The pendulum has strong damping and strong restoring action, but the damping dominates.)

6.26 The equation for a tidal bore on a shallow stream is

ε
d2η

dξ2
− dη

dξ
− η + η2 = 0;

where (in appropriate dimensions) η is the height of the free surface, and ξ = x − ct , where c is the wave
speed. For 0 < ε  1, find the equilibrium points for the equation and classify them according to their
linear approximations. Apply the coordinate perturbation method to the equation for the phase paths,

ε
dw
dη
= w + η − η2

w
, where w = dη

dξ

and show that

w = −ζ + ζ2 +O(ε2), η = ζ − ε(−ζ + ζ2)+O(ε2).

Confirm that, to this degree of approximation, a separatrix from the origin reaches the other equilibrium
point. Interpret the result in terms of the shape of the bore.

6.27 The function x(ε, t) satisfies the differential equation εẍ+ xẋ− x=0 (t ≥0) subject to the initial condi-
tions x(0)=0, ẋ(0)= 1/ε. To leading order, obtain inner and outer approximations to the solution for
small ε. Show that the composite solution is

xC = t +√2 tanh(t/(ε√2)).
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6.28 Consider the initial-value problem

εẍ + ẋ = e−t , x(0) = 0, ẋ(0) = 1/ε (0 < ε  1).

Find inner and outer expansions for x, and confirm that the outer expansion to two terms is

xO = 2− e−t − εe−t .

Compare computed graphs of the composite expansion and the exact solution of the differential equation
for ε = 0.1 and for ε = 0.25.

6.29 Investigate the solution of the initial/boundary-value problem

ε3
...
x + εẍ + ẋ + x = 0, 0 < ε  1,

with x(1)=1, x(0)=0, ẋ(0)=1/ε2 using matched approximations. Start by finding, with a regular
expansion, the outer solution xO and an inner solution xI using t = ετ . Confirm that xI cannot satisfy the
conditions at t =0. The boundary-layer thickness O(ε) at t =0 is insufficient for this problem. Hence we
create an additional boundary layer of thickness O(ε2), and a further time scale η where t = ε2η. Show
that the leading order equation for the inner–inner approximation xII is

x′′′II + x′′II = 0.

and confirm that the solution can satisfy the conditions at t =0. Finally match the expansions xII and xI,
and the expansions xI and xO. Show that the approximations are

xO = e1−t , xI = e+ (1− e)e−t/ε, xII = 1− e−t/ε2 ,

to leading order.
Explain why the composite solution is

xC = e1−t + (1− e)e−t/ε − e−t/ε2 .

Comparison between the numerical solution of the differential equation and the composite solution is
shown in Fig. 6.10. The composite approximation could be improved by taking all approximations to
include O(ε) terms.

Figure 6.10 Computed solution and the leading composite approximation for ε = 0.2 showing an inner–inner
boundary layer for Problem 6.29.
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6.30 Let y(x, ε) satisfy

εy′′ + y′ = x,

where y(0, ε)= 0, y(1, ε)=1. Find the outer and inner expansions to order ε using the inner variable
η= x/ε. Apply the van Dyke matching rule to show that the inner expansion is

yI ≈ (12 + ε)(1− ex/ε).

6.31 In Example 6.9, a composite solution of

ε
d2y

dx2
+ 2

dy
dx
+ y = 0, y(0) = 0, y(1) = 1,

valid over the interval 0 ≤ x ≤ 1, was found to be (eqn (6.114))

yC = e
1
2 (e− 1

2 x − e−2x/ε)

using matched inner and outer approximations. What linear constant coefficient second-order differential
equation and boundary conditions does yC satisfy exactly?



7
Forced oscillations:
harmonic and subharmonic
response, stability, and
entrainment

We consider second-order differential equations of the general form ẍ + f (x, ẋ) = F cosωt ,
which have a periodic forcing term. When the equation is linear the structure of its solutions
is very simple. There are two parts combined additively. One part, the ‘free oscillation’ is
a linear combination of the solutions of the homogeneous equation and involves the initial
conditions. The second part, the ‘forced solution’, is proportional to F and is independent
of initial conditions. When damping is present the free oscillation dies away in time. This
independence of the free and the forced components, and the ultimate independence of initial
conditions when there is damping, allow a very restricted range of phenomena: typically the
only things to look at are the amplitude and phase of the ultimate response, the rate of decay
of the free oscillation, and the possibility of resonance. When the equation is nonlinear, on the
other hand, there is no such simple separation possible, and the resulting interaction between
the free and forced terms, especially when a self-excited motion is possible, and the enduring
importance of the initial conditions in some cases, generates a range of entirely new phenomena.
The present chapter is concerned with using the method of harmonic balance (Chapter 4) and
the perturbation method (Chapter 5) to obtain approximate solutions which clearly show these
new features.

7.1 General forced periodic solutions

Consider, for definiteness, Duffing’s equation

ẍ + kẋ + αx + βx3 = � cosωt , (7.1)

of which various special cases have appeared in earlier chapters. Suppose that x(t) is a periodic
solution with period 2π/λ. Then x(t) can be represented by a Fourier series for all t :

x(t) = a0 + a1 cos λt + b1 sin λt + a2 cos 2λt + · · · . (7.2)

If this series is substituted into (7.1) the nonlinear term x3 is periodic, and so generates another
Fourier series. When the contributions are assembled eqn (7.1) takes the form

A0 + A1 cos λt + B1 sin λt + A2 cos 2λt + · · · = � cosωt (7.3)

for all t , the coefficients being functions of a0, a1, b1, a2, . . . . Matching the two sides gives, in
principle, an infinite set of equations for a0, a1, a2, . . . and enables λ to be determined. For
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example, the obvious matching

λ = ω and A1 = �, A0 = B1 = A2 = · · · = 0

resembles the harmonic balance method of Section 4.4; though in the harmonic balance method
a drastically truncated series (7.2), consisting of only the single term a1 cos λt , is employed. The
above matching leads to a harmonic (or autoperiodic) response of angular frequency ω.

A less obvious matching can sometimes be achieved when

λ = ω/n (n an integer);

An = �;

Ai = 0 (i 	= n); Bi = 0 (all i).

If solutions of this set exist, the system will deliver responses of period 2πn/ω and angular
frequency ω/n. These are called subharmonics of order 1

2 ,
1
3 , . . . . Not all of these actually occur

(see Section 7.7 and Problems 7.16 and 7.17).
It is important to realize where the terms in (7.3) come from: there is throwback from terms

of high order in (7.2) to contribute to terms of low order in (7.3). For example, in the exp-
ansion of x3:

x3(t) = (a0 + · · · + a11 cos 11ωt + · · · + a21 cos 21ωt + · · · )3,
one of the terms is

3a211a21 cos
2 11ωt cos 21ωt = 3a211a21(

1
2 cos 21ωt + 1

4 cos 43ωt + 1
4 cosωt),

which includes a term in cosωt . Normally we assume that terms in (7.2) above a certain small
order are negligible, that is, that the coefficients are small. Hopefully, then, the combined
throwback effect, as measured by the modification of coefficients by high-order terms, will
be small.
An alternative way of looking at the effect of a nonlinear term is as a feedback. Consider the

undamped form of (7.1) (with k = 0) written as

L(x) ≡
(
d2

dt2
+ α

)
x = −βx3 + � cosωt .

We can represent this equation by the block diagram shown in Fig. 7.1. Regard � cosωt as
the input to the system and x(t) as the output. The box A represents the inverse operator L−1
which solves the linear equation ẍ + αx = f (t) for a given input f and for assigned initial
conditions. Here, the input to A is equal to the current value of −βx3 + � cosωt . Its output
is x(t). Suppose the output from A is assumed to be simple, containing only a few harmonic
components. Then B generates a shower of harmonics of higher and possibly of lower orders
which are fed back into A. The higher harmonics are the most attenuated on passing through
A (roughly like n−2 where n is the order). It is therefore to be expected that a satisfactory
consistency between the inputs might be obtained by a representation of x(t) in terms only of
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�

))

L

Figure 7.1 Feedback diagram for ẍ + αx + βx3 = � cosωt .

the lowest harmonics present. The low-order approximation should be most adequate when
the lowest harmonic present is amplified by L−1; that is, when ω2 ≈ n2α, being a condition of
near resonance.

7.2 Harmonic solutions, transients, and stability for Duffing’s equation

As a direct illustration of the method described in Section 7.1, consider the undamped Duffing
equation (7.1) in the form

ẍ + x + βx3 = � cosωt , (7.4)

where � > 0. As an approximation to the solution we use the truncated Fourier series

x(t) = a cosωt + b sinωt . (7.5)

This form allows for a possible phase difference between the forcing term and the solution.
The omission of the constant term involves foreknowledge that the only relevant solutions of
reasonably small amplitude will have zero mean value (see Section 4.3). Then

ẍ(t) = −aω2 cosωt − bω2 sinωt (7.6)

and

x3(t) = a3 cos3 ωt + 3a2b cos2 ωt sinωt + 3ab2 cosωt sin2 ωt + b3 sin3 ωt

= 3
4a(a

2 + b2) cosωt + 3
4b(a

2 + b2) sinωt

+ 1
4a(a

2 − 3b2) cos 3ωt + 1
4b(3a

2 − b2) sin 3ωt . (7.7)

(See Appendix E for trigonometric identities.) We disregard the terms in cos 3ωt , sin 3ωt on the
grounds that, regarded as feedback input to the differential equation, the attenuation will be
large compared with that of terms having the fundamental frequency. When (7.5), (7.6), (7.7)



226 7 : Forced oscillations: harmonic and subharmonic response, stability, and entrainment

are substituted into (7.4) and the coefficients of cosωt , sinωt are matched we obtain

b
{
(w2 − 1)− 3

4β(a
2 + b2)

}
= 0, (7.8)

a
{
(w2 − 1)− 3

4β(a
2 + b2)

}
= −�. (7.9)

The only admissible solution of (7.8) and (7.9) requires b = 0, and the corresponding values
of a are the solutions of (7.9):

3
4βa

3 − (ω2 − 1)a − � = 0. (7.10)

The roots are given by the intersections, in the plane of a and z, of the curves

z = −�, z = −3
4βa

3 + (ω2 − 1)a.

From Fig. 7.2 it can be seen that, for β < 0, there are three solutions for � small and one for
� larger when ω2 < 1, and that when ω2 > 1 there is one solution only. This reproduces the
results of Sections 5.4 and 5.5. The oscillations are in phase with the forcing term when the
critical value of a is positive and out of phase by a half cycle when a is negative.
We do not yet know the stability of these various oscillations and it is necessary to decide this

matter since an unstable oscillation will not occur in practice. To investigate stability we shall
lookat the ‘transient’ states, which lead to or away from periodic states, by supposing the
coefficients a and b to be slowly varying functions of time, at any rate near to periodic states.
Assume that

x(t) = a(t) cosωt + b(t) sinωt , (7.11)

where a and b are slowly varying amplitudes (compared with cosωt and sinωt).
Then

ẋ(t) = (ȧ + ωb) cosωt + (−ωa + ḃ) sinωt , (7.12)

�

(a) (b)

z

z z

Figure 7.2 Graph of z = − 3
4βa

3 + (ω2 − 1)a for β < 0 and (a) ω2 < 1; (b) ω2 > 1.
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and (neglecting ä, b̈)

ẍ(t) ≈ (−ω2a + 2ωḃ) cosωt + (−2ωȧ − ω2b) sinωt . (7.13)

Also, as in (7.7),

x3(t) = 3
4a(a

2 + b2) cosωt + 3
4b(a

2 + b2) sinωt

+ harmonics in cos 3ωt , sin 3ωt . (7.14)

As before we shall ignore the terms in cos 3ωt , sin 3ωt .
When (7.12), (7.13), (7.14) are substituted into the differential equation (7.4), and the terms

are rearranged, we have

[2ωḃ − a{(ω2 − 1)− 3
4β(a

2 + b2)}] cosωt
+ [−2ωȧ − b{(ω2 − 1)− 3

4β(a
2 + b2)}] sinωt = � cosωt . (7.15)

Appealing again to the supposition that a and b are slowly varying we may approximately
match the coefficients of cosωt and sinωt , giving the autonomous system

ȧ = − 1
2ω

b{(ω2 − 1)− 3
4β(a

2 + b2)} ≡ A(a, b), say; (7.16)

ḃ = 1
2ω

a{(ω2 − 1)− 3
4β(a

2 + b2)} + �

2ω
≡ B(a, b), say. (7.17)

Initial conditions are given in terms of those for the original equation, (7.4), by (assuming that
ȧ(0) is small)

a(0) = x(0), b(0) = ẋ(0)/ω. (7.18)

The phase plane for a, b in the system above is called the van der Pol plane. The equilibrium
points, given byA(a, b) = B(a, b) = 0, represent the steady periodic solutions already obtained.
The other paths correspond to solutions of (7.4) which are non-periodic in general. The phase
diagram computed for a particular case is shown in Fig. 7.3. The point (a3, 0) is a saddle and
represents an unstable oscillation, and (a1, 0), (a2, 0) are centres.

The equilibrium points may be analysed algebraically as follows. Consider a case when there
are three equilibrium points

ω2 < 1, β < 0 (7.19)

and let a0 represent any one of the values a = a1, a2, or a3 of Fig. 7.2(a). Putting

a = a0 + ξ , (7.20)

the local linear approximation to (7.16), (7.17) is

ξ̇ = A1(a0, 0)ξ + A2(a0, 0)b,

ḃ = B1(a0, 0)ξ + B2(a0, 0)b,
(7.21)
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Figure 7.3 Paths in the van der Pol phase plane for the undamped pendulum (see eqns (7.16), (7.17)) with parameter
values � = 0.005, ω = 0.975, β = −0.167. The equilibrium points are located on b = 0 at a1 = −0.673, a2 = 0.104,
a3 = 0.569.

where A1(a, b) = ∂A(a, b)/∂a, and so on. It is easy to confirm that

A1(a0, 0) = B2(a0, 0) = 0,

A2(a0, 0) = −ω2 − 1
2ω

+ 3βa20
8ω

= − z0

2ωα0
,

(where, in Fig. 7.2(a), z0 is the ordinate at a0), and that

B1(a0, 0) = s0/(2ω),

where s0 is the slope of the curve in Fig. 7.2(a)at a0. Therefore (7.21) can be written

ξ̇ = − z0

2ωa0
b, ḃ = s0

2ω
ξ .

By considering the signs of a0, z0, s0 in Fig. 7.2(a) it can be seen that (a1, 0), (a2, 0) are
centres for the linear system (7.21), and that (a3, 0) is a saddle. The saddle will never be
observed exactly, though if a state can be set up near enough to this point, ȧ and ḃ will
be very small and a nearly periodic motion at the forcing frequency may linger long enough to
be observed.
We may introduce a damping term into (7.4) so that it becomes

ẋ + kẋ + x + βx3 = � cosωt , k > 0. (7.22)
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Figure 7.4 Paths in the van der Pol phase plane for the damped pendulum (7.22) with � = 0.005, ω = 0.975,
k = 0.005, β = −0.167. The equilibrium points are located at (0.479, 0.329), (0.103, 0.010), (−0.506, 0.429). The
light and dark shading indicate the domains of initial points for the two spirals.

The equilibrium points (Problem 7.10) are given by

b{ω2 − 1− 3
4β(a

2 + b2)} + kωa = 0,

a{ω2 − 1− 3
4β(a

2 + b2)} − kωb = −�;

so that, after squaring and adding these equations,

r2
{
k2ω2 +

(
ω2 − 1− 3

4βr
2
)2} = �2, r = √(a2 + b2). (7.23)

and the closed paths of Fig. 7.3 become spirals. The present theory predicts that one of two
stable periodic states is approached from any initial state (we shall later show, however, that
from some initial states we arrive at sub-harmonics). A calculated example is shown in Fig. 7.4.
Typical response curves are shown in Fig. 5.3; the governing equations for the equilibrium
points, and the conclusions about stability, being the same as in Chapter 5.
Referring back to Fig. 7.3, notice that the existence of closed curves, which implies

periodicity of a(t) and b(t), does not in general imply periodicity of x(t), for since
x(t)= a(t) cosωt + b(t) sinωt the motion is periodic only if the period of a(t) and b(t) is
a rational multiple of 2π/ω. Though this may occur infinitely often in a family of closed
paths, the theory is too rough to decide which periodic motions, possibly of very long period,
are actually present. Normally the closed paths represent special cases of ‘almost periodic
motion’.
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(a) (b)

(

( ( ( (

)
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Figure 7.5

( )
�

Figure 7.6 A time solution showing beats.

If P is a representative point on a given closed path with polar representation r(t), φ(t), then
(7.5) can be written as

x(t) = r(t) cos(ωt − φ(t)).

Let 2π/� be the period of a(t), b(t), and hence of r(t), φ(t), on the path. Then since a and b are
slowly varying, �ω. When the path does not encircle the origin (Fig. 7.5(a)) the phase φ is
restored after each complete circuit. The effect is of an oscillation with frequency ω modulated
by a slowly varying periodic amplitude. The phenomenon of ‘beats’ (Fig. 7.6) appears.
If the path encircles the orgin as in Fig. 7.5(b) the phase increases by 2π in every circuit,

which effectively modulates the approximate ‘frequency’ of the oscillation from ω to ω +�.

Exercise 7.1
In the resonant case ω=1, the amplitude equations (7.16) and (7.17) in the (a, b) van der
Pol plane are

ȧ = 3
8βb(a

2 + b2), ḃ = −3
8βa(a

2 + b2)+ 1
2�.

Using polar variables r and θ , show that phase paths in the (a, b) plane are given by the
equation

r(r3 − µ cos θ) = constant,

when µ=16�/(3β). Sketch or compute the phase diagram for µ=−1.
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7.3 The jump phenomenon

Equation (7.22) for the damped Duffing oscillator has periodic solutions which are approx-
imately of the form a cosωt + b sinωt , where the amplitude r = √(a2 + b2) satisfies (see
eqn (7.23))

r2
{
k2ω2 + (ω2 − 1− 3

4βr
2)2
}
= �2 (k > 0, ω > 0, � > 0).

Suppose that β < 0, as in the case of the pendulum, and we put ρ = −βr2, γ = �
√
(−β). The

amplitude equation can then be expressed as

γ 2 = G(ρ) = ρ
{
k2ω2 + (ω2 − 1+ 3

4ρ)
2
}
. (7.24)

We could represent this amplitude equation as a surface in a four-dimensional parameter space
with variables ρ, k,ω, γ , but we shall simplify the representation by assuming that the damping
parameter k is specified (interesting phenomena are generally associated with variations in the
forcing frequency ω and the forcing amplitude � parameters).
The amplitude function G(ρ) is a cubic in ρ, which can be rewritten as

G(ρ) = 9
16ρ

3 + 3
2 (ω

2 − 1)ρ2 + {k2ω2 + (ω2 − 1)2}ρ.

Since G(0) = 0 and G(ρ) → ∞ as ρ → ∞,G(ρ) = γ 2 must have at least one positive root
(we are only interested in ρ ≥ 0). There will be three real roots for some parameter values if
the equation G′(ρ) = 0 has two distinct solutions for ρ ≥ 0. Thus

G′(ρ) = 27
16ρ

2 + 3(ω2 − 1)ρ + k2ω2 + (ω2 − 1)2 = 0 (7.25)

has two real roots

ρ1, ρ2 = 8
9 (1− ω2)± 4

9
√[(1− ω2)2 − 3k2ω2], (7.26)

provided that |1− ω2| > √3kω. From (7.25) and (7.26)

ρ1ρ2 = 16
27 {(1− ω2)2 + k2ω2} > 0,

ρ1 + ρ2 = 16
9 (1− ω2).

We are only interested in ρ1, ρ2 ≥ 0, and two real positive roots are only possible if

0 < ω < 1 and ω2 + kω
√
3− 1 > 0,

which are both satisfied if

0 < ω < 1
2 {
√
(3k2 + 4)− k

√
3}.
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Figure 7.7 Overlap region for the surface G(ρ) = γ 2 with k = 0.1.

Thus G(ρ) = γ 2 has three distinct real roots if

G(ρ2) < γ 2 < G(ρ1) and ω < 1
2 {
√
(3k2 + 4)− k

√
3}.

The boundary of the overlap on the surface G(ρ) = γ 2 is shown in Fig. 7.7 projected on to
the (γ , ω) plane. The region shaded in Fig. 7.7 has a cusp at

ω = 1
2 {
√
(3k2 + 4)− k

√
3}.

Sections through ω = 0.85 and γ = 0.05 are shown in Fig. 7.8(a) and (b). The surface γ =√
G(ρ) drawn in the (γ ,ω, ρ) space (essentially showing response amplitude in terms of forcing

amplitude and frequency) is shown in Fig. 7.9 in the neighbourhood of the cusp. The graphs in
Fig. 7.8(a) and (b) are vertical sections of this surface at ω = 0.85 and at γ = 0.05, respectively.

The theory of Section 7.2 predicts that for values of γ and ω where there exists only a single
response then this response is stable; and that where there are three responses, the oscillations
with greatest and least amplitudes are stable and the remaining intermediate one is unstable
(Fig. 7.8(a) and (b)). In Fig. 7.9, the surface under the fold corresponds to unstable oscillations
which will not be attainable. The surface exhibits what is known as a fold catastrophe which
leads to the so-called jumpphenomenon (see Poston and Stewart (1978) for an extensive account
of catastrophe theory).
To illustrate the consequences of this fold consider what happens in an experiment in which

γ is held constant at a value which intersects the fold as in Fig. 7.8(b), and the applied frequency
is varied in such a way that it crosses the edges of the fold.
Begin the experiment at applied frequency ω = ω1, steadily increase to ω2, the bring it back

again to ω1. Starting at A1, the response moves to A′ at frequency ω′. As ω increases beyong
ω′, the oscillation will, after some irregular motion, settle down to the codition represented by
B ′; that is to say, the amplitude ‘jumps’ at the critical frequency ω′. After this it follows the
smooth curve from B ′ to A2. On the way back the response point moves along the upper curve
as far as A′′. Here it must drop to B ′′ on the lower curve and then back to A1.
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Figure 7.8 (a) Amplitude ρ versus γ for k = 0.1 and ω = 0.85; (b) amplitude ρ versus ω for k = 0.1 and γ = 0.05.
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Figure 7.9 The amplitude surface γ = √[G(ρ)] showing ρ in terms of γ and ω, and the fold.

Exercise 7.2
Find the forcing amplitude γ in terms of k of the Duffing equation at the cusp where the
frequency is ω = 1

2 {
√
(3k2 + 4)− k

√
3}. Compute how the amplitude γ varies with k.
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7.4 Harmonic oscillations, stability, and transients for the forced
van der Pol equation

In this section we look at the effects of harmonic forcing on a nonlinear system which also
has an autonomous self-excited oscillation. The equation considered is the forced van der Pol
oscillator

ẍ + ε(x2 − 1)ẋ + x = � cosωt , (7.27)

where ε >0. In the absence of a forcing term there is single, self-excited oscillation which
is approached from all non-zero initial conditions. We look for responses approximately of
the form

x(t) = a(t) cosωt + b(t) sinωt , (7.28)

where a, b are slowly varying functions. Then, neglecting ä, b̈,

ẋ(t) = (ȧ + ωb) cosωt + (−ωa + ḃ) sinωt , (7.29a)

ẍ(t) = (−ω2a + 2ωḃ) cosωt + (−2ωȧ − ω2b) sinωt . (7.29b)

After some algebra (see Appendix E for trigonometric reduction formulas),

(x2 − 1)ẋ = {(34a2 + 1
4b

2 − 1)ȧ + 1
2abḃ − ωb(1− 1

4a
2 − 1

4b
2)} cosωt

+ {12abȧ + (14a
2 + 3

4b
2 − 1)ḃ + ωa(1− 1

4a
2 − 1

4b
2)} sinωt

+ higher harmonics. (7.30)

Finally substitute (7.28) to (7.30) into (7.27), ignoring the higher harmonics. As in Section 7.2,
the equation is satisfied approximately if the coefficients of cosωt , sinωt are equated to zero.
We obtain

(2ω − 1
2εab)ȧ + ε(1− 1

4a
2 − 3

4b
2)ḃ = εωa(1− 1

4r
2)− (ω2 − 1)b, (7.31a)

−ε(1− 3
4a

2 − 1
4b

2)ȧ + (2ω + 1
2εab)ḃ = (ω2 − 1)a + εωb(1− 1

4r
2)+ �, (7.31b)

where

r = √(a2 + b2).

The equilibrium points occur when ȧ = ḃ = 0, that is, when the right-hand sides are zero.
We can reduce the parameters (ω,�, ε) to two by multiplying through by 1/εω and putting

ν = (ω2 − 1)/εω, γ = �/εω; (7.32)
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(the quantity ν is a measure of the ‘detuning’). The equation for the equilibrium points become

a(1− 1
4r

2)− νb = 0, (7.33a)

νa + b(1− 1
4r

2) = −γ . (7.33b)

By squaring and adding these equations we obtain

r2
{
ν2 +

(
1− 1

4r
2
)2} = γ 2, (7.34)

and when this is solved the values of a, b can be recovered from (7.33a,b). Equation (7.34)
may have either 1 or 3 real roots (since r > 0) depending on the parameter values ν and γ

(or ω, �, ε). This dependence can be conveniently represented on a single figure, the ‘response
diagram’, Fig. 7.10(a).

(a)

(b)

Figure 7.10 (a) response curves and stability region for the forced van der Pol equation; (b) classification of
equilibrium points in the van der Pol plane.
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There are two questions which can be settled by a study of (7.31): that of the stability of the
periodic solutions just found and, connected with this, the changes in the general behaviour of
the system when one of the parameters ω or � varies. We shall simplify equations (7.31) by
supposing that ε is small enough for εȧ, εḃ to be of negligible effect. Then (7.31) becomes

ȧ = 1
2
ε

(
1− 1

4
r2
)
a − ω2 − 1

2ω
b = 1

2
ε

[(
1− 1

4
r2
)
a − νb

]

≡ A(a, b), say, (7.35a)

ḃ = ω2 − 1
2ω

a + 1
2
ε

(
1− 1

4
r2
)
b + �

2ω
= 1

2
ε

[
νa +

(
1− 1

4
r2
)
b + γ

]

≡ B(a, b), say, (7.35b)

Effectively we can eliminate ε by rescaling time using a transformation τ = εt . The precise
value of ε will not affect the general character of the paths in the van der Pol plane, although
it does appear indirectly in ν and γ .
Now consider the stability of an equilibrium point at a a = a0, b = b0. In the neighbourhood

of the point put

a = a0 + ξ , b = b0 + η. (7.36)

The corresponding linearized equations are

ξ̇ = A1(a0, b0)ξ + A2(a0, b0)η,

η̇ = B1(a0, b0)ξ + B2(a0, b0)η.

The point is a stable equilibrium point (Fig. 2.10) if, in the notation of (2.61),

q = det
[
A1 A2
B1 B2

]
= A1B2 − A2B1 > 0, (7.37)

and

p = A1 + B2 ≤ 0. (7.38)

From (7.35) and (7.36),

A1 = 1
2
ε

(
1− 3

4
a20 −

1
4
b20

)
, A2 = −1

4
εa0b0 − ω2 − 1

2ω
,

B1 = −1
4
εa0b0 + ω2 − 1

2ω
, B2 = 1

2
ε

(
1− 1

4
a20 −

3
4
b20

)
.
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Therefore, after simplification, we have

q = A1B2 − A2B1 = 1
4ε

2( 3
16r

4
0 − r20 + 1)+ 1

4ε
2ν2, (7.39)

p = A1 + B2 = 1
2ε(2− r20 ), (7.40)

where r20 =
√
(a20 + b20) and ν = (ω2 − 1)/(εω). In terms of the parameter ν, (7.32), the

conditions for stability, (7.37) and (7.38), become

3
16r

4
0 − r20 + 1+ ν2 > 0, (7.41)

2− r20 ≤ 0. (7.42)

The response curves derived from (7.34), and the stability regions given by (7.41) and (7.42),
are exhibited in Fig. 7.10, together with some further detail about the nature of the equilibrium
points in various regions.
For example, the boundary between nodes and spirals is given by


 = p2 − 4q = 1
4ε

2(2− r20 )
2 − ε2( 3

16r
4
0 − r20 + 1)− ε2ν2 = ε2( 1

16r
4
0 − ν2) = 0

on the line r20 = 4|ν| as shown in Fig. 7.10(b).
It can be seen that the stable and unstable regions are correctly given by the argument

in Section 5.5, (vi). Note that the responses are stable when d�/dr >0 and unstable when
d�/dr <0. In the stability diagram (Fig. 7.10), r2 is plotted against |ν|. If ν is given then by
(7.32) there will be two corresponding forcing frequencies

ω = 1
2 [εν ±

√
(ε2ω2 + 4)].

If we attempt to force an oscillation corresponding to an equilibrium point lying in the unstable
region of Fig. 7.10(a) the system will drift away from this into another state: into a stable
equilibrium point if one is available, or into a limit cycle, which corresponds to an almost-
periodic motion. A guide to the transition states is provided by the phase paths of (7.35).
Although we are not directly concerned with the detail of the phase plane it is interesting to see
the variety of patterns that can arise according to the parameter values concerned, and three
typical cases are shown in Figs 7.12, 7.13, and 7.14.
We can show numerically how the settling-down takes place from a given initial condition

to a periodic oscillation. For

ẋ = y, ẏ = −ε(x2 − 1)y − x + � cosωt , (7.43)

Fig. 7.11(a) shows a solution with initial conditions x(0) = −2.6, ẋ(0)=0.3 with the param-
eter values ε = 1, � = 5 and ω = 2. The amplitude of the oscillation settles down to
a value of about 1.63. In the van der Pol plane, the phase path for a and b starts from
a(0) = −2.6, b(0) = ẋ(0)/ω = 0.15, and spirals into an equilibrium point at approximately
(−1.57, −0.27). In Fig. 7.10(b), γ =2.5 and ν=1.5, which confirms that the equilibrium point
in the van der Pol plane is a stable spiral.
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Figure 7.11 Different aspects of a solution of the forced van der Pol oscillator for ε = 1, γ = 5, and ω = 2 (that
is, γ = 2.5 and ν = 1.5), with the initial conditions x(0) = −2.6, ẋ(0) = 0.3. (a) (x, t) time solution; (b) phase
diagram showing the path approaching a stable limit cycle; (c) amplitude curve in the van der Pol phase plane for the
approximation given by (7.28) with (7.31a,b) and a(0) = −2.6, b(0) = 0.15; (d) the computed limit cycle showing
the approximation given by (7.28) with a and b derived from (7.33a,b).

Exercise 7.3
Using (7.39) and (7.40) show that the equation of the boundary curve between saddles and
nodes in Fig. 7.10(b) is the ellipse

3
16 (r

2
0 − 8

3 )
2 + ν2 = 1

3

in the (|ν|, r20 ) plane.

Exercise 7.4
Show that the system

ẍ + kẋ + (x2 + ẋ2)x = � cos t

has the exact solution x = a cos t + b sin t where a(r2− 1)+ kb = �, −ka+ b(r2− 1) = 0.
Show that

r2(1− r2)2 + k2r2 = �2,

where r2 = a2+ b2, and that d�/dr = 0 where r2 = 1
3 [2±

√
(1− 3k2)](k < 1/

√
3). Sketch

the (�, r) curves for selected values of k.
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7.5 Frequency entrainment for the van der Pol equation

The description offered by the treatment of Sections 7.3 and 7.4 is incomplete because of the
approximate representation used. For example, no sub-harmonics (of period 2πn/ω, n > 1)
can be revealed by the representation (7.28) if a and b are slowly varying. Since subharmonics do
exist they must be arrived at from some region of initial conditions x(0), ẋ(0); (see Section 7.8),
but such regions are not identifiable on the van der Pol plane for a, b. References to ‘all paths’
and ‘any initial condition’ in the remarks below must therefore be taken as merely a broad
descriptive wording.
Referring to Fig. 7.10, the phenomena to be expected for different ranges of ν, γ (or ω, �, ε,

eqn (7.32)) fall into three main types.

(I) When γ < 1.08 approximately, and ν is appropriately small enough, there are three
equilibrium points. The value γ = 1.08 can be found using the equation of the ellipse in
Exercise 7.3. The right-hand limit of the ellipse occurs where r20 = 8

3 and ν = 1/
√
3. Put

r20 = 8
3 and ν2 = 1

3 into (7.34), and compute γ : thus

γ 2 = r20

{
ν2 + (1− 1

4r
2
0 )

2
}
= 8

3

{
1
3 + (1− 2

3 )
2
}
= 32

27 ,

so that γ = 1.08 which separates the cases of three equilibrium points from that of a single
one. One of the equilibrium points is a stable node, and the other two are unstable, namely
a saddle point and an unstable spiral. Starting from any initial condition, the corresponding
path will in practice run into the stable node. Figure 7.12(a) and (b) illustrate this case.

(II) For any γ > 1.08, and ν large enough, there is a single stable point, either a node or spiral,
which all paths approach (Fig. 7.13).

(a) (b)
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Figure 7.12 (a) response region for case I with three equilibrium points; (b) phase paths in the van der Pol plane
(γ = 0.75, ν = 0.25).
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v

Figure 7.13 (a) response region for case II (stable spiral); (b) phase paths in the van der Pol plane (γ = 2.25,
ν = 1.25).

�

(a) (b)

� 2.25
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v

Figure 7.14 (a) response region for case III (unstable spiral); (b) phase paths in the van der Pol plane (γ = 1.25,
ν = 1).

(III) For any γ > 1.08, and ν small enough, the only equilibrium point is an unstable one. It can
be shown that all paths approach a limit cycle in the van der Pol plane (Fig. 7.14). There
are no stable harmonic solutions in this case. Since generally the frequency associated with
the limit cycle is not related to the forcing frequency ω, the system exhibits an oscillation
with two frequencies so that the limiting solution is generally not periodic.

In cases I and II the final state is periodic with the period of the forcing function and the
natural oscillation of the system appears to be completely suppressed despite its self-sustaining
nature. This condition is arrived at from arbitrary initial states (at any rate, so far as this
approximate theory tells us). The system is said to be entrained at the frequency of the forcing
function. This phenomenon does not depend critically on exact parameter values: if any of the
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Figure 7.15 Harmonic entrainment region in the (r, ω) plane for the forced van der Pol equation: in the case shown,
ε = 1, � = 0.65.

(a)

(b)

� 1.5

� 1.1

Figure 7.16 Forced outputs from the van der Pol equation for ε = 1, � = 0.65. In (a) at ω = 1.5 the output is
not periodic (Fig. 7.15). In (b) ω = 1.1 which is within the stable region (Fig. 7.15), and entrainment occurs. The
frequency of the limit cycle of the unforced van der Pol equation is approximately 0.95.

parameters ω, �, ε of the system fluctuate a little, the system will continue to be entrained at
the prevailing frequency.
Figure 7.15 is a rendering of Fig. 7.10 in terms of ω and � instead of ν and γ . The sample

values �=0.65 and ε=1 are used in the figure. Figure 7.16 shows two outputs for ω=1.5
and ω=1.1 after any transient behaviour has subsided. For ω=1.5 and �=0.65, there is no
stable amplitude and the system responds in 7.16(a) with a bounded nonperiodic output. For
ω=1.1, there is a stable portion with �=0.65 within the entrainment region and the system
responds with a periodic output with the forced frequency ω.
The phenomenon of entrainment is related to that of synchronization (Minorsky 1962), in

which two coupled systems having slightly different natural frequencies may fall into a common
frequency of oscillation.
Results obtained by this method should always be treated with caution. Generally the forcing

frequency ω should be not drastically different from the natural frequency (namely 1 in this
application) so that higher harmonics do not become significant. Also the forcing amplitude
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Figure 7.17 Entrainment output for ω = 1, � = 1.5 and ε = 0.2 in the forced van der Pol equation.

Figure 7.18 Amplitudes of the Fourier coefficients in the Fourier expansion of the entrained output in Fig. 7.17.
Only odd harmonics have significant amplitudes.

should not be too large. Figure 7.17 shows the steady entrained output for ε = 1, � = 1.5
and ω = 0.2. Three periods are shown and the oscillations indicate the presence of significant
higher harmonics. This is confirmed by the amplitudes shown in Fig. 7.18.

Exercise 7.5
It was stated at the beginning of this section that the curve which separates the existence of
one equilibrium point from three equilibrium points in the van der Pol plane is

γ 2 = r20 {ν2 + (1− 1
4r

2
0 )

2}
where γ 2 = 32

27 , ν
2 = 1

3 , r
2
0 = 8

3 . Prove the result by investigating the zeros of d(ν2)/d(r20 ).

7.6 Subharmonics of Duffing’s equation by perturbation

In considering periodic solutions of differential equations with a forcing term we have so far
looked only for solutions having the period of the forcing term. But even a linear equation may
have a periodic solution with a different principal period. For example, all solutions of

ẍ + 1
n2

x = � cos t
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Figure 7.19 A subharmonic of order 1/3 with a = −0.2, b = 0, � = 0.1.

are of the form

x(t) = a cos
1
n
t + b sin

1
n
t − �

1− n−2
cos t .

If n(>1) is an integer the period is 2πn instead of 2π . The response is said to be a subharmonic
of order 1/n. Figure 7.19 shows a case when n = 3.

For the linear equation this periodic motion appears to be merely an anomalous case of
the usual almost-periodic motion, depending on a precise relation between the forcing and
natural frequencies. Also, any damping will cause its disappearance. When the equation is
nonlinear, however, the generation of alien harmonics by the nonlinear terms may cause a
stable sub-harmonic to appear for a range of the parameters, and in particular for a range of
applied frequencies. Also, the forcing amplitude plays a part in generating and sustaining the
subharmonic even in the presence of damping. Thus there will exist the tolerance of slightly
varying conditions necessary for the consistent appearance of a subharmonic and its use in
physical systems. The possibility of such a response was pointed out in Section 7.1.
Assuming that a subharmonic exists, its form can be established by using the perturbation

method. Consider Duffing’s equation without damping

ẍ + αx + βx3 = � cosωt , (7.44)

α, �, ω > 0. Take β to be the ‘small parameter’ of the perturbation method, so that we regard
(7.44) as a member of a family of equations for which β lies in a small interval including β = 0.
The values of ω for which the subharmonics occur are unknown. To simplify the subsequent
algebra we put

ωt = τ (7.45)

and look for periodic solutions of the transformed equation

ω2x′′ + αx + βx3 = � cos τ , (7.46)

where the derivatives are with respect to τ . There are no subharmonics of order 1/2 (this is also
true for the damped case as in Problem 7.16), and we shall look for those of order 1/3. The solu-
tion of (7.44) will then have period 6π/ω and the solution of (7.46) will have fixed period 6π .
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Now write, in (7.46),

x(τ) = x0(τ )+ βx1(τ )+ · · · , (7.47)

ω = ω0 + βω1 + · · · . (7.48)

The condition that x has period 6π for all β implies that x0, x1, . . . have period 6π . After
substitution in (7.46) we obtain

ω2
0x
′′
0 + αx0 = � cos τ , (7.49a)

ω2
0x
′′
1 + αx1 = −2ω0ω1x

′′
0 − x30 . (7.49b)

The periodicity condition applied to the general solution of (7.49a) gives α/ω2
0 = 1/9, or

ω0 = 3
√
α. (7.50)

The 1/3 subharmonic is therefore stimulated by applied frequencies in the neighbourhood of
three times the natural frequency of the linearized equation (β = 0). Then x0(τ ) takes the form

x0(τ ) = a1/3 cos
1
3
τ + b1/3 sin

1
3
τ − �

8α
cos τ , (7.51)

where a1/3, b1/3 are constants, to be settled at the next stage. The solution therefore bifurcates
from a solution of the linearized version of (7.46). For (7.49b), we have

x′′0(τ ) = −
1
9
a1/3 cos

1
3
τ − 1

9
b1/3 sin

1
3
τ + �

8α
cos τ , (7.52)

and

x30(τ ) =
3
4

{
a1/3

(
a21/3 + b21/3 + 2

(
�

8α

)2)
− �

8α
(a21/3 − b21/3)

}
cos 1

3τ

+ 3
4

{
b1/3

(
a21/3 + b21/3 + 2

(
�

8α

)2)
+ �

4α
a1/3b1/3

}
sin 1

3τ

+ terms in cos τ , sin τ and higher harmonics. (7.53)

In order that x1(τ ) should be periodic it is necessary that resonance should not occur in
(7.49b). The coefficients of cos 1

3τ , sin
1
3τ on the right must therefore be zero. Clearly this

condition is insufficient to determine all three of a1/3, b1/3, and ω1. Further stages will still give
no condition to determine ω1 so we shall consider it to be arbitrary, and determine a1/3 and
b1/3 in terms of ω0, ω1 and so (to order β2) in terms of ω. It is convenient to write

2ω0ω1 ≈ (ω2 − 9α)/β (7.54)

this being correct with an error of order β, so that the arbitrary status of ω is clearly displayed.
(Remember, however, that ω must remain near ω0, or 3

√
α, by (7.50).) Then the conditions
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that the coefficients of cos 1
3τ , sin

1
3τ on the right of (7.49b) should be zero are

a1/3

(
a21/3 + b21/3 +

�2

32α2 −
4
27

(ω2 − 9α)
β

)
− �

8α
(a21/3 − b21/3) = 0, (7.55a)

b1/3

(
a21/3 + b21/3 +

�2

32α2 −
4
27

(ω2 − 9α)
β

)
+ �

4α
a1/3b1/3 = 0. (7.55b)

The process of solution can be simplified in the following way. One solution of (7.55b) is
given by

b1/3 = 0, (7.56)

and then (7.55a) becomes

a21/3 −
�

8α
a1/3 +

(
�2

32α2 −
4
27

(ω2 − 9α)
β

)
= 0 (7.57)

(rejecting the trivial case a1/3 = 0). Thus there are either two real solutions of (7.57), or none
according as, respectively,

�2>or<
1024
189

α2

β
(ω2 − 9α).

We shall assume that there are two real solutions. The roots are of different signs if additionally

�2 <
128
27

α2

β
(ω2 − 9α),

and of the same sign (positive) if

128
27

α2

β
(ω2 − 9α) < �2 <

1024
189

α2

β
(ω2 − 9α).

All the inequalities assume that (ω2 − 9α)/β > 0.
Now consider the case when b1/3 	=0. Solve (7.55b) for b1/3 and substitute for b21/3 in (7.55a).

We obtain

b1/3 = ±√3a1/3 (7.58)

and (compare (7.57))

(−2a1/3)2 − �

8α
(−2a1/3)+

(
�2

32α2 −
4
27

(ω2 − 9α)
β

)
= 0. (7.59)

If the roots are displayed on the a1/3, b1/3 plane, those arising from (7.58) and (7.59) are
obtained from the first pair, (7.56) and (7.57), by rotations through an angle ±2

3π (Fig. 7.20).
Another interpretation is obtained by noting that the differential equation (7.46) is invariant
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Figure 7.20 This illustration assumes that the roots of (7.57) are both positive.

Figure 7.21 Subharmonic of order 1/3 and harmonic solutions plotted from (7.51) for the equation ẍ + x − 1
6x

3 =
1.5 cos(2.85t). The cases a1/3 = 0.9414, b1/3 = 0 and a1/3 = 0, b1/3 = 0 are shown. Both approximations are very
close to the numerical solutions of the differential equation, although, since the equation is undamped, it is difficult
to eliminate natural oscillations completely.

under the change of variable τ → τ ± 2π . If b1/3 = 0 and a1/3 represent one solution of (7.56)
and (7.57), and x∗(τ ) is the corresponding solution of (7.46), then

x∗(τ ± 2π) = a1/3 cos
(
1
3τ ± 2

3π
)
− �

8α
cos τ

= −1
2a1/3 cos

1
3τ ±

√
3
2 a1/3 sin 1

3τ −
�

8α
cos τ

are also solutions. The new coefficients are clearly the solutions of (7.58), (7.59). The stability
properties of corresponding pairs of equilibrium points are the same.
Figure 7.21 shows the subharmonic for a special case. Note that the sub-harmonic state will

only be entered when the initial conditions are suitable.
We should expect that the perturbation method would be satisfactory only if α=O(1),
|β|1 and (ω2−9α)/β ≈2ω0ω1 is of order 1. However, put

y = x/C, (7.60)
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where C is constant, into (7.46). This becomes

y′′ + c1y + c3y
3 = γ cos τ , (7.61)

where

c1 = α/ω2, c3 = βC2/ω2, γ = �/(Cω2). (7.62)

If C has the same physical dimensions as x, then (7.61) is dimensionless. Now choose

C2 = (ω2 − 9α)/β (7.63)

so that

9c1 + c3 = 1. (7.64)

The perturbation method applied to (7.61) in the same way as to (7.46) (and obviously leading
to the same result), requires at most

|c3|  1, (1− 9c1)/c3 = O(1). (7.65)

But from (7.64)

(1− 9c1)/c3 = 1. (7.66)

So the second condition in (7.65) is satisfied, and |c3|  1 requires only

|c3| =
∣∣∣∣∣β
(
ω2 − 9α

β

)
1
ω2

∣∣∣∣∣ 1,

or

α 
 1
9ω

2. (7.67)

In other words, so long as ω is near enough to 3
√
α (a near-resonant state for the subharmonic),

the calculations are valid without the restriction on β. The usefulness of the approximate form
(7.51) is even wider than this, and the reader is referred to Hayashi (1964) for numerical
comparisons.

7.7 Stability and transients for subharmonics of Duffing’s equation

Some of the subharmonics obtained in Section 7.7 might not be stable, and so will not appear
in practice. When there are stable subharmonics, the question arises of how to stimulate them.
We know that there are stable solutions having the period of the forcing term; there may also
be subharmonics of order other than 1/3 (so far as we know at the moment). Which state of
oscillation is ultimately adopted by a system depends on the initial conditions. The following
method, due to Mandelstam and Papalexi (see Cesari 1971), is similar to the use of the van der
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Pol plane in Section 7.4. It enables the question of stability to be settled and gives an idea of
the domain of initial conditions leading ultimately to a subharmonic of order 1/3.
The method involves accepting the form (7.51) as a sufficiently good approximation to the

subharmonic, and assuming that the solutions for the ‘transient’ states of

ẍ + αx + βx3 = � cosωt (7.68)

are approximately of the form

x(t) = a1/3(t) cos 1
3ωt + b1/3(t) sin 1

3ωt −
�

8α
cosωt , (7.69)

where a1/3 and b1/3 are slowly varying functions in the sense of Section 7.4. Further justification
for the use of the form (7.69) will be found in Hayashi (1964) and McLachlan (1956).
From (7.69)

ẋ(t) = (ȧ1/3 + 1
3ωb1/3) cos

1
3ωt + (−1

3ωa1/3 + ḃ1/3) sin 1
3ωt

+ (ω�/8α) sinωt ,

and

ẍ(t) = (−1
9ω

2a1/3 + 2
3ωḃ1/3) cos

1
3ωt + (−2

3ωȧ1/3 − 1
9ω

2b1/3) sin 1
3ωt

− (ω2�/8α) cosωt , (7.70)

where ä1/3, b̈1/3 have been neglected. Equations (7.69) and (7.70) are substituted into (7.68).
When the terms are assembled, neglect all harmonics of higher order than 1

3 , and balance the
coefficients of cos 1

3ωt , sin
1
3ωt . This leads to

ȧ1/3 = 9β
8ω

{
b1/3

(
a21/3 + b21/3 +

�2

32α2 −
4
27

(ω2 − 9α)
β

)
+ �

4α
a1/3b1/3

}

≡ A(a1/3, b1/3), (7.71a)

ḃ1/3 = 9β
8ω

{
−a1/3

(
a21/3+b21/3+

�2

32α2 −
4
27

(ω2−9α)
β

)
+ �

8α
(a21/3−b21/3)

}

≡ B(a1/3, b1/3). (7.71b)

The phase paths of these autonomous equations, representing ‘transients’ for x(t), can be
displayed on a van der Pol plane of a1/3, b1/3 (e.g., see Fig. 7.22). Stable solutions for the form
(7.69) correspond to stable equilibrium points of the system (7.71), and unstable solutions to
unstable equilibrium points. By comparing with (7.55) we see that the equilibrium points are
the same as those found earlier by the perturbation method. The point

a1/3 = b1/3 = 0
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Figure 7.22 Van der Pol phase plane for subharmonics of order 1
3 for ẍ + x − 1

6x
3 = 1.5 cos(2.85t) (see also Fig.

7.21). The phase paths have been computed from eqns (7.71a, b). The equilibrium points U1, U2, and U3, are
(unstable) saddle points, and S1, S2, and S3 centres.

is also an equilibrium point and this may be taken to acknowledge the possibility that from some
range of initial conditions the harmonic, rather than a subharmonic, oscillation is approached,
namely, the solution

x(t) = − �

8α
cosωt .

This, as expected, is approximately equal to the forced solution of the linearized equation, for
the exact solution of ẍ + αx = � cosωt is

�

α − ω2 cosωt 
 − �

8α
cosωt

so long as ω2 ≈ 9α (eqn (7.67)).
We may determine the stability of the equilibrium points as follows. It is only necessary to

consider the pair for which b1/3 = 0, by the argument following eqn (7.59). Let a∗1/3 = 0,
b∗1/3 = 0, be such a point, and consider the neighbourhood of this point by writing

a1/3 = a∗1/3 + ξ , b1/3 = b∗1/3 + η = η

with ξ , η small. Then the system (7.71) becomes

ξ̇ = A1(a
∗
1/3, 0)ξ + A2(a

∗
1/3, 0)η,

η̇ = B1(a
∗
1/3, 0)ξ + B2(a

∗
1/3, 0)η.

}
(7.72)
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Writing

γ = �

8α
, ν = �2

32α2 −
4
27

(ω2 − 9α)
β

, (7.73)

we find that the coefficients in (7.72), with b∗1/3 = 0, are given by

A1(a
∗
1/3, 0) = 0,

A2(a
∗
1/3, 0) =

9β
8ω

(a∗21/3 + 2γ a∗1/3 + ν) = 9β
8ω

3γ a∗1/3 (7.74)

(from (7.57)),

B1(a
∗
1/3, 0) =

9β
8ω

(−3a∗21/3 + 2γ a∗1/3 − ν) = 9β
8ω

(−γ a∗1/3 + 2ν),

B2(a
∗
1/3, 0) = 0.

The equilibrium points are therefore either centres (in the linear approximation) or saddles.
The origin can similarly be shown to be a centre. A typical layout for the a1/3, b1/3 plane, using
the data of Fig. 7.21, is shown in Fig. 7.22.
When damping is taken into account the closed paths become spirals. Figure 7.23(a) shows

a typical pattern (see also Hayashi 1964) obtained by adding terms 3
2k(ḃ1/3 − 1

3ωa1/3) and
−3

2k(ȧ1/3+ 1
3ωb1/3) respectively, to the right-hand sides of (7.71a) and (7.71b). The additional

Figure 7.23 Van der Pol plane: subharmonics of order 1/3 for ẍ+0.002ẋ+x− 1
6x

3 = 1.5 cos(2.85t) The equilibrium
points S1, S2, and S3 are stable spirals, and U1, U2, and U3 saddles. The amplitudes of the subharmonics are about
the same but their phases differ.
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terms arise from the damping term in the Duffing equation

ẍ + kẋ + αx + βx3 = � cosωt .

It is assumed that 0 < k  1 and that 0 < k  �, so that the damping term does not
significantly affect the amplitude and phase of the harmonic −(�/8α) cosωt . The damping
causes the centres in Fig. 7.22 to be transformed into stable spirals in Fig. 7.23. The shaded
areas are domains of attraction for the equilibrium points to which they relate. It can be seen
that in this case the subharmonics occur over restricted ranges of initial conditions.
It may be inferred that when the parameters of the system (such as the applied amplitude

or frequency) are varied slowly, the system will suddenly become entrained at a subharmonic
if the domain of attraction of a non-zero equilibrium point, appropriate to the instantaneous
value of the changing parameter, is encountered. Figures such as Fig. 7.22 have to be treated
with caution so far as the details are concerned. The nature and positions of the equilibrium
points are likely to be nearly correct, but the phase paths are not necessarily very close to the
correct ones.

Problems

7.1 Show that eqns (7.16) and (7.17), for the undamped Duffing equation in the van der Pol plane, have the
exact solution

r2{(ω2 − 1)− 3
8βr

2} + 2�a = constant, r = √(a2 + b2).

Show that these approximate to circles when r is large. Estimate the period on such a path of a(t), b(t).

7.2 Express eqns (7.16) and (7.17) in polar coordinates. Deduce the approximate period of a(t) and b(t) for
large r. Find the approximate equations for these distant paths. Show how frequency modulation occurs,
by deriving an expression for x(t).

7.3 Consider the equation ẍ + sgn(x) = � cosωt . Assume solutions of the form x = a cosω+ b sinωt . Show
that solutions of period 2π/ω exist when |�| ≤ 4/π . Show also that

a(4− πω2|a|) = π�|a|, b = 0.

(
Hint: sgn{x(t)}= 4a

π
√
(a2+ b2)

cosωt + 4b

π
√
(a2+ b2)

sinωt +higher harmonics.
)

7.4 Show that solutions, period 2π , of the equation ẍ+ x3=� cos t are given approximately by x= a cos t ,
where a is a solution of 3a3− 4a=4�.

7.5 Show that solutions, period 2π , of ẍ+kẋ+x+x3 = � cos t are given approximately by x = a cos t+b sin t ,
where

ka − 3
4br

2 = 0, kb + 3
4ar

2 = �, r = √(a2 + b2).

Deduce that the response curves are given by r2(k2 + 9
16 r

4) = �2.

7.6 Obtain approximate solutions, period 2π/ω, of ẍ + αx + βx2 = � cosωt , by assuming the form x =
c + a cosωt , and deducing equations for c and a.

Show that if β is small, � = O(β), and ω2 − α = O(β), then there is a solution with c ≈ −βa2/(2α),
and a ≈ �/(α − ω2).

7.7 Consider the equation ẍ+x3 = � cos t . Substitute x = a cos t+b sin t , and obtain the solution x = a cos t ,
where 3

4a
3 − a = � (see Problem 7.4).
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Now fit x3, by a least squares procedure, to a straight line of the form px, where p is constant, on
−A ≤ x ≤ A, so that

∫ A

−A
(x3 − px)2 dx

is a minimumwith respect to p. Deduce that this linear approximation to the restoring force is compatible
with an oscillation, period 2π , of amplitude A, provided 3

5A
3 − A = �.

Compare a with A when � = 0.1.

7.8 Consider the equation

ẍ + 0.16x2 = 1+ 0.2 cos t .

By linearizing the restoring force about the equilibrium points of the unforced system (without cos t),
show that there are two modes of oscillation, period 2π , given by

x ≈ 2.5− cos t , x ≈ −2.5− 0.11 cos t .

Find to what extent the predicted modes differ when a substitution of the form x = c+ a cos t + b sin t is
used instead.

7.9 By examining the nonperiodic solutions of the linearized equations obtained in the first part of
Problem 7.8, show that the two solutions, period 2π , obtained are respectively stable and unstable.

7.10 Show that the equations giving the equilibrium points in the van der Pol plane for solutions period 2π/ω
for the forced, damped pendulum equation

ẍ + kẋ + x − 1
6x

3 = � cosωt , k > 0

are

kωa + b{ω2 − 1+ 1
8 (a

2 + b2)} = 0,

−kωb + a{ω2 − 1+ 1
8 (a

2 + b2)} = −�.
Deduce that

r2(ω2 − 1+ 1
8 r

2)2 + ω2k2r2 = �2, ωkr2 = �b,

where r = √(a2 + b2).

7.11 For the equation ẍ+ x− 1
6x

3=� cosωt , find the frequency-amplitude equations in the van der Pol plane.

Show that there are three equilibriumpoints in the van der Pol plane ifω2<1 and |�| > 2
3
√
(83 )(1−ω2)3/2,

and one otherwise. Investigate their stability.

7.12 For the equation ẍ + αx + βx2=� cos t , substitute x= c(t)+ a(t) cos t + b(t) sin t , and show that,
neglecting ä and b̈,

ȧ = 1
2b(α − 1+ 2βc),

ḃ = −1
2a(α − 1+ 2βc)+ �,

c̈ = −αc − β{c2 + 1
2 (a

2 + b2)}.
Deduce that if |�| is large there are no solutions of period 2π , and that if α <1 and � is sufficiently small
there are two solutions of period 2π .
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7.13 Substitute x = c(t)+a(t) cos t +b(t) sin t into the equation ẍ+αx2 = 1+� cos t (compare Problem 7.8),
and show that if ä and b̈ are neglected, then

2ȧ= b(2αc− 1), 2ḃ= a(1−2αc)+�, c̈+α(c2+ 1
2a

2+ 1
2b

2)=1.

Use a graphical argument to show that there are two equilibrium points when α < 1
4 and � <

√
(2/α).

7.14 In the forced Duffing equation ẍ+kẋ+x− 1
6x

3 = � cosωt , (k > 0) substitute x = a(t) cosωt+b(t) sinωt
to investigate the solutions of period 2π/ω. Assume that a and b are slowly varying and that kȧ, kḃ can
be neglected. Show that the paths in the van der Pol plane are given by

ȧ = − b

2ω

{
ω2 − 1+ 1

8
(a2 + b2)

}
− 1

2
ka,

ḃ = a

2ω

{
ω2 − 1+ 1

8
(a2 + b2)

}
− 1

2
kb + �

2ω
.

Show that there is one equilibrium point if ω2 > 1.
Find the linear approximation in the neighbourhood of the equilibrium point when ω2 > 1, and show

that it is a stable node or spiral when k > 0.

7.15 For the equation ẍ + αx + βx3 = � cosωt , show that the restoring force αx + βx3 is represented in
the linear least-squares approximation on −A ≤ x ≤ A by (α + 3

5βA
2)x. Obtain the general solution

of the approximating equation corresponding to a solution of amplitude A. Deduce that there may be a
subharmonic of order 1

3 if α+ 3
5βA

2 = 1
9ω

2 has a real solution A. Compare eqn (7.57) for the case when

�/(8α) is small. Deduce that when α ≈ 1
9ω

2 (close to subharmonic resonance), the subharmonic has the
approximate form

A cos
(
1
3
ωt + φ

)
− �

8α
cosωt ,

where φ is a constant.
(The interpretation is that when �/(8α) is small enough for the oscillation to lie in [−A,A], A can be

adjusted so that the slope of the straight-line fit on [−A, A] is appropriate to the generation of a natural
oscillation which is a subharmonic. The phase cannot be determined by this method.)

Show that the amplitude predicted for the equation ẍ + 0.15x − 0.1x3 = 0.1 cos t is A = 0.805.

7.16 Use the perturbation method to show that

ẍ + kẋ + αx + βx3 = � cosωt

has no subharmonic of order 1
2 when β is small and k = O(β). (Assume that

(a cos 1
2 τ + b sin 1

2 τ + c cos τ)3

= 3
4 c(a

2 − b2)+ 3
4a(a

2 + b2 + 2c2) cos 1
2 τ

+ 3
4b(a

2 + b2 + 2c2) sin 1
2 τ + higher harmonics.)

7.17 Use the perturbation method to show that

ẍ + kẋ + αx + βx3 = � cosωt

has no subharmonic of order other than 1
3 when β is small and k = O(β). (Use the identity

(a cos 1
n τ + b sin 1

n τ + c cos τ)n

= 3
4a(a

2 + b2 + 2c2) cos τ + 3
4b(a

2 + b2 + 2c2) sin τ

+ (higher harmonics) for n 	= 3.)
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7.18 Look for subharmonics of order 1
2 for the equation

ẍ + ε(x2 − 1)ẋ + x = � cosωt

using the perturbation method with τ = ωt . If ω = ω0 + εω1 + · · · , show that this subharmonic is only
possible if ω1 = 0 and �2 < 18. (Hint: let x0 = a cos 1

2 τ + b sin 1
2 τ − 1

3� cos τ , and use the expansion)

(x20 − 1)x′0 = 1
72 [−36+ 9(a2 + b2)+ 2�2](b cos 1

2 τ − a sin 1
2 τ)

+ (higher harmonics).

7.19 Extend the analysis of the equation

ẍ + ε(x2 − 1)ẋ + x = � cosωt

in Problem 7.18 by assuming that

x = a(t) cos 1
2ωt + b(t) sin 1

2ωt − 1
3� cosωt ,

where a and b are slowly varying. Show that when ä, b̈, εȧ, εḃ, are neglected,

1
2 ωȧ = (1− 1

4ω
2)b − 1

8 εωa(a2 + b2 + 2
9�

2 − 4),

1
2 ωḃ = −(1− 1

4ω
2)a − 1

8εωb(a
2 + b2 + 2

9�
2 − 4),

on the van der Pol plane for the subharmonic.
By using ρ = a2 + b2 and φ the polar angle on the plane show that

ρ̇ = −1
4ερ(ρ +K), φ̇ = −(1− 1

4ω
2)/(2ω), K = 2

9�
2 − 4.

Deduce that

(i) When ω 	= 2 and K ≥ 0, all paths spiral into the origin, which is the only equilibrium point (so no
subharmonic exists).

(ii) When ω = 2 and K ≥ 0, all paths are radial straight lines entering the origin (so there is no
subharmonic).

(iii) When ω 	=2 and K <0, all paths spiral on to a limit cycle, which is a circle, radius −K and centre
the origin (so x is not periodic).

(iv) When ω=2 and K <0, the circle centre the origin and radius −K consists entirely of equilibrium
points, and all paths are radial straight lines approaching these points (each such point represents a
subharmonic).

(Since subharmonics are expected only in case (iv), and for a critical value of ω, entrainment can-
not occur. For practical purposes, even if the theory were exact we could never expect to observe the
subharmonic, though solutions near to it may occur.)

7.20 Given eqns (7.34), (7.41), and (7.42) for the response curves and the stability boundaries for van der
Pol’s equation (Fig. 7.10), eliminate r2 to show that the boundary of the entrainment region in the γ ,
ν-plane is given by

γ 2 = 8{1+ 9ν2 − (1− 3ν2)3/2}/27

for ν2 < 1
3 . Show that, for small ν, γ ≈ ±2ν, or γ ≈ ± 2

3
√
3
(1− 9

8ν
2).

7.21 Consider the equation

ẍ + ε(x2 + ẋ2 − 1)ẋ + x = � cosωt .
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To obtain solutions of period 2π/ω, substitute

x = a(t) cosωt + b(t) sinωt

and deduce that, if ä, b̈, εȧ, εḃ can be neglected, then

ȧ = 1
2ε{a − νb − 1

4µa(a
2 + b2)},

ḃ = 1
2ε{νa + b − 1

4µb(a
2 + b2)} + 1

2εγ ,

where

µ = 1+ 3ω2, ν = (ω2 − 1)/(εω), and γ = �/(εω).

Show that the stability boundaries are given by

1+ ν2 − µr2 + 3
16µ

2r4 = 0, 2− µr2 = 0.

7.22 Show that the equation

ẍ(1− xẋ)+ (ẋ2 − 1)ẋ + x = 0

has an exact periodic solution x = cos t . Show that the corresponding forced equation:

ẍ(1− xẋ)+ (ẋ2 − 1)ẋ + x = � cosωt

has an exact solution of the form a cosωt + b sinωt , where

a(1− ω2)− ωb + ω3b(a2 + b2) = �,

b(1− ω2)+ ωa − ω3a(a2 + b2) = 0.

Deduce that the amplitude r = √(a2 + b2) satisfies

r2{(1− ω2)2 + ω2(1− r2ω2)2} = �2.

7.23 The frequency–amplitude relation for the damped forced pendulum is (eqn (7.23), with β = −1/6)
r2{k2ω2 + (ω2 − 1+ 1

8 r
2)2} = �2.

Show that the vertex of the cusp bounding the fold in Fig. 7.7 occurs where

ω = 1
2

{√
(3k2 + 4)− k

√
3
}
.

Find the corresponding value for �2.

7.24 (Combination tones) Consider the equation

ẍ + αx + βx2 = �1 cosω1t + �2 cosω2t , α > 0, |β|  1,

where the forcing term contains two distinct frequencies ω1 and ω2. To find an approximation to the
response, construct an iterative process leading to the sequence of approximations x(0), x(1), . . . , and
starting with

ẍ(0) + αx(0) = �1 cosω1t + �2 cosω2t ,

ẍ(1) + αx(1) = �1 cosω1t + �2 cosω2t − β(x(0))2,
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show that a particular solution is given approximately by

x(t) = − β

2α
(a2 + b2)+ a cosω1t + b cosω2t + βa2

2(4ω2
1 − α)

cos 2ω1t

+ βb2

2(4ω2
2 − α)

cos 2ω2t + βab

(ω1 + ω2)
2 − α

cos(ω1 + ω2)t

+ βab

(ω1 − ω2)
2 − α

cos(ω1 − ω2)t ,

where

a ≈ �1/(α − ω2
1), b ≈ �2/(α − ω2

2).

(The presence of ‘sum and difference tones’ with frequencies ω1±ω2 can be detected in sound resonators
having suitable nonlinear characteristics, or as an auditory illusion attributed to the nonlinear detection
mechanism in the ear (McLachlan 1956). The iterative method of solution can be adapted to simpler
forced oscillation problems involving a single input frequency.)

7.25 Apply the method of Problem 7.24 to the Duffing equation

ẍ + αx + βx3 = �1 cosω1t + �2 cosω2t .

7.26 Investigate the resonant solutions of Duffing’s equation in the form

ẍ + x + ε3x3 = cos t , |ε|  1,

by the method of multiple scales (Section 6.4) using a slow time η = εt and a solution of the form

x(ε, t) = 1
ε
X(ε, t , η) = 1

ε

∞∑
n=0

εnXn(t , η).

Show that X0 = a0(η) cos t + b0(η) sin t , where

8a′0 − 3b0(a
2
0 + b20) = 0, 8b′0 + 3a0(a

2
0 + b20) = 4.

(This example illustrates that even a small nonlinear term may inhibit the growth of resonant solutions.)

7.27 Repeat the multiple scale procedure of the previous exercise for the equation

ẍ + x + ε3x2 = cos t , |ε|  1,

which has an unsymmetrical, quadratic departure from linearity. Use a slow time η = ε2t and an
expansion x(ε, t) = ε−2∑∞n=0 εnXn(t , η).

7.28 Let ẍ − x + bx3 = c cos t . Show that this system has an exact subharmonic k cos 1
3 t if b, c, k satisfy

k = 27
10

c, b = 4c

k3
.

7.29 Noting that y = 0 is a solution of the second equation in the forced system

ẋ = −x(1+ y)+ γ cos t , ẏ = −y(x + 1),

obtain the forced periodic solution of the system.



Problems 257

7.30 Show that, if

ẋ = αy sin t − (x2 + y2 − 1)x, ẏ = −αx sin t − (x2 + y2 − 1)y,

where 0 < α < π , then 2ṙ = (r2−1)r. Find r as a function of t , and show that r → 1 as t →∞. Discuss
the periodic oscillations which occur on the circle r = 1.

7.31 Show that

ẍ + kx + x2 = � cos t

has an exact subharmonic of the form x = A + B cos(12 t) provided 16k2 > 1. Find
A and B.

7.32 Computed solutions of the particular two-parameter Duffing equation

ẍ + kẋ + x3 = � cos t

have been investigated in considerable detail byUeda (1980). Using x = a(t) cos t+b(t) sin t , and assuming
that a(t) and b(t) are slowly varying amplitudes, obtain the equations for ȧ(t) and ḃ(t) as in Section 7.2.
Show that the response amplitude, r, and the forcing amplitude, �, satisfy

r2{k2 + (1− 3
4 r

2)2} = �2

for 2π-periodic solutions. By investigating the zeros of d(�2)/dr2, show that there are three response
amplitudes if 0 < k < 1/

√
3. Sketch this region in the (�, k) plane.

7.33 Show that there exists a Hamiltonian

H(x, y, t) = 1
2 (x

2 + y2)+ 1
4βx

4 − �x cosωt

for the undamped Duffing equation

ẍ + x + βx3 = � cosωt , ẋ = y

(see eqn (7.4)).
Show also that the autonomous system for the slowly varying amplitudes a and b in the van der Pol

plane (eqns (7.16) and (7.17)) is also Hamiltonian (see Section 2.8). What are the implications for the
types of equilibrium points in the van der Pol plane?

7.34 Show that the exact solution of the equation ẍ+ x=� cosωt (ω 	=1) is

x(t) = A cos t + B sin t + �

1− ω2
cosωt ,

where A and B are arbitrary constants.
Introduce the van der Pol variables a(t) and b(t) through

x(t) = a(t) cosωt + b(t) sinωt ,

and show that x(t) satisfies the differential equation if a(t) and b(t) satisfy

ä + 2ωḃ + (1− ω2)a = �, b̈ − 2ωȧ + (1− ω2)b = 0.

Solve these equations for a and b by combining them into an equation in z = a + ib. Solve this equation,
and confirm that, although the equations for a and b contain four constants, these constants combine in
such a way that the solution for x still contains just two arbitrary constants.



258 7 : Forced oscillations: harmonic and subharmonic response, stability, and entrainment

7.35 Show that the system

ẍ + (k − x2 − ẋ2)ẋ + βx = � cos t (k,� > 0,β 	= 1),

has exact harmonic solutions of the form x(t)= a cos t + b sin t , if the amplitude r = √(a2 + b2) satisfies

r2[(β − 1)2 + (k − r2)2] = �2.

By investigating the solution of d(�2)/d(r2) = 0, show that there are three harmonic solutions for an
interval of values of � if k2>3(β −1)2. Find this interval if k=β =2. Draw the amplitude diagram r

against � in this case.

7.36 Show that the equation ẍ + kẋ − x + ω2x2 + ẋ2 = � cosωt has exact solutions of the form x = c +
a cosωt + b sinωt , where the translation c and the amplitude r = √(a2 + b2) satisfy

�2 = r2[(1+ ω2(1− 2c))2 + k2ω2],
and

ω2r2 = c(1− cω2).

Sketch a graph showing response amplitude (r) against the forcing amplitude (�).
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The word ‘stability’ has been used freely as a descriptive term in earlier chapters. In Chapter 2,
equilibrium points are classified as stable or unstable according to their appearance in the
phase diagram. Roughly speaking, if every initial state close enough to equilibrium leads to
states which continue permanently to be close, then the equilibrium is stable. Some equilibrium
states may be thought of as being more stable than others; for example, all initial states near
a stable node lead ultimately into the node, but in the case of a centre there always remains
a residual oscillation after disturbance of the equilibrium. Limit cycles are classified as stable
or unstable according to whether or not nearby paths spiral into the limit cycle. In Chapter 7
we considered the stability of forced periodic oscillations, reducing the question to that of the
stability of the corresponding equilibrium points on a van der Pol plane.
These cases are formally different, as well as being imprecisely defined. Moreover, they

are not exhaustive: the definition of stability chosen must be that appropriate to the types
of phenomena we want to distinguish between. The question to be answered is usually of
this kind. If a system is in some way disturbed, will its subsequent behaviour differ from
its undisturbed behaviour by an acceptably small amount? In practice, physical and other
systems are always subject to small, unpredictable influences: to variable switch-on condi-
tions, to maladjustment, to variation in physical properties, and the like. If such variations
produce large changes in the operating conditions the system is probably unusable, and
its normal operating condition would be described as unstable. Even if the effect of small
disturbances does not grow, the system may not be ‘stable enough’ for its intended pur-
pose: for proper working it might be necessary for the system to re-approach the normal
operating condition, rather than to maintain a permanent superimposed deviation, however
small. We might even require it to approach its normal state without ultimately suffering any
time delay.
Some of these possibilities are treated in the following chapter. We are concernedwith regular

systems throughout (see Appendix A). The treatment is not restricted merely to second-order
systems.
The general autonomous system in n dimensions can be written as

ẋ = X(x),

where x(t)=[x1(t), x2(t), . . . , xn(t)]T is a vector with n components x1(t), x2(t), . . . , xn(t). Here,
the index T stands for the transpose: x(t) is a column vector. A time solution x= x(t) defines a
phase path in the (x1, x2, . . . , xn) phase space, and a set of phase paths defines a phase diagram
for the system. A point x0 is an equilibrium point if the constant vector x(t) = x0 is a solution
for all t . Thus equilibrium points are given by solutions ofX(x) = 0. As described in Chapter 2
for the case n = 2 the system can be linearized in the neighbourhood of x0. The local behaviour
can then be interpreted from the eigenvalues of the linearized system. Obviously for n≥3 the
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classification of linear equations in terms of their eigenvalues becomes extensive. The general
nth-order non-autonomous system can be represented by

ẋ = X(x, t).

8.1 Poincaré stability (stability of paths)

This is a relatively undemanding criterion, which applies to autonomous systems. We shall treat
it intuitively, in the plane case only. It agrees with the tentative classification of equilibrium
points as stable or unstable in Chapter 2, and of limit cycles in Section 3.4.
We identify a phase path (or an equilibrium point) of the system ẋ = X(x) representing a

solution x∗(t)whose stability is in question, called the standard path. We are usually interested
in this path only from a particular point a∗ onwards, that is, for all t ≥ t0: then we have a
positive half-path H∗ with initial point a∗ (Fig. 8.1). The solution which H∗ represents is

x∗(t), t ≥ t0,

where

x∗(t0) = a∗,
and since the system is autonomous, all choices of t0 lead to the same H∗. Some types of
half-paths are shown in Fig. 8.1.
The solution x∗(t), t ≥ t0 is Poincaré stable (or orbitally stable), if all sufficiently small distur-

bances of the initial value a∗ lead to half-paths remaining for all later time at a small distance
from H∗. To form an analytical definition it is necessary to reverse this statement. First, choose
ε > 0 arbitrarily and construct a strip of whose edges are at a distance ε from H∗ (Fig. 8.2).
This represents the permitted deviation from H∗. Then for stability it must be shown, for every
ε, that we can find a δ such that all paths starting within a distance δ of a a∗ (where δ ≤ ε

necessarily), remain permanently within the strip. Such a condition must hold for every ε: in
general, the smaller ε the smaller δ must be.
The formal definition is as follows.

*

*

*

*

*

*

(a) (b) (c)

H

H

H

Figure 8.1 Typical half-paths H∗; in (b) the half-path is a closed curve repeated indefinitely; in (c) the half-path
approaches an equilibrium point.
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*

*
	

�

H
H

Figure 8.2

Definition 8.1 (Poincaré, or orbital stability) LetH∗ be the half-path for the solution x∗(t) of
ẋ=X(x) which starts when a∗ when t = t0. Suppose that for every ε >0 there exists δ(ε)>0
such that if H is the half-path starting at a,

|a − a∗| < δ ⇒ max
x∈H dist(x,H∗) < ε. (8.1)

Then H∗ (or the corresponding time-solution) is said to be Poincaré stable. Otherwise H∗ is
unstable.

Here, the distance from a point x to a curve C is defined by

dist(x, C) = min
y∈C |x − y| = min

y∈C [(x1 − y1)
2 + (x2 − y2)

2]1/2,

in the plane case. The maximum permitted separation of H from H∗ is limited, in two dimen-
sions, by the construction illustrated in Fig. 8.2: two discs, each of diameter ε, are rolled along
either side of H∗ to sweep out a strip; for stability, there must exist a δ > 0 such that every H
with starting point a, |a− a∗| < δ, lies permanently in the strip.
Figure 8.3 illustrates schematically some cases of stability and instability. (a), (b) and (c)

show stable cases. Case (d) represents the system

ẋ = x, ẏ = 2y

with solutions

x = Aet , y = Be2t

where A and B are constants. In the case illustrated the half-path H∗, corresponding to the
solution withA=B =0, starts at a∗ = (0, x0)with x0>0. Choose ε >0 and sketch the tolerance
region as shown in Fig. 8.3(d). Since the paths are given by the family of parabolas y=Cx2,
every half-path H, with C 	=0 escapes from the permitted region at some time, no matter how
close to a a∗ it started off. The half-path H∗ is therefore unstable. In fact, by a similar argument
all the half-paths are unstable.
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(a) (b)

(c) (d)

H*

H*

H*

H*

Figure 8.3 — half-path H∗, - - - - - neighbouring paths for some typical cases. (a) general half-path; (b) half-path
approaching an equilibrium point; (c) periodic half = path; (d) an unstable case.

A simple example of a centre is given by the system

ẋ = y, ẏ = −x,

whose phase diagram consists of circles, centre the origin. The positive half-paths consist of
these circles, traversed endlessly. It is clear from Fig. 8.4 that every circular path is Poincaré
stable; for if the path considered is on the circle of radius (x20 + y20)

1/2, starting at (x0, y0), the
strip of arbitrary given width 2ε is bounded by two more circles, and every half-path starting
within a distance δ = ε of (x0, y0) lies permanently in the strip.

By the same argument we can show that the closed paths which make up any centre are
all Poincaré stable paths, because they are sandwiched between two other closed paths. The
stability or instability of limit cycles (which are isolated closed paths) depends on the asymptotic
behaviour of neighbouring paths. If all the neighbouring paths approach the limit cycle then it
is Poincaré stable. If not, it is unstable. In Fig. 8.5, the first limit cycle is stable, but the other
two are unstable.
Consider the system

ẋ = y, ẏ = x,
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*

	

	
�

H

Figure 8.4 Poincaré stability of the system ẋ = y, ẏ = −x.

Figure 8.5 Limit cycles: (a) is Poincaré stable; (b) and (c) are not.

the paths being given by x2−y2 = C where C is the parameter of the family. The phase diagram
shows a saddle point (Fig. 8.6).
On the basis of the previous discussion it can be seen that the half-paths starting typically at

A and C, and all the curved half-paths, are Poincaré stable. Those starting typically at B andD

are unstable despite the fact that they approach the origin, since every nearby path eventually
goes to infinity.
Consider now the special half-paths which are equilibrium points, representing constant

solutions. A saddle (for example, Fig. 8.6) is unstable, since there is no circle with centre at
the equilibrium point, of however small radius, such that every half-path starting in it remains
within an arbitrary preassigned distance ε of the equilibrium point.
Those types of equilibrium point which we earlier designated as being stable—the centre,

the stable node, and the stable spiral—are indeed Poincaré stable according to the formal
definition (8.1), though a rigorous proof is difficult. In the case of a centre, however, a
simple geometrical argument is convincing. Suppose the centre to be the origin (Fig. 8.7).
Then Definition 8.1 requires that if, given any ε > 0, a circle is drawn, Cε, centre the origin
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Figure 8.6 Stability of paths near a saddle point.

	

� P

C

C

Figure 8.7 Stability of a centre at O.

and radius ε, then a circle Cδ of radius δ can be found such that no half-path starting in Cδ
will ever reach Cε. The construction is clear from the figure: first a path P is chosen wholly
inside Cε, then Cδ is drawn inside P . No path starting in Cδ can cross P , so it can never get
outside Cε.

Exercise 8.1
Find the equation of the phase paths of ẋ=1+ x2, ẏ=−2xy. It is obvious from the phase
diagram that y=0 in Poincaré stable. Show that for the path y=0, all paths which start in
(x+1)2+ y2= δ2 subsequently remain in a circle of radius δ[1+ (1+ δ)2] centred on y=0.



8.2 Paths and solution curves for general systems 265

8.2 Paths and solution curves for general systems

Poincaré stability is concerned with autonomous systems; another concept is required for non-
autonomous systems. Even when a system is autonomous, however, a more sensitive criterion
may be needed which cannot be decided from mere inspection of the phase diagram.
Consider, for example, the system

ẋ = y, ẏ = −sin x,

representing the motion of a pendulum. Near the origin, which is a centre, the phase paths have
the form shown in Fig. 8.8. Consider a time solution x∗(t), t ≥ t0, with x∗(t0)= a∗, its half-path
H∗ being the heavy line starting at P ; and a second time solution x(t), t ≥ t0, with x(t0)= a,
its half-path H starting at Q.
The half-path H∗ is Poincaré stable: if Q is close to P the corresponding paths remain close.

However, the representative points P ′, Q′ do not remain close. It is known (Problem 33,
Chapter 1) that the period of x(t) in Fig. 8.8 is greater than that of x∗(t). Therefore the
representative point Q′ lags increasingly behind P ′. No matter how close Q and P are at
time t0, after a sufficient time Q′ will be as much as half a cycle behind P ′ and the difference
between the time solutions at this time will therefore become large. This condition recurs at
regular intervals. The representative points P ′ and Q′ are like two planets in stable orbits; they
are sometimes close, sometimes at opposite ends of their orbits. If we choose Q closer to P

at the start it will take longer for Q′ and P ′ to reach the maximum separation, but this will
occur eventually. If the pendulum (or other nonlinear oscillating system) were simply used to
take a system through a sequence of states at more or less predetermined intervals this might
not be important, but for timekeeping, for example, the accumulating error arising from a

*H
H

Figure 8.8 Paths for the pendulum equation are Poincaré stable, but representative points do not stay in step. P is
the point a∗,Q the point a, both at time t0: P ′ and Q′ are their subsequent positions.
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*

C

P

C

Figure 8.9 (a) A solution C in (x, y, t) space and its projection P on to the (x, y) plane which is the corre-
sponding phase path; (b) a tube of solutions surrounding a particular solution C∗ and its projection in the phase
plane.

small change in amplitude would make an uncontrolled pendulum useless. We require a more
stringent form of stability criterion to take this into account.
Time-dependent behaviour may be illustrated by displaying the time solutions x(t), y(t) in a

three-dimensional graph, rather than as phase paths in a two-dimensional graph as in Chapter 1,
Section 1.8. This depiction is also applicable to nonautonomous systems, which have the form
ẋ = X(x, y, t), ẏ = Y (x, y, t).

In Fig. 8.9(a), the axes are x, y, t , and a solution x(t), y(t) appears as a curve C, which
advances steadily along the t axis. The corresponding phase path P is the projection of C on
to the (x, y) plane. According to the uniqueness theorem (see Appendix A), different solution
curves do not intersect.
Figure 8.9(b) represents a narrow tube or bundle of time-solutions, all starting at the same

time t = t0 and surrounding a particular solution curve C∗, whose stability we shall consider.
If the tube continues to be narrow for t→∞, as suggested by the figure, then so does its
projection on the (x, y) plane; this indicates that the half-path corresponding to C∗ in the phase
plane is Poincaré stable. We have seen (Fig. 8.8) that a phase path may be Poincaré stable even
when the representative points become widely separated, but in the case of Fig. 8.9(b) this is
not to; solutions which start by being close remain close for all time. This represents a situation
which is in a sense more stable than is required by the Poincaré criterion.
In contrast Fig. 8.10 illustrates the case of a centre in the phase plane displayed in the x, y, t

frame, where the period of the oscillations varies with the amplitude (compare Fig. 8.8). The
solution curves corresponding to neighbouring phase paths are helices having different pitches.
However close the initial points may be, the representative points become widely separated in
these axes at certain times, although the phase paths imply Poincaré stability.
We shall formulate a more demanding criterion for stability, which distinguishes such cases,

in the next section.
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Figure 8.10 Solution curves corresponding to paths about a centre. They start close initially at A and B but become
widely separated at A′ and B ′ at a later time.

8.3 Stability of time solutions: Liapunov stability

Consider a regular dynamical system (see Appendix A), not necessarily autonomous, in n

dimensions, written in vector form as

ẋ = X(x, t), (8.2)

or in component form as the simultaneous system

ẋ1 = X1(x1, x2, . . . , xn, t),

ẋ2 = X2(x1, x2, . . . , xn, t),

· · ·
ẋn = Xn(x1, x2, . . . , xn, t).

We need a measure of the separation between pairs of solutions at particular times. Here we
shall use the extension to n dimensions of the ordinary idea of the separation between two points
with given position vectors, as in vector geometry. However, we shall also need to consider
complex solutions at a later stage, and this must also be taken into account. It is sometimes
convenient to use terms such as Re(eit ) rather than cos t .

Suppose that x∗(t) and x(t) are two real or complex solution vectors of (8.2) with components

x∗(t) = [x∗1(t), x∗2(t), . . . , x∗n(t)]T,
x(t) = [x1(t), x2(t), . . . , xn(t)]T.
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(where T stands for transpose: these are column vectors). The separation between them at any
time t will be denoted by the symbol ‖x(t)− x∗(t)‖, defined by

‖x(t)− x∗(t)‖=
(

n∑
i=1
|xi(t)− x∗i (t)|2

)1/2
, (8.3)

where | . . . | denotes the modulus in the complex number sense, and the ordinary magnitude
when xi and x∗i are real solutions.

There are many different measures of separation between two vectors which may be used.
All are usually denoted by ‖. . .‖; such a measure is called a metric or distance function on the
space. Most of the theory here would be unaffected by the choice of metric since they all have
similar properties; for example they satisfy the triangle inequality:

‖u+ v ‖ ≤ ‖u‖ + ‖v ‖,
where u and v are any complex n-dimensional vectors. Corresponding to the distance
function (8.3), the norm of vector u is defined by

‖u‖ =
(

n∑
i=1
|ui |2
)1/2

. (8.4)

The norm (8.4) measures the magnitude of the vector concerned; hence the term ‘triangle
inequality’. For further information see Appendix C.
The enhanced type of stability described at the end of the previous section is called Liapunov

stability, or solution stability. The formal definition is as follows:

Definition 8.2 (Liapunov stability) Let x∗(t) be a given real or complex solution vector of the
n-dimensional system ẋ = X(x, t). Then

(i) x∗(t) is Liapunov stable for t ≥ t0 if, and only if, to each value of ε >0, however small,
there corresponds a value of δ >0 (where δ may depend only on ε and t0) such that

‖x(t0)− x∗(t0)‖<δ ⇒ ‖x(t)− x∗(t)‖<ε (8.5)

for all t ≥ t0, where x(t) represents any other neighbouring solution.

(ii) If the given system is autonomous, the reference to t0 in (i)may be disregarded; the solution
x∗(t) is either Liapunov stable, or not, for all t0.

(iii) Otherwise the solution x∗(t) is unstable in the sense of Liapunov.

In other words, (8.5) requires that no matter how small is the permitted deviation, measured
by ε, there always exists a nonzero tolerance, δ, in the initial conditions when the system is
activated, allowing it to run satisfactorily.
It can be also be shown (Cesari 1971) that if (i) is satisfied for initial conditions at time t0,

then a similar condition is satisfied when any t1> t0 is substituted for t0: that is, if x∗(t) is stable
for t ≥ t0, it is stable for t ≥ t1≥ t0.
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Figure 8.11 Liapunov stability of the solution x∗(t) = x(t0)e−(t−t0).

It can be proved that if the system equations are autonomous, then Liapunov stability implies
Poincaré stability (Cesari 1971).

Example 8.1 Show that all solutions of ẋ= − x (a one-dimensional system) are stable in the Liapunov sense.

We will consider real solutions only, with initial condition at t0. The general solution can be written in the
form

x(t) = x(t0)e
−(t−t0),

where x(t0) is the initial value. Consider the stability of x∗(t) starting at (t0, x∗(t0)) (Fig. 8.11). Choose ε >0
arbitrarily and consider the strip x∗(t)− ε <x <x∗(t)+ ε. For stability, wemust show that all solutions starting
at t0 and sufficiently close to x∗(t0) lie inside this strip. Since all solutions ‘close up’ on x∗(t) as t increases it
is clear that the conditions of the definition are satisfied by the choice δ= ε. This is true for all initial values
x∗(t0). �
The following example shows that the corresponding n-dimensional problem leads to the

same conclusion.

Example 8.2 Show that all solutions of the n-dimensional system ẋ = −x are stable for t ≥ 0 in the Liapunov
sense.

The general solution is given by

x(t) = x(0)e−t .
Consider the stability of x∗(t) for t > 0, where

x∗(t) = x∗(0)e−t .
For any x∗(0) we have

‖x(t)− x∗(t)‖ ≤ ‖x(0)− x∗(0)‖e−t ≤ ‖x(0)− x∗(0)‖, t ≥ 0.

Therefore, given any ε > 0,

‖x(0)− x∗(0)‖<ε⇒‖x(t)− x∗(t)‖< ε, t > 0.

Thus δ = ε in Definition 8.2. (The process can be modified to hold for any t0. However, the system is
autonomous, so this is automatic.) �
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The implication of (ii) in Definition 8.2, which also applies to non-autonomous systems, is
as follows. (i) taken alone implies that arbitrarily small enough changes in the initial condition
at t = t0 lead to uniformly small departures from the tested solution on t0 ≤ t < ∞. Such
behaviour could be described as stability with respect only to variations in initial conditions
at t0. Armed with (ii), however, it can be said that the solution is stable with respect to variation
in initial conditions at all times t1 where t1 ≥ t0, and that the stability is therefore a property
of the solution as a whole. (ii) holds by virtue of (i) under very general smoothness conditions
that we do not discuss here.
If (i) is satisfied, and therefore (ii), we may still want to be assured that a particular solution

does not become ‘less stable’ as time goes on. It is possible that a system’s sensitivity to distur-
bance might increase indefinitely with time although it remains technically stable, the symptom
being that δ(ε, t0) decreases to zero as t0 increases.
To see that this is possible, consider the family of curves with parameter c:

x = f (c, t) = ce(c
2−1)t /t , t > 0. (8.6)

These are certainly solutions of some first-order equation. The equation is of no particular
interest: the Definition 8.2 refers only to the family of solutions x(t), and does not require us
to refer to the differential equation.
In Fig. 8.12, the curves separating those which tend to infinity (c2>1) from those tending

to zero (c2<1) are the curves f (1, t)=1/t and f (−1, t)=−1/t , which also tend to zero. Now
consider the stability of the ‘solution’ having c=0 :f (0, t)≡0. It is apparent from the diagram
that this function is stable for all t0>0. However, the system can afford a disturbance from
the initial state x(t0)=0 at a time t0 no greater than the height of the ordinate A0B0; other-
wise curves which approach infinity will be included. As t0 increases, the greatest permitted

Figure 8.12 Family of curves x(t) = ce(c
2−1)t /t .
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disturbance decreases to zero. Therefore the system becomes progressively more sensitive as t0
increases, and approaches zero tolerance of disturbance as t0→∞.
The stability is said to be non-uniform in this case. The definition of uniform stability is as

follows.

Definition 8.3 (Uniform stability) If a solution is stable for t ≥ t0, and the δ of Definition 8.2
is independent of t0, the solution is uniformly stable on t ≥ t0.

It is clear that any stable solutions of an autonomous system are uniformly stable, since the
system is invariant with respect to time translation.
A third desirable property is asymptotic stability. The system ẋ = 0 has the general solution

x(t) = x(t0) = C,
where C is an arbitrary constant vector, and t0 is any value of t .
These are all stable on t ≥ t0 for any t0 (and also uniformly stable); however, a disturbed solu-

tion shows no tendency to return to the original solution: it remains a constant distance away.
On the other hand, solutions of the type examined in Figs 8.11 and 8.12 do re-approach the
undisturbed solution after being disturbed; thus the system tends to return to its original oper-
ating curve. Such solutions are said to be asymptotically stable, uniformly and nonuniformly
respectively in the cases of Figs 8.11 and 8.12.

Definition 8.4 (Asymptotic stability) Let x∗ be a stable (or uniformly stable) solution for
t ≥ t0. If additionally there exists η(t0) > 0 such that

‖x(t0)− x∗(t0)‖< η⇒ lim
t→∞‖x(t)− x

∗(t)‖= 0, (8.7)

then the solution is said to be asymptotically stable (or uniformly and asymptotically stable).

In the rest of this chapter we prove theorems enabling general statements to be made about
the stability of solutions of certain classes of equations.

Exercise 8.2
Find the time solutions of

xẍ − ẋ2 = 0, x > 1

which satisfy x(0)=1. Decide which solutions are asymptotically stable.

8.4 Liapunov stability of plane autonomous linear systems

We consider first the stability in the Liapunov sense of the constant solutions (equilibrium
points) of the two-dimensional, constant-coefficient systems classified in Chapter 2. Without
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loss of generality we can place the equilibrium point at the origin, since this only involves
modifying the solutions by additive constants. We have then

ẋ1 = ax1 + bx2, ẋ2 = cx1 + dx2, (8.8)

where a, b, c, d are constants.
The stability properties of the constant solutions x∗(t)=[x∗1(t), x∗2(t)]T =0, t ≥ t0 can

sometimes be read off from the phase diagram: for example a saddle is obviously unstable.
Consider also the case of a centre. Figure 8.13(a) shows the phase plane and 8.13(b) the

solution space: the solution x∗(t) = 0 whose stability is being considered lies along the t axis.
Choose an arbitrary value of ε > 0. In the phase diagram, Fig. 8.13(a), the region in which

the perturbed paths are required to remain is the interior of the outer circle Cε:

‖x ‖< ε.

The initial time t0 is immaterial since the equations (8.8) are autonomous.
This region contains closed phase paths: choose any one of them, say P in Fig. 8.13(a).

Construct a region of initial values about the origin (which corresponds to the zero solution
x∗ = 0) bounded by the circle Cδ:

‖x(t0)− x∗(t0)‖=‖x(t0)‖< δ,

by choosing δ small enough for this region to lie entirely within P . Then any half-path origi-
nating in the interior of Cδ remains permanently inside the closed path P , and therefore also
satisfies (8.9) for all t ≥ t0. Since ε is arbitrary the condition (8.5) for Liapunov stability of the
zero solution x∗(t) is satisfied.

Since δ is independent of t0, the zero solution is uniformly stable; this is also a consequence of
the autonomous property of the system (8.8). It is not asymptotically stable since the perturbed
solutions do not approach zero as t →∞.

	

(a) (b)

C

C
P

Figure 8.13 Phase path and solution space near a centre.
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The other types of equilibrium point (zero solutions of (8.8)) are more difficult, and we
merely summarize the results:

Stability properties of the zero solutions of ẋ = ax + by, ẏ = cx + dy

Phase plane feature Liapunov stability property

Centre: Poincaré stable Uniformly stable
Stable spiral: Poincaré stable; Uniformly, asymptotically stable
paths approach zero

Stable node: Poincaré stable; Uniformly, asymptotically stable
paths approach zero

Saddle: Poincaré unstable Unstable
Unstable spiral and node Unstable

(8.9)

We shall show that the classification (8.9) applies to all solutions, and not merely to zero
solutions
The most general linear system is the nonautonomous and nonhomogeneous equation in n

variables given by

ẋ = A(t)x + f (t), (8.10)

where A(t) is an n× n matrix. We wish to investigate the stability of a solution x∗(t). Let x(t)
represent any other solution, and define ξ(t) by

ξ̇(t) = x(t)− x∗(t). (8.11)

Then ξ(t) tracks the difference between the ‘test’ solution and a solution having a different
initial value at time t0. The initial condition for ξ is

ξ(t0) = x(t0)− x∗(t0). (8.12)

Also, ξ satisfies the homogeneous equation derived from (8.10):

ξ̇ = A(t)ξ . (8.13)

By comparison of (8.11), (8.12), and (8.13) with Definition (8.2), it can be seen that the
Liapunov stability property of x∗(t) is the same as the stability of the zero solution of (8.13).
ξ(t) is called a perturbation of the solution x∗(t).

Since this new formulation of the problem is independent of the solution of (8.10) initially
chosen, we can make the following statement:

Theorem 8.1 All solutions of the regular linear system ẋ = A(t)x + f (t) have the same Lia-
punov stability property (unstable, stable, uniformly stable, asymptotically stable, uniformly
and asymptotically stable). This is the same as that of the zero (or any other) solution of the
homogeneous equation ξ̇ = A(t)ξ . �
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Notice that the stability of time solutions of linear systems does not depend at all on the
forcing term f (t).

Example 8.3 All the solutions of the system ẋ1 = x2, ẋ2 = −ω2x1 + f (t) are uniformly stable, but not
asymptotically stable (forced linear oscillator).

Equation (8.13) becomes ξ̇1 = ξ2, ξ̇2 = −ω2ξ1. The zero solution is a centre, which is uniformly stable (see
(8.9)). By Theorem 8.1, all solutions of the non-homogeneous equation are also uniformly stable. �
Example 8.4 All the solutions of the equations ẋ1 = x2, ẋ2 = −kx2 − ω2x1 + f (t) are uniformly and
asymptotically stable (damped, forced linear oscillator).

Equation (8.13) becomes

ξ̇1 = ξ2, ξ̇2 = −ω2ξ1 − kξ2.

The zero solution corresponds to the equilibrium point ξ1= ξ2=0 which (Chapter 2) is a ‘stable’ node or spiral
(as named in that chapter). By (8.9), these are uniformly and asymptotically stable. This result corresponds
to the damping out of free oscillations set up by the initial conditions: the amplitude and phase of the forced
oscillation are independent of these. �

Exercise 8.3
Solve the forced linear system[

ẋ

ẏ

]
=
[−1 1

0 −2
] [

x

y

]
+
[
0
et

]
.

Explain why all solutions are asymptotically stable confirming Theorem 8.1.

8.5 Structure of the solutions of n-dimensional linear systems

The need to consider the general properties of linear systems arises in connection with nonlinear
systems which are in some sense close to linear. In such cases certain characteristics of their
solutions, notably stability properties, may follow those of the approximating linear systems.
The general homogeneous, first-order linear system of n dimensions is

ẋ = A(t)x, (8.14)

where A(t) is an n× n matrix whose elements aij (t) are functions of time, and x(t) is a column
vector of the n dependent variables. The explicit appearance of t indicates that the system may
be nonautonomous. In component form,⎡

⎢⎢⎢⎣
ẋ1
ẋ2
...
ẋn

⎤
⎥⎥⎥⎦ =
⎡
⎢⎢⎢⎣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
x1
x2
...
xn

⎤
⎥⎥⎥⎦ ,
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or, when expanded,

ẋi =
n∑

j=1
aij (t)xj ; i = 1, 2, . . . , n.

We shall assume that each aij (t) is continuous on −∞< t <∞, so that the system is regular
(Appendix A). In that case, given any initial conditions x(t0)= x0, there is a unique solution
satisfying this condition. Moreover, it exists for −∞< t <∞ (the same is not true in general
of nonlinear equations).
If x1(t), x2(t), . . . , xm(t) are real or complex vector solutions of (8.14), then so is α1x1(t)+

α2x2(t) + · · · + αmxm(t) where α1,α2, . . . ,αm are any constants, real or complex. A central
question to be settled is the dimension of the solution space: the minimum number of solutions
whose linear combinations generate every solution of the homogeneous system (8.14).

Definition 8.5 (linearly dependent vector functions) Letψ1(t),ψ2(t), . . . ,ψm(t) be vector func-
tions (real or complex), continuous on −∞< t <∞, none being identically zero. If there exist
constants (real or complex) α1,α2, . . . ,αm, not all zero, such that

α1ψ1(t)+ α2ψ2(t)+ . . .+ αmψm(t) = 0

for −∞ < t < ∞, the functions are linearly dependent. Otherwise they are linearly
independent.

(As a consequence of the definition, note that the vector functions [1, 1]T, [t , t]T are linearly
independent, although the constant vectors [1, 1]T, [t0, t0]T are linearly dependent for every t0.)

Example 8.5 cos t and sin t are linearly independent on −∞ < t <∞.
In amplitude/phase form

α1 cos t + α2 sin t = √(α21 + α22) sin(t + β)

where β is given by

α1 = √(α21 + α22) sin β, α2 = √(α21 + α22) cosβ.

There is no choice of α1,α2, except for α1 = α2 = 0, which makes this function zero for all t . �
Example 8.6 The functions cos t , sin t , 2 sin t are linearly dependent.

Since, for example,

0(cos t)+ 2(sin t)− 1(2 sin t) = 0

for all t , the result follows. Here α1 = 0, α2 = 2 and α3 = −1. �
If functions are linearly dependent, at least one of them can be expressed as a linear com-

bination of the others. From now on we shall be concerned with the linear dependence of
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solutions of the homogeneous linear system (8.14). Given any set of n solution (column) vec-
tors φ1,φ2, . . . ,φn, real or complex, where φj has elements φ1j (t),φ2j (t), . . . ,φnj (t), we shall
use the notation

�(t) = [φ1,φ2, . . . ,φn] =

⎡
⎢⎢⎢⎣
φ11 φ12 · · · φ1n
φ21 φ22 · · · φ2n
...

...
...

φn1 φn2 · · · φnn

⎤
⎥⎥⎥⎦

for the matrix of these solutions. Then from (8.14), since φ̇j (t) = A(t)φj (t),

�̇(t) = [φ̇1, φ̇2, . . . , φ̇n] = A(t)[φ1,φ2, . . . ,φn] = A(t)�(t), (8.15)

where �̇(t) represents the matrix �(t) with all its elements differentiated.
Remember that the constituent solutions may be real or complex; for example it is convenient

to be able to choose a matrix of solutions for

ẋ1 = x2, ẋ2 = −x1
of the form

�(t) =
[
eit e−it
ieit −ie−it

]
.

Correspondingly, the constants occurring in linear dependence, and the eigenvalues and eigen-
vectors, may all be complex. This possibility will not always be specially pointed out in the rest
of this chapter.

Theorem 8.2 Any n+1 nonzero solutions of the homogeneous system ẋ = A(t)x are linearly
dependent.

Proof Let the solutions be φ1(t),φ2(t), . . . ,φn+1(t). Let t0 be any value of t . Then the n + 1
constant vectors φ1(t0),φ2(t0), . . . ,φn+1(t0) are linearly dependent (as are any set of n + 1
constant vectors of dimension n); that is, there exist constants α1,α2, . . . ,αn+1, not all zero,
such that

n+1∑
j=1

αjφj (t0) = 0.

Let

x(t) =
n+1∑
j=1

αjφj (t).

Then x(t0) = 0, and x(t) is a solution of (1). Therefore, by the Uniqueness Theorem
(Appendix A), x(t) = 0 for all t : that is to say, the solutions φj (t), j = 1, 2, . . . , n + 1 are
linearly dependent. �
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Theorem 8.3 There exists a set of n linearly independent solutions of ẋ = A(t)x.
Proof By the Existence Theorem (Appendix A), there is a set of n solutions
ψ1(t),ψ2(t), . . . ,ψn(t) whose matrix �(t) satisfies

�(0) = I ,
where I is the identity matrix. Since the columns of �(0); ψ1(0), . . . ,ψn(0); are linearly inde-
pendent, so are the solution vectors ψ1(t),ψ2(t), . . . ,ψn(t). For if not, there exist numbers
α1,α2, . . . ,αn, not all zero, such that

∑n
j=1 αjψj (t)=0 for all t (including t =0), which is a

contradiction. �

These two theorems settle the dimension of the solution space: every solution is a linear
combination of the solutions ψj , j = 1, 2, . . . , n of Theorem 8.3; but since these solutions
are themselves linearly independent, we cannot do without any of them. Instead of the special
solutionsψj (t)wemay take any set of n linearly independent solutions as the basis, as in shown
in Theorem 8.4.

Theorem 8.4 Let φ1(t),φ2(t), . . .φn(t) be any set of linearly independent vector solutions (real
or complex) of the homogeneous system ẋ = A(t)x. Then every solution is a linear combination
of these solutions.

Proof Let φ(t) be any non-trivial solution of (8.14). Then by Theorem 8.2, φ,φ1,φ2, . . . ,φn

are linearly dependent. The coefficient of φ in any relation of linear dependence is non-zero, or
we should violate the requirement that the φj are linearly independent. Therefore φ is a linear
combination of φ1, . . . ,φn. �

Definition 8.6 Let φ1(t),φ2(t), . . . ,φn(t) be n linearly independent solutions of the homoge-
neous system ẋ = A(t)x. Then the matrix

�(t) = [φ1,φ2, . . . ,φn] =

⎡
⎢⎢⎢⎣
φ11 φ12 · · · φ1n
φ21 φ22 · · · φ2n
...

...
...

φn1 φn2 · · · φnn

⎤
⎥⎥⎥⎦

is called a fundamental matrix of the homogeneous system.

Note that any two fundamental matrices �1 and �2 are related by

�2(t) = �1(t)C, (8.16)

where C is a nonsingular n × n matrix (since by Theorem 8.4, each column of �2 is a linear
combination of the columns of �1, and vice versa).

Theorem 8.5 Given any n× n solution matrix �(t) = [φ1(t), . . . ,φn(t)] of the homogeneous
system ẋ = A(t)x, then either (i) for all t , det{�(t)} = 0, or (ii) for all t , det{�(t)} 	= 0. Case
(i) occurs if and only if the solutions are linearly dependent, and case (ii) implies that �(t) is a
fundamental matrix.
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Proof Suppose det{�(t0)} = 0 for some t0. Then the columns of �(t0) are linearly dependent:
there exist constants α1, . . . ,αn, not all zero, such that α1φ1(t0) + . . . + αnφn(t0) = 0. Define
φ(t) by

φ(t) = α1φ1(t)+ . . .+ αnφn(t).

Then φ(t) is a solution satisfying the initial condition φ(t0) = 0. By the Uniqueness Theorem
(Appendix A), φ(t) = 0 for all t . Therefore

α1φ1(t)+ α2φ2(t)+ . . .+ αnφn(t) = 0

for all t , and det{�(t)} is therefore either zero everywhere, or non-zero everywhere. �
Example 8.7 Verify that [

et

e2t

]
,
[
e2t

e4t

]

cannot be a pair of solutions of a second-order linear homogeneous system.

For, writing

�(t) =
[
et e2t

e2t e4t

]
,

det{�(t)}= e5t − e4t , which is zero at t =0 but nowhere else. By Theorem 8.5(ii), �(t) cannot be fundamental
matrix. �
Theorem 8.6 The solution of the homogeneous system ẋ = A(t)x with the initial conditions
x(t0) = x0 is given by x(t) = �(t)�−1(t0)x0, where� is any fundamental matrix of the system.

Proof The solution must be of the form

x(t) = �(t)a (8.17)

where a is a constant vector, by Theorem 8.4. The initial conditions give x0 = �(t0)a. The
columns of �(t0) (regarded as columns of constants) are linearly independent by Theorem 8.5,
so �(t0) has an inverse �−1(t0). Therefore a = �−1(t0)x0 and the result follows from (8.17).

�
Example 8.8 Verify that [

2
et

]
,
[
e−t
1

]

are solutions of [
ẋ1
ẋ2

]
=
[
1 −2e−t
et −1

] [
x1
x2

]
,

and find the solution x(t) such that

x(0) =
[
3
1

]
.
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Direct substitution confirms that the given functions are solutions. They are linearly independent, so

�(t) =
[
2 e−1
et 1

]

is a fundamental matrix. We have

�(0) =
[
2 1
1 1

]
, �−1(0) =

[
1 −1
−1 2

]
.

Hence, by Theorem 8.6,

x(t) = �(t)�−1(0)x(0) =
[
2 e−t
et 1

] [
1 −1
−1 2

] [
3
1

]
=
[
4− e−t
2et − 1

]
. �

Exercise 8.4
By eliminating y solve the system

ẋ =
[
ẋ

ẏ

]
=
[

1 1
(−6+ 4t − t2)/t2 (4− t)/t

] [
x

y

]

for t > 0, and obtain a fundamental matrix solution for x.

8.6 Structure of n-dimensional inhomogeneous linear systems

The general inhomogeneous linear system is

ẋ = A(t)x + f (t), (8.18)

where f (t) is a column vector. The associated homogeneous system is

φ̇ = A(t)φ. (8.19)

The following properties are readily verified.

(I) Let x= xp(t) be any solution of (8.18) (called a particular solution of the given system) and
φ=φc(t) any solution of (8.19) (called a complementary function for the given system).
Then xp(t)+ φc(t) is a solution of (8.18).

(II) Let xp1(t) and xp2(t) be any solutions of (8.18). Then xp1(t)−xp2(t) is a solution of (8.19);
that is, it is a complementary function.

Theorem 8.7 follows immediately:

Theorem 8.7 Let xp(t) be any one particular solution of ẋ=A(t)x+f (t). Then every solution
of this equation is of the form x(t)= xp(t)+φc(t), where φc is a complementary function, and
conversely. �
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The strategy for finding all solutions of (8.18) is therefore to obtain, somehow, any one
solution of (8.18), then to find all the solutions of the associated homogeneous system (8.19).

Example 8.9 Find all solutions of the system ẋ1 = x2, ẋ2 = −x1 + t .

In the notation of (8.18), [
ẋ1
ẋ2

]
=
[

0 1
−1 0

] [
x1
x2

]
+
[
0
t

]
,

where

A =
[

0 1
−1 0

]
, f (t) =

[
0
t

]
.

The corresponding homogeneous system is φ̇1=φ2, φ̇2=−φ1, which is equivalent to φ̈1+φ1=0. The linearly
independent solutions φ1= cos t , sin t correspond respectively to φ2=− sin t , cos t . Therefore all solutions of
the corresponding homogeneous system are the linear combinations of[

cos t
− sin t

]
,
[
sin t
cos t

]
;

which are given in matrix form by

φ(t) =
[
cos t sin t
− sin t cos t

] [
a1
a2

]

where a1, a2 are arbitrary.
It can be confirmed that x1 = t , x2 = 1 is a particular solution of the original system. Therefore all solutions

are given by

x(t) =
[
t

1

]
+
[
cos t sin t
− sin t cos t

] [
a1
a2

]
,

where a1, a2 are arbitrary. �
Theorem 8.8 The solution of the system ẋ=A(t)x+f (t) with initial conditions x(t0)= x0 is
given by

x(t) = �(t)�−1(t0)x0 +�(t)

∫ t

t0

�−1(s)f (s)ds,

where �(t) is any fundamental solution matrix of the corresponding homogeneous system
�̇ = A(t)φ.

Proof Let x(t) be the required solution, for which the following form is postulated

x(t) = �(t)�−1(t0){x0 + φ(t)}. (8.20)

The inverses of �(t) and �−1(t0) exist since, by Theorem 8.5, they are non-singular. Then by
the initial condition x(t0) = x0, or x0 + φ(t0) by (8.20), and so

φ(t0) = 0.
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To find the equation satisfied by φ(t), substitute (8.20) into the equation, which becomes

�̇(t)�−1(t0){x0 + φ(t)} +�(t)�−1(t0)φ̇(t)

= A(t)�(t)�−1(t0){x0 + φ(t)} + f (t).
Since �(t) is a solution matrix of the homogeneous equation, �̇(t) = A(t)�t , and the previous
equation then becomes

�(t)�−1(t0)φ̇(t) = f (t).
Therefore,

φ̇(t) = �(t0)�
−1(t)f (t),

whose solution satisfying the initial condition is

φ(t) = �(t0)

∫ t

t0

�−1(s)f (s)ds.

Therefore, by (8.20),

x(t) = �(t)�−1(t0)x0 +�(t)

∫ t

t0

�−1(s)f (s)ds. �

For an alternative form of solution when A is a constant matrix, see Theorem 8.13 in
Section 8.10.

Example 8.10 Find the solution of

ẋ = A(t)x + f (t),
where

x =
⎡
⎣x1x2
x3

⎤
⎦ , A(t) =

⎡
⎣ 0 1 0

1 0 0
te−t te−t 1

⎤
⎦ , f (t) =

⎡
⎣et0
1

⎤
⎦ ,

which satisfies the initial conditions x(0) = [0, 1,−1]T.
The solution is given by the formula in Theorem 8.8. We first require a fundamental solution matrix of the
associated homogeneous system φ̇ = A(t)φ. In component form, this equation separates into

φ̇1 = φ2, φ̇2 = φ1, φ̇3 − φ3 = te−t (φ1 + φ2).

From the first two equations

φ1 = Aet + Be−t , φ2 = Aet − Be−t .

The third equation now becomes

φ̇3 − φ3 = 2At .

which has the general solution

φ3 = −2A(1+ t)+ Cet .
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Hence a fundamental solution matrix is

�(t) =
⎡
⎣ et e−t 0

et −e−t 0
−2(1+ t) 0 et

⎤
⎦ .

Since det[�(t)] = −2et ,

�−1(t) = 1
2

⎡
⎣ e−t e−t 0

et −et 0
2(1+ t)e−2t 2(1+ t)e−2t 2e−t

⎤
⎦ ,

and

�−1(0) = 1
2

⎡
⎣1 1 0
1 −1 0
2 2 2

⎤
⎦ .

Thus the required solution is

x(t) =
⎡
⎣ et e−t 0

et −e−t 0
−2(1+ t) 0 et

⎤
⎦
⎧⎪⎨
⎪⎩
⎡
⎢⎣

1
2

1
2 0

1
2 −1

2 0
1 1 1

⎤
⎥⎦
⎡
⎣ 0

1
−1

⎤
⎦

+ 1
2

∫ t

0

⎡
⎣ e−s e−s 0

es −es 0
2(1+ s)e−2s 2(1+ s)e−2s 2e−s

⎤
⎦
⎡
⎣es0
1

⎤
⎦ds
⎫⎪⎬
⎪⎭

=
⎡
⎣ et e−t 0

et −e−t 0
−2(1+ t) 0 et

⎤
⎦
⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
2

−1
2

0

⎤
⎥⎥⎦+ 1

2

∫ t

0

⎡
⎣ 1

e2s

(4+ 2s)e−s

⎤
⎦ds
⎫⎪⎪⎬
⎪⎪⎭

=
⎡
⎣ et e−t 0

et −e−t 0
−2(1+ t) 0 et

⎤
⎦
⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
2

−1
2

0

⎤
⎥⎥⎦+ 1

2

⎡
⎢⎣

t
1
2e

2t − 1
2

6− 2e−t (3+ t)

⎤
⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ .

Hence the solution is

x1(t) = (34 + 1
2 t)e

t − 3
4e
−t ,

x2(t) = (14 + 1
2 t)e

t + 3
4e
−t ,

x3(t) = 3et − t2 − 3t − 4. �

Exercise 8.5
Using Theorem 8.8 find the solution of ẋ = A(t)x + f (t), where

x =
⎡
⎣x1x2
x3

⎤
⎦ , A(t) =

⎡
⎣ 0 0 1
te−t 2 te−t
1 0 0

⎤
⎦ , f (t) =

⎡
⎣ 0
e2t

0

⎤
⎦ ,

and x(0) = [0, 1, 1]T.
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8.7 Stability and boundedness for linear systems

The following theorem requires a suitable norm (see Appendix D) for a matrix. For any matrix
A, with elements aij , i, j = 1, . . . , n, which are real or complex, we define

‖A‖ =
⎡
⎣∑

i,j

|aij |2
⎤
⎦

1
2

. (8.21)

The norm serves as a measure of magnitude for A. It combines with the norm (8.1) for a vector
to produce the inequality

‖Aa‖ ≤ ‖A‖‖a‖ (8.22)

if a is a vector of dimension n.

Theorem 8.9 For the regular linear system ẋ=A(t)x the zero solution, and hence, by
Theorem 8.1, all solutions, are Liapunov stable on t ≥ t0, t0 arbitrary, if and only if every
solution is bounded as t→∞. If A is constant and every solution is bounded, the solutions are
uniformly stable.

Proof By Theorem 8.1 we need consider only the stability of the zero solution.
First, suppose that the zero solution, x∗(t)≡0 is stable. Choose any ε >0. Then there exists a
corresponding δ for Definition 8.2. Let

�(t) = [ψ1(t),ψ2(t), . . . ,ψn(t)]
be the fundamental matrix satisfying the initial condition

�(t0) = 1
2δI

where I is the unitmatrix. (This is a diagonalmatrixwith elements 1
2δ on the principal diagonal.)

By Definition 8.2

‖ψ i (t0)‖ = 1
2δ < δ ⇒ ‖ψ i (t)‖ < ε, t ≥ t0.

Therefore every solution is bounded since any other solution is a linear combination of
the ψ i (t).

Suppose, conversely, that every solution is bounded. Let �(t) be any fundamental matrix;
then there exists, by hypothesis, M >0 such that ‖�(t)‖<M, t ≥ t0. Given any ε >0 let

δ = ε

M‖�−1(t0)‖
Let x(t) be any solution; we will test the stability of the zero solution. We have x(t) =
�(t)�−1(t0)x(t0), (Theorem 8.6), and if

‖x(t0)‖ < δ,
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then

‖x(t)‖ ≤ ‖�(t)‖ ‖�−1(t0)‖ ‖x(t0)‖ < M
ε

Mδ
δ = ε. (8.23)

Thus Definition 8.2 of stability for the zero solution is satisfied.
When A is a constant matrix, the autonomous nature of the system ensures that stability is

uniform. �

Linearity is essential for this theorem: it predicts that the system ẋ1= x2, ẋ2=−x1 has only
stable solutions; but the solutions of ẋ1= x2, ẋ2=− sin x1 are not all stable. Note that the
stability of forced solutions (Theorem 8.1) is not determined by whether they are bounded or
not; it is the boundedness of the unforced solutions which determines this.

Exercise 8.6
Find the norm of

A(t) =
[

e−t −1
1/(t2 + 1) sin t

]
,

and show that ‖A(t)‖ ≤ 2.

8.8 Stability of linear systems with constant coefficients

When the coefficients aij (t) in (8.14) are functions of t , it will usually be impossible to construct
an explicit fundamental matrix for the system. When the coefficients are all constants, however,
the solutions are of comparatively elementary form, and we shall obtain a simple statement
(Theorem 8.12) summarizing their stability properties. The lines of the proof follow those of
Section 2.4, where the system of dimension 2 is solved.
Consider the system

ẋ = Ax, (8.24)

where A is a constant n× n matrix with real elements. We look for solutions of the form

x = reλt , (8.25)

where λ is a constant, and r is a constant column vector. In order to satisfy (8.24) we must
have

Areλt − λreλt = (A− λI )reλt = 0

for all t , or

(A− λI )r = 0. (8.26)
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Given a value for λ, this is equivalent to n linear equations for the components of r, and has
non-trivial solutions if and only if

det(A− λI ) = 0. (8.27a)

In component form (8.27a) becomes∣∣∣∣∣∣∣∣
a11 − λ a12 . . . a1n
a21 a22 − λ . . . a2n
· · · · · · · · · · · ·
an1 an2 . . . anm − λ

∣∣∣∣∣∣∣∣
= 0. (8.27b)

Equation (8.27) is a polynomial equation of degree n for λ, called the characteristic equation.
It therefore has n roots, real or complex, some of which may be repeated roots. If λ is a
complex solution, then so is λ̄, since A is a real matrix. The values of λ given by (8.27) are the
eigenvalues of A. Equation (8.24) therefore has a solution of the form (8.25) if and only if λ is
an eigenvalue of A.
Now suppose that the eigenvalues are all different, so that there are exactly n distinct eigen-

values, real, complex or zero, λ1, λ2, . . . , λn. For each λi there exist nonzero solutions r = r i of
equation (8.26). These are eigenvectors corresponding to λi . It is known that in the present case
of n distinct eigenvalues, all the eigenvectors of a particular eigenvalue are simply multiples of
each other: therefore we have essentially n solutions of (8.24):

[r1eλ1t , r2eλ2t , . . . , rneλnt ],
where r i is any one of the eigenvectors of λi . The solutions are linearly independent. Therefore:

Theorem 8.10 For the system ẋ=Ax, with A a real, constant matrix whose eigenvalues
λ1, λ2, . . . , λn are all different,

�(t) = [r1eλ1t , r2eλ2t , . . . , rneλnt ] (8.28)

is a fundamental matrix (complex in general), where r i is any eigenvector corresponding
to λi . �
Example 8.11 Find a fundamental matrix for the system

ẋ1 = x2 − x3, ẋ2 = x3, ẋ3 = x2.

We have ẋ = Ax with

A =
⎡
⎣0 1 −1
0 0 1
0 1 0

⎤
⎦ .

To find the eigenvalues, we require

det(A− λI ) =
∣∣∣∣∣∣
−λ 1 −1
0 −λ 1
0 1 −λ

∣∣∣∣∣∣ = −λ(λ− 1)(λ+ 1),

so the eigenvalues are λ1 = 0, λ2 = 1, λ3 = −1. The equations for the eigenvectors, r1, r2, r3 are as follows.
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For λ1 = 0, r1 = [α1,β1, γ1]T where

β1 − γ1 = 0, β1 = 0, γ1 = 0.

A solution is r1 = [1, 0, 0]T.
For λ2 = 0, r2 = [α2,β2, γ2]T where

− α2 + β2 − γ2 = 0, −β2 + γ2 = 0, β2 − γ2 = 0.

A solution is r2 = [0, 1, 1]T.
For λ3 = −1, r3 = [α3,β3, γ3]T where

α3 + β3 − γ3 = 0, β3 + γ3 = 0, β3 + γ3 = 0.

A solution is r = [2,−1, 1]T.
A fundamental matrix is therefore given by (8.28), namely

�(t) =
⎡
⎣1 0 2e−t
0 et −e−t
0 et e−t

⎤
⎦ . �

When the eigenvalues are not all distinct the formal situation is more complicated, and for
the theory the reader is referred, for example, to Wilson (1971) or Boyce and DiPrima (1996).
We illustrate some possibilities in the following examples.

Example 8.12 Find a fundamental matrix for the system

ẋ1 = x1, ẋ2 = x2, ẋ3 = x3.

The coefficient matrix for the system is

A =
⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦ .

The characteristic equation is det(A−λI ) = 0, which becomes (1−λ)3 = 0. Thus λ = 1 is a threefold repeated
root. The equation for the eigenvectors, (A − λI )r = 0, gives no restriction on r, so the linearly independent
vectors [1, 0, 0]T, [0, 1, 0]T, [0, 0, 1]T can be chosen as eigenvectors. This leads to the fundamental matrix �
given by

�(t) =
⎡
⎣et 0 0
0 et 0
0 0 et

⎤
⎦ . �

Example 8.13 Find a fundamental matrix for the system

ẋ1 = x1 + x2, ẋ2 = x2, ẋ3 = x3.

We have

A =
⎡
⎣1 1 0
0 1 0
0 0 1

⎤
⎦ .

The characteristic equation becomes (1 − λ)3 = 0, so λ = 1 is a threefold root. The equation (8.26) for
the eigenvectors gives r2 = 0 with r1 and r3 unrestricted. We choose the two simplest linearly independent
eigenvectors, [1, 0, 0]T and [0, 0, 1]T, say, satisfying this condition. The corresponding solutions are

[et , 0, 0]T, [0, 0, et ]T.
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To find a third solution let

x = rtet + set .
Then

ẋ −Ax = −[(A− I )s − rI ]et − (A− I )rtet = 0

if r and s satisfy

(A− I )r = 0, (A− I )s = r.

Choose r =[1, 0, 0]T. Then s=[0, 1, 0]T, so that a third solution is [tet , e−t , 0]T. A fundamental matrix � is
therefore given by

�(t) =
⎡
⎣et 0 tet

0 0 et

0 et 0

⎤
⎦ . �

Example 8.14 Find a fundamental matrix for the system

ẋ1 = x1 + x2, ẋ2 = x2 + x3, ẋ3 = x3.

We have

A =
⎡
⎣1 1 0
0 1 1
0 0 1

⎤
⎦ .

Once again, λ=1 is a threefold root of the characteristic equation. The equation for the eigenvectors gives
r2= r3=0. One solution is r =[1, 0, 0]T and there is no other which is linearly independent of this one. The
corresponding solution is x=[et , 0, 0]T. A second solution is given by

x = rtet + set ,
where

(A− I )s = r,
and a third solution by

x = r t
2

2! e
t + stet + uet ,

where

(A− I )u = s.
By finding vectors s and u, it can be confirmed that two more linearly independent solutions are

x = [tet , et , 0]T, x = [12 t2et , tet , et ]T

leading to the fundamental matrix

�(t) =
⎡
⎣et tet 1

2 t
2et

0 et tet

0 0 et

⎤
⎦ . �
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Inspection of these examples suggests the following theorem on the form of linearly
independent solutions associated with multiple eigenvalues. We state the theorem without
proof.

Theorem 8.11 Corresponding to an eigenvalue of A, λ = λi , of multiplicity m ≤ n there are
m linearly independent solutions of the system ẋ = Ax, where A is a constant matrix. These
are of the form

p1(t)e
λi t , . . . ,pm(t)e

λi t , (8.29)

where the pj (t) are vector polynomials of degree less than m. �

Note that when an eigenvalue is complex, the eigenvectors and the polynomials in (8.29) will
be complex, and the arrays consist of complex-valued solutions. Since the elements of A are
real, the characteristic equation (8.27) has real coefficients. Therefore, if λi is one eigenvalue,
λ̄i is another. The corresponding polynomial coefficients in (8.29) are, similarly, complex
conjugates. In place, therefore, of the pair of complex solutions φi (t), φ̄i (t) corresponding to
λi and λ̄i respectively, we could take the real solutions, Re{φi (t)}, Im{φi (t)}.
According to Theorems 8.9, 8.10 and 8.11 it is possible to make a simple statement about

the stability of the solutions of systems with constant coefficients, ẋ = Ax.

Theorem 8.12 Let A be a constant matrix in the system ẋ = Ax, with eigenvalues λi ,
i = 1, 2, . . . n.

(i) If the system is stable, then Re{λi} ≤ 0, i = 1, 2, . . . , n.

(ii) If either Re{λi} < 0, i = 1, 2, . . . , n; or if Re{λi} ≤ 0, i = 1, 2, . . . , n and there is no zero
repeated eigenvalue; then the system is uniformly stable.

(iii) The system is asymptotically stable if and only if Re{λi}<0, i=1, 2, . . . , n (and then it is
also uniformly stable, by (ii)).

(iv) If Re{λi} > 0 for any i, the solution is unstable. �

In connection with (ii), note that if there is a zero repeated eigenvalue the system may be
stable or unstable. For example, the system ẋ1 = 0, ẋ2 = 0 has a fundamental matrix

[
1 0
0 1

]

which implies boundedness and therefore stability, but ẋ1 = x2, ẋ2 = 0 has a fundamental
matrix [

1 t

0 1

]

showing that the system is unstable.
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Exercise 8.7
Find the eigenvalues of

A =
⎡
⎣−1 1 1

0 1 2
−1 0 1

⎤
⎦ ,

and find a fundamental matrix solution of ẋ = Ax.

Exercise 8.8
Show that

A =
⎡
⎣2 0 1
1 1 1
1 −1 2

⎤
⎦

has a repeated eigenvalue. Find a fundamental matrix solution of ẋ = Ax.

8.9 Linear approximation at equilibrium points for first-order
systems in n variables

The equilibrium points of the autonomous first-order system in n variables (often described
simply as an nth order system)

ẋ = X(x) (8.30)

occur at solutions of the n simultaneous equations given by X(x) = 0. For nonlinear systems
there are no general methods of solving this equation, and we must rely on ad hoc eliminations,
or numerically computed solutions. The phase space of this system is the n-dimensional space
of the components of x: phase paths are curves drawn in this space.

Example 8.15 Find all equilibrium points of the third-order system

ẋ =
⎡
⎣ẋ1ẋ2
ẋ3

⎤
⎦ = X(x) =

⎡
⎣x21 − x2 + x3

x1 − x2
2x22 + x3 − 2

⎤
⎦ . (i)

We require all simultaneous solutions of X(x) = 0, that is,

x21 − x2 + x3 = 0, (ii)

x1 − x2 = 0, (iii)

2x22 + x3 − 2 = 0. (iv)
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Using (iii), eliminate x2 in (ii) and (iv):

x21 − x1 + x3 = 0, 2x21 + x3 − 2 = 0.

Now eliminate x3 between these equations, so that

x21 + x1 − 2 = (x1 + 2)(x1 − 1) = 0.

Thus x1 = −2 or 1, and the coordinates of the two equilibrium points are (−2,−2,−6) and (1, 1, 0). �
As in Chapter 2, we can investigate the nature of an equilibrium point by examining its linear

approximation. Suppose that the system (8.30) has an equilibrium point at x = xc. Consider a
perturbation x = xc + ξ about the equilibrium point, where it is assumed that the magnitude
of ξ is small. Substitution into (8.30) leads to

ξ̇ = X(xc + ξ) = X(xc)+ Jξ + o(‖ξ‖),= Jξ + o(‖ξ‖),

where J is the n × n Jacobian matrix of X = [X1(x),X2(x), . . . ,Xn(x)]T evaluated at the
equilibrium point xc, namely the matrix with elements Jij given by

J = [Jij ] =
[
∂Xi(x)

∂xj

]
x= xc

. (8.31)

Then the linear approximation is

ξ̇ = Jξ . (8.32)

Example 8.16 Find the linear approximations at the equilibrium points of

ẋ =
⎡
⎣x21 − x2 + x3

x1 − x2
2x22 + x3 − 2

⎤
⎦

(see Example 8.15).
From Example 8.15 the equilibrium points are located at (−2,−2,−6) and (1, 1, 0). In this case the
Jacobian is

JX =
⎡
⎣2x1 −1 1

1 −1 0
0 4x2 1

⎤
⎦ .

Hence at (−2,−2,−6) the linear approximation is

ξ̇ =
⎡
⎣−4 −1 1

1 −1 0
0 −8 1

⎤
⎦ ξ ,

and at (1, 1, 0),

ξ̇ =
⎡
⎣2 −1 1
1 −1 0
0 4 1

⎤
⎦ ξ . �
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As we explained in Theorem 8.12, the stability of the solutions of a linear system with
constant coefficients depends on the sign of the real parts of the eigenvalues of the Jacobian
matrix evaluated at the equilibrium point. If the eigenvalues are listed as [λ1, λ2, . . . , λn] and
Re{λi} < 0, i = 1, 2, . . . , n), then the linear approximation will be asymptotically stable. We
shall look briefly at the stability of the equilibrium points of some first-order linear systems in
three variables,

ẋ = Ax,
where A is a constant matrix. Since the equation for the eigenvalues is a real cubic equation,
the eigenvalues will either be all real, or one real and two complex. The eigenvalues satisfy the
characteristic equation

det(A− λI ) = 0,

where In represents the identity matrix of order n.

Example 8.17 Find the eigenvalues of

A =
⎡
⎣−3 0 2
−1 −3 5
−1 0 0

⎤
⎦ ,

and discuss the phase diagram near x = 0 of ẋ = Ax.
The eigenvalues are given by the characteristic equation

|A− λI | =
∣∣∣∣∣∣
−3− λ 0 2
−1 −3− λ 5
−1 0 −λ

∣∣∣∣∣∣ = −(1+ λ)(2+ λ)(3+ λ) = 0.

Denoting the eigenvalues by λ1=−1, λ2=−2, λ3=−3, then the corresponding eigenvectors are

r1 =
⎡
⎣12
1

⎤
⎦ , r2 =

⎡
⎣23
1

⎤
⎦ , r3 =

⎡
⎣01
0

⎤
⎦ ,

and the general solution is

⎡
⎣x1x2
x3

⎤
⎦ = α

⎡
⎣12
1

⎤
⎦ e−t + β

⎡
⎣23
1

⎤
⎦ e−2t + γ

⎡
⎣01
0

⎤
⎦ e−3t ,

where α, β, and γ are constants. Since all the eigenvalues are negative the origin will be asymptotically stable.
This equilibrium point has strong damping with a node-like structure. �

Example 8.18 Find the eigenvalues of

A =
⎡
⎢⎣−

9
4 −2 −3
1 3

4 1
1 1 3

4

⎤
⎥⎦ ,

and sketch some phase paths of ẋ = Ax near x = 0.
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The eigenvalues are given by∣∣∣∣∣∣∣
−9

4 − λ −2 −3
1 3

4 − λ 1
1 1 3

4 − λ

∣∣∣∣∣∣∣ = −
1
64 (1+ 4λ)

(
λ+ 1

4 + i
) (

λ+ 1
4 − i
)
= 0.

Denoting them by λ1 = −1
4 , λ2 = −1

4 − i, λ3 = −1
4 + i, the corresponding eigenvectors are

r1 =
⎡
⎣−11

0

⎤
⎦ , r2 =

⎡
⎣−2− i

1
1

⎤
⎦ , r3 =

⎡
⎣−2+ i

1
1

⎤
⎦ .

Hence the general solution can be expressed in real form as

x = αr1e
−1
4 t + (β + iγ )r2e

−
(
1
4+i
)
t + (β − iγ )r3e

−
(
1
4−i
)
t
,

where α, β, and γ are arbitrary real constants. Since all the eigenvalues have negative real part, the equilibrium
point is asymptotically stable. The system has an exponentially damped solution of x1 + x2 = 0, x3 = 0 if
β = γ = 0. All other solutions are damped spirals: an example is shown in Fig. 8.14. �

Figure 8.14 A single spiral solution of Example 8.18.

Exercise 8.9
Find the general solution of ẋ = Ax where

A =
⎡
⎣−2 0 −1
−1 −1 −1
−1 1 −3

⎤
⎦ .

Show that the equilibrium point at the origin is asymptotically stable, and find the equations
of the straight line phase paths which approach the origin.



8.10 Stability of a class of non-autonomous linear systems in n dimensions 293

8.10 Stability of a class of non-autonomous linear systems
in n dimensions

The system considered is

ẋ = {A+ C(t)}x, (8.33)

where A is a constant matrix. Under quite general conditions the stability is determined by the
stability of the solutions of the autonomous system

ẋ = Ax. (8.34)

We require the following theorems, the first of which expresses the solutions of the system

ẋ = Ax + f (t)
in a form alternative to that given in Theorem 8.8.
Lemma Let �(t) be any fundamental matrix of the system φ̇ = Aφ,A constant. Then for any
two parameters s, t0,

�(t)�−1(s) = �(t − s + t0)�
−1(t0). (8.35)

In particular,

�(t)�−1(s) = �(t − s)�−1(0). (8.36)

Proof Since �̇ = A�, if we define U(t) by U(t) = �(t)�−1(s), then U̇(t) = AU(t), and
U(s) = I .
Now consider V (t) = φ(t − s + t0)�

−1(t0). Then V̇ (t) = AV (t). (for since A is constant,
�(t) and �(t − s + t0) satisfy the same equation), and V (s) = I .

Therefore, the corresponding columns of U and V satisfy the same equation with the same
initial conditions, and are therefore identical by the Uniqueness Theorem (Appendix A). �

The following theorem is obtained by applying the above Lemma to Theorem 8.8.

Theorem 8.13 Let A be a constant matrix. The solution of the system ẋ = Ax + f (t), with
initial conditions x(t0) = x0, is given by

x(t) = �(t)�−1(t0)x0 +
∫ t

t0

�(t − s + t0)�
−1(t0)f (s)ds, (8.37)

where �(t) is any fundamental matrix for the system φ̇ = Aφ. In particular, if �(t) is the
fundamental matrix satisfying �(t0) = I ), then

x(t) = �(t)x0 +
∫ t

t0

�(t − s)f (s)ds. (8.38)

�
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Example 8.19 Express the solution of the second-order equation ẍ − x = h(t), with x(0) = 0, ẋ(0) = 1 as an
integral.

An equivalent first-order pair is

ẋ = y, ẏ = x + h(t),

and [
ẋ

ẏ

]
=
[
0 1
1 0

] [
x

y

]
+
[

0
h(t)

]
= A
[
x

y

]
+ f (t).

Since the eigenvalues of A are λ1 = 1, λ2 = −1, and the corresponding eigenvectors are r1 = [1, 1]T and
r2 = [1,−1]T, a fundamental matrix for the homogeneous system is

�(t) =
[
et e−t
et −e−t

]
.

Then, following Theorem 8.13

�(0) =
[
1 1
1 −1

]
, �−1(0) =

[1
2

1
2

1
2 −1

2

]
,

and

[
x

y

]
=
[
et e−t
et −e−t

][1
2

1
2

1
2 −1

2

][
0
1

]
+
∫ t

0

[
et−s e−t+s
et−s −e−t+s

][1
2

1
2

1
2 −1

2

][
0

h(s)

]
ds

=
[
sinh t

cosh −t
]
+
∫ t

0

[
h(s) sinh(t − s)

h(s) cosh(t − s)

]
ds. �

Theorem 8.14 (Gronwall’s lemma) If, for t ≥ t0,

(i) u(t) and v(t) are continuous and u(t) ≥ 0, v(t) ≥ 0;

(ii) u(t) ≤ K + ∫ t
t0
u(s)v(s)ds, K > 0; (8.39)

then

u(t) ≤ K + exp
(∫ t

t0

v(s)ds
)
, t ≥ t0. (8.40)

Proof The right-hand side of (8.39) is positive, sinceK >0 and u(t), v(t) ≥ 0. Therefore (8.39)
gives

u(t)v(t)

K + ∫ t
t0
u(s)v(s)ds

≤ v(t).

Integrate both sides from t0 to t :

log
{
K +
∫ t

t0

u(s)v(s)ds
}
− logK ≤

∫ t

t0

v(s)ds.
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Therefore

K +
∫ t

t0

u(s)v(s)ds ≤ K exp
(∫ t

t0

v(s)ds
)
.

The application of (8.39), again gives the required result. �

Gronwall’s lemma implies that if

u(t)−
∫ t

t0

u(s)v(s)ds

is bounded, then

u(t)/ exp
(∫ t

t0

v(s)ds
)

is also bounded by the same constant. Equality occurs if u̇ = uv. Given v, the optimum u

can be found from this equation. For example, if v(t) = t and t0 = 0, then we could choose
u(t) = e

1
2 t2 (or any multiple), in which case K = 1.

Theorem 8.15 Suppose that

(i) A is a constant n× n matrix whose eigenvalues have negative real parts;

(ii) For t0 ≤ t <∞, C(t), is continuous and∫ t

t0

‖C(t)‖dt is bounded. (8.41)

Then all solutions of the linear, homogeneous system ẋ = {A+C(t)}x are asymptotically stable.

Proof Write the system in the form

ẋ = Ax + C(t)x. (8.42)

If x(t) is a solution, then C(t)x(t) is a function of t which may play the part of f (t) in
Theorem 8.13. Therefore (8.42) implies

x(t) = �(t)�−1(t0)x0 +
∫ t

t0

�(t − s + t0)�
−1(t0)C(s)x(s)ds,

where� is any fundamental matrix for the system ẋ = Ax, and x(t0) = x0. Using the properties
of norms (Appendix C), which parallel the properties of vector magnitudes, we obtain

‖x(t)‖ ≤ ‖�(t)‖ ‖�−1(t0)‖‖x0‖

+ ‖�−1(t0)‖
∫ t

t0

‖�(t − s + t0)‖ ‖C(s)‖ ‖x(s)‖ds. (8.43)



296 8 : Stability

Since A has eigenvalues with negative real part, Theorem 8.12 shows that for some positive M
and m,

‖�(t)‖ ≤ Me−mt , t ≥ t0. (8.44)

Therefore, putting

‖�−1(t0)‖ = β,

(8.43) implies, after some regrouping, that for t ≥ t0

‖x(t)‖emt ≤ Mβ‖x0‖ +
∫ t

t0

{‖x(s)‖ems}{C(s)Mβe−mt0}ds. (8.45)

In Theorem 8.2, let

u(t) = ‖x(t)‖emt , ν(t) = ‖C(t)‖βMe−mt0 ,

and

K = Mβ‖x0‖.
Then from (8.45) and Theorem 8.13,

‖x(t)‖emt ≤ Mβ‖x0‖ exp
(
βMe−mt0

∫ t

t0

‖C(s)‖ds
)

or

‖x(t)‖ ≤ Mβ‖x0‖ exp
(
βMe−mt0

∫ t

t0

‖C(s)‖ds −mt

)
. (8.46)

Therefore, by (8.41) every solution of (8.42) is bounded for t ≥ t0 and is therefore stable
by Theorem 8.9. Also every solution tends to zero as t → ∞ and is therefore asymptotically
stable. �

Corollary 8.15 If C(t) satisfies the conditions of the theorem but all solutions of ẋ = Ax are
merely bounded, then all solutions of ẋ = {A+ C(t)}x are bounded and therefore stable.
Proof This follows from (8.46) by writing m=0 in (8.45). Note that Re{λi} ≤ 0 for all i is
not in itself sufficient to establish the boundedness of all solutions of ẋ = Ax. �

The stability of nth order differential equations can be discussed in the same terms as that of
suitable n-dimensional systems. If we replace the equation

x
(n)
1 + a1(t)x

(n−1)
1 + · · · + an(t)x1 = f (t)

by the equivalent system

ẋ1 = x2, ẋ2 = x3, . . . , ẋn−1 = xn, ẋn = a1(t)xn − · · · − an(t) x1 + f (t), (8.47)
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the set of initial conditions for the system, (x1(t0), . . . , xn(t0)), correspond with the usual initial
conditions appropriate to the equation: the set

[x1(t0), x(1)1 (t0), . . . , x
(n−1)
1 (t0)].

Therefore, to discuss the stability of the solutions of equations in terms of the definitions for
systems we use the presentation (8.47) rather than any other. It can, in fact, be shown (Problem
8.7) that a system obtained by a general transformation of the variables need not retain the
stability properties of the original system.

Example 8.20 Show that when a > 0 and b > 0 all solutions of

ẍ + aẋ + (b + ce−t cos t)x = 0

are asymptotically stable for t ≥ t0, for any t0.
The appropriate equivalent system (with ẋ = y) is

[
ẋ

ẏ

]
=
[
0 1
−b −a

] [
x

y

]
+
[

0 0
−ce−t cos t 0

] [
x

y

]
.

In the notation of the above theorem

A =
[
0 1
−b −a

]
, C(t) =

[
0 0

−ce−t cos t 0

]
.

The eigenvalues of A are negative if a > 0 and b > 0. Also

∫ ∞
t0

‖C(t)‖dt = |c|
∫ ∞
t0

e−t | cos t |dt <∞.

The conditions of the theorem are satisfied, so all solutions are asymptotically stable. �
Example 8.21 Show that all solutions of ẍ+{a+ c(1+ t2)−1}x= f (t) are stable if a >0.

Let ẋ= y. The equation is equivalent to

[
ẋ

ẏ

]
=
[
0 1
−a 0

] [
x

y

]
+
[

0 0
−c(1+ t2)−1 0

] [
x

y

]
+
[

0
f (t)

]
.

By Theorem 8.1, all solutions of the given system have the same stability property as the zero solution (or
any other) of the corresponding homogeneous system ξ̇ = {A+ C(t)}ξ , where

A =
[
0 1
−a 0

]
, C(t) =

[
0 0

−c(1+ t2)−1 0

]
.

The solutions of ξ = Aξ are bounded when a > 0 (the zero solution is a centre on the phase plane). Also

∫ ∞
t0

‖C(t)‖dt = |c|
∫ ∞
t0

dt

1+ t2
<∞.

By Corollary 8.15 all solutions of ξ̇ = {A + C(t)}ξ are bounded and are therefore stable. (Note that the
inhomogeneous equation may, depending on f (t), have unbounded solutions which are stable.) �
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Exercise 8.10
Show that all solutions of⎡

⎣ẋ1ẋ2
ẋ3

⎤
⎦ =
⎡
⎣−2+ (1+ t2)−1 0 −1

−1 −1+ (1+ t2)−1 −1
−1 1 −3+ (1+ t2)−1

⎤
⎦
⎡
⎣x1x2
x3

⎤
⎦

are asymptotically stable.

8.11 Stability of the zero solutions of nearly linear systems

Certain nonlinear systems can be regarded as perturbed linear systems in respect of their stability
properties, the stability (or instability) of the linearized system being preserved. The following
theorem refers to the stability of the zero solutions.

Theorem 8.16 If h(0, t) = 0, A is constant, and

(i) the solutions of ẋ = Ax are asymptotically stable;
(ii) lim‖x‖→0{‖h(x, t)‖/‖x‖} = 0 uniformly in t , 0 ≤ t <∞;

then the zero solution, x(t)=0 for t ≥0, is an asymptotically stable solution of the regular
system

ẋ = Ax + h(x, t). (8.48)

Proof Regularity implies that h is such that the conditions of the existence theorem
(Appendix A) hold for all x and for t ≥ 0. However, it does not of itself imply that any
particular solution actually persists for all t : for a proof see Cesari (1971, p. 92).
Let �(t) be the fundamental matrix for the system ẋ = Ax for which �(0) = I . Then by

Theorem 8.13 with h in place of f , every solution of (8.48) with initial values at t = 0 satisfies

x(t) = �(t)x(0)+
∫ t

0
�(t − s)h(x(s), s)ds. (8.49)

By (i) and (8.44) there exist M > 0, m > 0 such that

‖�(t)‖ ≤ Me−mt , t ≥ 0. (8.50)

Also, by (ii), there exists δ0 such that

‖x‖ < δ0 ⇒ ‖h(x, t)‖ < m

2M
‖x‖, t ≥ 0. (8.51)

Now let δ be chosen arbitrarily subject to

0 < δ < δ0, (8.52)
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and consider solutions for which

‖x(0)‖ < δ. (8.53)

From (8.51) to (8.53), (8.49) gives

‖x(t)‖ ≤ Me−mt‖x(0)‖ +
∫ t

0
Me−mtems m

2M
‖x(s)}ds, 0 ≤ t <∞,

or

‖x(t)‖emt ≤ M‖x(0)‖ +
∫ t

0

1
2
m‖x(s)‖emsds, 0 ≤ t ≤ ∞. (8.54)

By Gronwall’s Lemma, Theorem 8.13 with u(t) = ‖x(t)‖emt , ν(t) = 1
2m, K = M‖x(0)‖,

applied to this inequality we obtain

‖x(t)‖ ≤ M‖x(0)‖e− 1
2mt ≤ Mδe−

1
2mt , 0 ≤ t <∞. (8.55)

by (8.53).
Now δ is arbitrarily small, so we have proved that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < Mδe−
1
2mt , t ≥ 0, (8.56)

which implies asymptotic stability of the zero solution.
The asymptotic stability of the linearized system ensures that ‖x(t)‖ tends to decrease,

reducing the relative effect of the nonlinear term. This process is self-reinforcing. �

The example in which

x =
[
x1
x2

]
, A =

[−1 0
1 −2

]
, h =

[
x21
0

]

satisfies the conditions of the theorem since A has eigenvalues −1 and −2. In this case

�(t) =
[

e−t 0
−e−t + e−2t e−2t

]
.

In the bound ‖�‖ ≤ Me−mt we can choose M = √6 and m = 1.

Example 8.22 Show that van der Pol’s equation ẍ + ν(x2 − 1)ẋ + x = 0 has an asymptotically stable zero
solution when ν < 0.

Replace the equation by the system(
ẋ

ẏ

)
=
(

0 1
−1 ν

)(
x

y

)
+
(

0
−νx2y

)
= Ax + h(x, y).l

The eigenvalues of A are negative when ν < 0; therefore, by Theorem 8.13, all the solutions of ẋ = Ax are
asymptotically stable. Condition (ii) of Theorem 8.13 is satisfied since

‖h(x, y)‖ = |ν|x2|y| ≤ |ν|(|x| + |y|)2(|x| + |y|) = |ν|‖x‖3. �
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Example 8.23 Show that the zero solution of the equation ẍ + kẋ + sin x = 0 is asymptotically stable
for k > 0.

The equivalent system is(
ẋ

ẏ

)
=
(

0 1
−1 −k

)(
x

y

)
+
(

0
x − sin x

)
= Ax + h(x), x = [x, y]T,

which satisfies the conditions of Theorem 8.15, since, using the Taylor series for sin x,

‖h(x)‖ = |x − sin x| =
∣∣∣∣∣x

3

3! −
x5

5! + · · ·
∣∣∣∣∣

≤ |x3|
[
1
3! +

x2

5! + · · ·
]

≤ ‖x‖‖x‖2
[
1
3! +

‖x‖2
5! + · · ·

]
.

Hence

‖h(x)‖
‖x‖ → 0 as ‖x‖ → 0. �

Exercise 8.11
Show that the solution x = 0, y = 0 of[

ẋ

ẏ

]
=
[−3 2

2 −3
] [

x

y

]
+
[
xe−x cos t

0

]

is asymptotically stable.

Problems

8.1 Use the phase diagram for the pendulum equation, ẍ + sin x = 0, to say which paths are not Poincaré
stable (see Fig. 1.2).

8.2 Show that all the paths of ẋ = x, ẏ = y are Poincaré unstable.

8.3 Find the limit cycles of the system

ẋ = −y + x sin r, ẏ = x + y sin r, r = √(x2 + y2).

Which cycles are Poincaré stable?

8.4 Find the phase paths for ẋ = x, ẏ = y log y, in the half-plane y > 0. Which paths are Poincaré stable?

8.5 Show that every nonzero solution of ẋ = x is unbounded and Liapunov unstable, but that every solution
of ẋ = 1 is unbounded and stable.

8.6 Show that the solutions of the system ẋ = 1, ẏ = 0, are Poincaré and Liapunov stable, but that the system
ẋ = y, ẏ = 0, is Poincaré but not Liapunov stable.

8.7 Solve the equations ẋ = −y(x2+y2), ẏ = x(x2+y2), and show that the zero solution is Liapunov stable
and that all other solutions are unstable.
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Replace the coordinates x, y by r,φ where x = r cos(r2t + φ), y = r sin(r2t + φ). and deduce that
ṙ =0, φ̇=0. Show that in this coordinate system the solutions are stable. (Change of coordinates can
affect the stability of a system: see Cesari (1971, p. 12).

8.8 Prove that Liapunov stability of a solution implies Poincaré stability for plane autonomous systems but
not conversely: see Problem 8.6.

8.9 Determine the stability of the solutions of
(i) ẋ1 = x2 sin t , ẋ2 = 0.

(ii) ẍ1 = 0, ẋ2 = x1 + x2.

8.10 Determine the stability of the solutions of

(i)
[
ẋ1
ẋ2

]
=
[−2 1
1 −2

] [
x1
x2

]
+
[
1
−2
]
et ;

(ii) ẍ + e−t ẋ + x = et .

8.11 Show that every solution of the system

ẋ = −t2x, ẏ = −ty
is asymptotically stable.

8.12 The motion of a heavy particle on a smooth surface of revolution with vertical axis z and shape z = f (r)

in cylindrical polar coordinates is

1

r4
{1+ f ′2(r)} d

2r

dθ2
+
[
1

r4
f ′(r)f ′′(r)− 2

r5
{1+ f ′2(r)}

](
dr
dθ

)2
− 1

r3
= − g

h2
f ′(r),

where h is the constant angular momentum (h = r2θ̇ ). Show that plane, horizontal motion r = a,
z = f (a), is stable for perturbations leaving h unaltered provided 3+ [af ′′(a)/f ′(a)] > 0.

8.13 Determine the linear dependence or independence of the following:
(i) (1, 1, −1), (2, 1, 1), (0, 1, −3).
(ii) (t , 2t), (3t , 4t), (5t , 6t).

(iii) (et , e−t ), (e−t , et ). Could these both be solutions of a 2×2 homogeneous linear system?

8.14 Construct a fundamental matrix � for the system ẋ = y, ẏ = −x − 2y. Deduce a fundamental matrix �
satisfying �(0) = I .

8.15 Construct a fundamental matrix for the system ẋ1 = −x1, ẋ2 = x1 + x2 + x3, ẋ3 = −x2.
8.16 Construct a fundamental matrix for the system ẋ1 = x2, ẋ2 = x1, and deduce the solution satisfying

x1 = 1, x2 = 0, at t = 0.

8.17 Construct a fundamental matrix for the system ẋ1 = x2, ẋ2 = x3, ẋ3 = −2x1+ x2+2x3, and deduce the
solution of ẋ1 = x2 + et , ẋ2 = x3, ẋ3 = −2x1 + x2 + 2x3, with x(0) = (1, 0, 0)T.

8.18 Show that the differential equation x(n) + a1x
(n−1) + · · · + anx = 0 is equivalent to the system

ẋ = x2, ẋ2 = x3, . . . , ẋn−1 = xn, ẋn = −anx1 − · · · − a1xn,

with x = x1. Show that the equation for the eigenvalues is

λn + a1λ
n−1 + · · · + an = 0.

8.19 A bird population, p(t), is governed by the differential equation ṗ = µ(t)p−kp, where k is the death rate
and µ(t) represents a variable periodic birth rate with period 1 year. Derive a condition which ensures
that the mean annual population remains constant. Assuming that this condition is fulfilled, does it seem
likely that, in practice, the average population will remain constant? (This is asking a question about a
particular kind of stability.)
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8.20 Are the periodic solutions of

ẍ + sgn(x) = 0.

(i) Poincaré stable? (ii) Liapunov stable?

8.21 Give a descriptive argument to show that if the index of an equilibrium point in a plane autonomous
system is not unity, then the equilibrium point is not stable.

8.22 Show that the system

ẋ = x + y − x(x2 + y2), ẏ = −x + y − y(x2 + y2), ż = −z,
has a limit cycle x2 + y2 = 1, z = 0. Find the linear approximation at the origin and so confirm that
the origin is unstable. Use cylindrical polar coordinates r = √(x2 + y2), z to show that the limit cycle is
stable. Sketch the phase diagram in x, y, z space.

8.23 Show that the nth-order nonautonomous system ẋ = X(x, t) can be reduced to an (n + 1)th-order
autonomous system by introducing a new variable, xn+1 = t . (The (n + 1)-dimensional phase diagram
for the modified system is then of the type suggested by Fig. 8.9. The system has no equilibrium points.)

8.24 Show that all phase paths of

ẍ = x − x3

are Poincaré stable except the homoclinic paths (see Section 3.6).

8.25 Investigate the equilibrium points of

ẋ = y, ẏ = z− y − x3, ż = y + x − x3.

Confirm that the origin has homoclinic paths given by

x = ±√2 secht , y = ∓√2 sech2t sinh t , z = ±√2 secht ∓√2 sec h2tsech2t sinh t .
In which directions do the solutions approach the origin as t →±∞?

8.26 By using linear approximations investigate the equilibrium points of the Lorenz equations

ẋ = a(y − x), ẏ = bx − y − xz, ż = xy − cz.

where a, b, c > 0 are constants. Show that if b ≤ 1, then the origin is the only equilibrium point, and that
there are three equilibrium points if b > 1. Discuss the stability of the zero solution.

8.27 Test the stability of the linear system

ẋ1 = t−2x1 − 4x2 − 2x3 + t2,

ẋ2 = −x1 + t−2x2 + x3 + t ,

ẋ3 = t−2x1 − 9x2 − 4x3 + 1.

8.28 Test the stability of the solutions of the linear system

ẋ1 = 2x1 + e−t x2 − 3x3 + e′,
ẋ2 = −2x1 + e−t x2 + x3 + 1,

ẋ3 = (4+ e−t )x1 − x2 − 4x3 + et .

8.29 Test the stability of the zero solution of the system

ẋ = y + xy/(1+ t2), ẏ = −x − y + y2/(1+ t2).
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8.30 Test the stability of the zero solution of the system

ẋ1 = e−x1−x2 − 1, ẋ2 = e−x2−x3 − 1, ẋ3 = −x3.
8.31 Test the stability of the zero solution of the equation

ẍ + [{1+ (t − 1)|ẋ|}/{1+ t |ẋ|}]ẋ + 1
4x = 0.

8.32 Consider the restricted three-body problem in planetary dynamics in which one body (possibly a satellite)
has negligible mass in comparison with the other two. Suppose that the two massive bodies (gravitational
masses µ1 and µ2) remain at a fixed distance a apart, so that the line joining them must rotate with spin
ω = √[(µ1+µ2)/a

3]. It can be shown (see Hill 1964) that the equations of motion of the third body are
given by

ξ̈ − 2ωη̇ = ∂U/∂ξ , η̈ + 2ωξ̇ = ∂U/∂η,

where the gravitational field

U(ξ , η) = 1
2
ω2(ξ2 + η2)+ µ1

d1
+ µ2

d2
,

and

d1 = √
[(

ξ + µ1a

µ1 + µ2

)2
+ η2

]
, d2 = √

[(
ξ − µ2a

µ1 + µ2

)2
+ η2

]
.

The origin of the rotating (ξ , η) plane is at the mass centre with ξ axis along the common radius of the
two massive bodies in the direction of µ2.

Consider the special case in which µ1 = µ2 = µ. Show that there are three equilibrium points along
the ξ axis (use a computed graph to establish this), and two equilibrium points at the triangulation points
of µ1 and µ2.

8.33 Express the equations

ẋ = x[1−√(x2 + y2)] − 1
2y[
√
(x2 + y2)− x],

ẏ = y[1−√(x2 + y2)] + 1
2x[
√
(x2 + y2)− x],

in polar form in terms of r and θ . Show that the system has two equilibrium points at (0, 0) and (1, 0).
Solve the equations for the phase paths in terms of r and θ , and confirm that all paths which start at any
point other than the origin approach (1, 0) as t →∞. Sketch the phase diagram for the system.

Consider the half-path which starts at (0, 1). Is this path stable in the Poincaré sense? Is the equilibrium
point at (1, 0) stable?

8.34 Consider the system

ẋ = −y, ẏ = x + λ(1− y2 − z2)y, ż = −y + µ(1− x2 − y2)z.

Classify the linear approximation of the equilibrium point at the origin in terms of the parameters λ 	= 0
and µ 	= 0. Verify that the system has a periodic solution

x = cos(t − t0), y = sin(t − t0), z = cos(t − t0),

for any t0.
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9
Stability by solution
perturbation: Mathieu’s
equation

Stability or instability of nonlinear systems can often be tested by an approximate procedure
which leads to a linear equation describing the growth of the difference between the test solution
and its neighbours. By Theorem 8.9 the stability or instability of the original system resolves
itself into the question of the boundedness or otherwise of the solutions of the linear equation.
This ‘variational equation’ often turns out to have a periodic coefficient (Mathieu’s equation)
and the properties of such equations are derived in this chapter. The fact that the solutions to
be tested are themselves usually known only approximately can also be assimilated into this
theory.

9.1 The stability of forced oscillations by solution perturbation

Consider the general n-dimensional autonomous system

ẋ = f (x, t). (9.1)

The stability of a solution x∗(t) can be reduced to consideration of the zero solution of a related
system. Let x(t) be any other solution, and write

x(t) = x∗(t)+ ξ(t). (9.2)

Then ξ(t) represents a perturbation, or disturbance, of the original solution: it seems reasonable
to see what happens to ξ(t), since the question of stability is whether such (small) disturbances
grow or not. Equation (9.1) can be written in the form

ẋ∗ + ξ̇ = f (x∗, t)+ {f (x∗ + ξ , t)− f (x∗, t)}.

Since x∗ satisfies (9.1), this becomes

ξ̇ = f (x∗ + ξ , t)− f (x∗, t) = h(ξ , t), (9.3)

say, since x∗(t) is assumed known. By (9.2), the stability properties of x∗(t) are the same as
those of the zero solution of (9.3), ξ(t) ≡ 0.

The right-hand side of (9.3) may have a linear approximation for small ξ , in which case

ξ̇ = h(ξ , t) ≈ A(t)ξ̇ . (9.4)
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Here, A(t)=J (0, t), where J (ξ , t) is the Jacobian matrix (see also Section 8.9) of first partial
derivatives given by

J [ξ , t] =
[
∂hi(ξ , t)

∂ξj

]
(i = 1, 2, . . . , n; j = 1, 2, . . . , n).

The properties of this linear system may correctly indicate that of the zero solution of the exact
system (9.3). The approximation (9.4) is called the first variational equation. This process is
not rigorous: it is generally necessary to invoke an approximation not only at the stage (9.4),
but also in representing x∗(t), which, of course, will not generally be known exactly.
We shall illustrate the procedure in the case of the two-dimensional forced, undamped

pendulum-type equation (a form of Duffing’s equation)

ẍ + x + εx3 = � cosωt . (9.5)

In order to match the notation of the theory of linear systems of Chapter 8 we will express it in
the form

ẋ =
[
ẋ

ẏ

]
=
[

y

−x − εx3 + � cosωt

]
. (9.6)

To obtain the variational equation define ξ = (ξ , η)T by

ξ = x − x∗, (9.7)

where

x∗ = (x∗, y∗)T

and x∗ is the solution to be tested. Substitution for x and y from (9.7) into (9.6) gives

ξ̇ + ẋ∗ = η + y∗,

η̇ + ẏ∗ = −ξ − x∗ − ε(ξ + x∗)3 + � cosωt .

By neglecting powers of ξ higher than the first, and using the fact that x∗, y∗ satisfy (9.6), the
system simplifies to

ξ̇ = η, η̇ = −ξ − 3εx∗2ξ , (9.8)

corresponding to (9.4).
From Section 7.2 we know that there are periodic solutions of (9.5) which are approximately

of the form

x = a cosωt ,

where possible real values of the amplitude a are given by the equation

3
4εa

3 − (ω2 − 1)a − � = 0. (9.9)
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We shall test the stability of one of these solutions by treating it as being sufficiently close to
the corresponding exact form of x∗ required by (9.8). By eliminating η between eqns (9.8) we
obtain

ξ̈ + (1+ 3εx∗2)ξ = 0.

When x∗ is replaced by its appropriate estimate, x∗ = a cosωt , with a given by (9.9), this
equation becomes

ξ̈ + (1+ 3
2εa

2 + 3
2εa

2 cos 2ωt)ξ = 0,

and we expect that the stability property of x∗ and ξ will be the same. The previous equation
can be reduced to a standard form

ξ ′′ + (α + β cos τ)ξ = 0 (9.10)

by the substitutions

τ = 2ωt , ξ ′ = dξ/dτ , α = (2+ 3εa2)/8ω2, β = 3εa2/8ω2. (9.11)

For general values of α and β equation (9.10) is known asMathieu’s equation. By Theorem 8.8
its solutions are stable for values of the parameters, α, β for which all its solutions are bounded.
We shall return to the special case under discussion at the end of Section 9.4 after studying the
stability of solutions of Mathieu’s general equation, to which problems of this kind may often
be reduced.
A pendulum suspended from a support vibrating vertically is a simple model which leads to

an equation with a periodic coefficient. Assuming that friction is negligible, consider a rigid
pendulum of length a with a bob of mass m suspended from a point which is constrained to
oscillate vertically with prescribed displacement ζ(t) as shown in Fig. 9.1.

Figure 9.1 Pendulum with vertical forcing: ζ(t) is the displacement of the support.
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The kinetic energy T and potential energy V are given by

T = 1
2m[(ζ̇ − a sin θ θ̇)2 + a2 cos2 θ θ̇2],

V = −mg(ζ + a cos θ).

Lagranges’s equation of motion

d
dt

(
∂T
∂θ̇

)
− ∂T

∂θ
= −∂V

∂θ

becomes

aθ̈ + (g − ζ̈ ) sin θ = 0,

which, for oscillations of small amplitude, reduces to

aθ̈ + (g − ζ̈ )θ = 0.

As a standardized form for this equation we may write

ẍ + (α + p(t))x = 0.

When p(t) is periodic this equation is known as Hill’s equation. For the special case p(t) =
β cos t ,

ẍ + (α + β cos t)x = 0

which is Mathieu’s equation (9.10). This type of forced motion, in which p(t) acts as an energy
source, is an instance of parametric excitation.

Exercise 9.1
Show that the damped equation

ẍ + kẋ + (γ + β cos t)x = 0

can be transformed into aMathieu equation by the change of variable x = zeµt for a suitable
choice for µ.

9.2 Equations with periodic coefficients (Floquet theory)

Equation (9.10) is a particular example of an equation associatedwith the general n-dimensional
first-order system

ẋ = P (t)x, (9.12)

where P (t) is periodic with minimal period T ; that is, T is the smallest positive number for
which

P (t + T ) = P (t), −∞ < t <∞. (9.13)
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(P (t), of course, also has periods 2T , 3T , . . .) The solutions are not necessarily periodic, as can
be seen from the one-dimensional example

ẋ = P (t)x = (1+ sin t)x;

the coefficient P(t) has period 2π , but all solutions are given by

x = cet−cos t ,

where c is any constant, so only the solution x = 0 is periodic. Similarly, the system[
ẋ

ẏ

]
=
[

1 cos t
0 −1

] [
x

y

]

has no periodic solutions apart from the trivial case x = y = 0.
In the following discussions remember that the displayed solution vectors may consist of

complex solutions.

Theorem 9.1 (Floquet’s theorem) The regular system ẋ = P (t)x, where P is an n× n matrix
function with minimal period T , has at least one non-trivial solution x = χ(t) such that

χ(t + T ) = µχ(t), −∞ < t <∞, (9.14)

where µ is a constant.

Proof Let�(t)=[φij (t)] be a fundamental matrix for the system. Then �̇(t)=P (t)�(t). Since
P (t + T )=P (t), �(t + T ) satisfies the same equation, and by Theorem 8.5, det�(t + T ) 	=0,
so �(t + T ) is another fundamental matrix. The columns (solutions) in �(t + T ) are linear
combinations of those in �(t) by Theorem 8.4:

φij (t + T ) =
n∑

k=1
φik(t)ekj

for some constants ekj , so that

�(t + T ) = �(t)E, (9.15)

whereE = [ekj ].E is nonsingular, since det�(t+T ) = det�(t)det(E), and therefore det(E) 	=
0. The matrix E can be found from �(t0 + T ) = �(t0)E where t0 is a convenient value of t .
Thus

E = �−1(t0)�(t0 + T ).

Let µ be an eigenvalue of E:

det(E − µI ) = 0, (9.16)
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and let s be an eigenvector corresponding to µ:

(E − µI )s = 0. (9.17)

Consider the solution x = �(t)s = χ(t) (being a linear combination of the columns of �,χ
is a solution of (9.12)). Then

χ(t + T ) = �(t + T )s

= �(t)Es = �(t)µs (by (9.17))

= µχ(t). (by (9.14))
�

The eigenvalues µ of E are called characteristic numbers or multipliers of eqn (9.12) (not to
be confusedwith the eigenvalues ofP(t), whichwill usually be dependent on t). The importance
of this theorem is the possibility of a characteristic number with a special value implying the
existence of a periodic solution (though not necessarily of period T ).

Example 9.1 Find a fundamental matrix for the periodic differential equation

[
ẋ1
ẋ2

]
= P (t)x =

[
1 1
0 h(t)

] [
x1
x2

]
, (9.18)

where h(t) = (cos t + sin t)/(2+ sin t − cos t), and determine the characteristic numbers.
From (9.18),

(2+ sin t − cos t)ẋ2 = (cos t + sin t)x2,

which has the solution

x2 = b(2+ sin t − cos t)

where b is any constant. Then x1 satisfies

ẋ1 − x1 = x2 = b(2+ sin t − cos t)

and therefore

x1 = aet − b(2+ sin t).

where a is any constant. A fundamental matrix �(t) can be obtained by putting, say, a = 0, b = 1, and a = 1,
b = 0:

�(t) =
[ −2− sin t et

2+ sin t − cos t 0

]
.

The matrix P (t) has minimal period T = 2π , and E in (9.15) must satisfy �(t + 2π) = �(t)E for all t .
Therefore �(2π) = �(0)E and

E = �−1(0)�(2π) =
[
1 0
0 e2π

]
.
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The eigenvalues µ of E satisfy

∣∣∣∣1− µ 0
0 e2π − µ

∣∣∣∣ = 0,

so µ = 1 or e2π . From (9.14), since one eigenvalue is unity there exist solutions such that χ(t + 2π) = χ(t):
that is, solutions with period 2π . We have already found these: they correspond to a a = 0. �
Theorem 9.2 The constants µ in Theorem 9.1 are independent of the choice of �.

Proof Let �(t), �∗(t) be two fundamental matrices; then

�∗(t) = �(t)C, (9.19)

whereC is some constant, nonsingularmatrix (nonsingular since�(t) and�∗(t) are nonsingular
by Theorem 8.5). Let T be the minimal period of P (t). Then

�∗(t + T ) = �(t + T )C (by (9.19))

= �(t)EC (by (9.15))

= �∗(t)C−1EC (by (9.19))

= �∗(t)D,

say, where D = C−1EC and C is nonsingular. We may write

det(D − µI ) = det(C−1EC − µI ) = det[C−1(E − µI )C]
= det(C−1C)det(E − µI ) = det(E − µI )

(using the product rule for determinants). Since det(D − µI) is zero if and only if det(E − µI)

is zero, D and E have the same eigenvalues. �

We can therefore properly refer to ‘the characteristic numbers of the system’. Note that
when � is chosen as real E is real, and the characteristic equation for the numbers µ has
real coefficients. Therefore if µ (complex) is a characteristic number, then so is its complex
conjugate µ̄.

Definition 9.1 A solution of (9.12) satisfying (9.14) is called a normal solution.

Definition 9.2 (Characteristic exponent) Let µ be a characteristic number, real or complex,
of the system (9.12), corresponding to the minimal period T of P (t). Then ρ, defined by

eρT = µ (9.20)

is called a characteristic exponent of the system. Note that ρ is defined only to an additive
multiple of 2π i/T . It will be fixed by requiring −π < Im(ρT ) ≤ π , or by ρ = (1/T )Ln(µ),
where the principal value of the logarithm is taken.
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Theorem 9.3 Suppose that E of Theorem 9.1 has n distinct eigenvalues, µi , i = 1, 2, . . . , n.
Then (9.12) has n linearly independent normal solutions of the form

xi = pi (t)e
ρi t (9.21)

(ρi are the characteristic exponents corresponding to µi), where the pi (t) are vector functions
with period T .

Proof To each µi corresponds a solution xi (t) satisfying (9.14): xi (t + T ) = µixi (t) =
eρiT xi (t). Therefore, for every t ,

xi (t + T )e−ρi(t+T ) = xi (t)e−ρi t . (9.22)

Writing

pi (t) = e−ρi txi (t),

(9.22) implies that pi (t) has period T .
The linear independence of the xi (t) is implied by their method of construction in Theo-

rem 9.1: from (9.17), they are given by xi (t) = �(t)si ; si are the eigenvectors corresponding to
the different eigenvalues µi , and are therefore linearly independent. Since �(t) is non-singular
it follows that the xi (t) are also linearly independent. �

When the eigenvalues of E are not all distinct, the coefficients corresponding to the pi (t) are
more complicated.
Under the conditions of Theorem 9.3, periodic solutions of period T exist when E has an

eigenvalue

µ = 1.

The corresponding normal solutions have period T , the minimal period of P (t). This can be
seen from (9.14) or from the fact that the corresponding ρ is zero.
There are periodic solutions whenever E has an eigenvalue µ which is one of the mth roots

of unity:

µ = 11/m, m a positive integer. (9.23a)

In this case, from (9.14),

χ(t +mT ) = µχ{t + (m− 1)T } = · · · = µmχ(t) = χ(t), (9.23b)

so that χ(t) has period mT .

Example 9.2 Identify the periodic vectors pi (t) (see eqn (9.21)) in the solution of the periodic differential
equation in Example 9.1.

The characteristic numbers were shown to beµ1 = 1, µ2 = e2π . The corresponding characteristic exponents
(Definition 9.2) are ρ1 = 0, ρ2 = 1. From Example 9.1, a fundamental matrix is

�(t) =
[ −2− sin t et

2+ sin t − cos t 0

]
.
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From the columns we can identify the 2π -periodic vectors

p1(t) = a

[ −2− sin t
−2+ sin t − cos t

]
, p2(t) = b

[
1
0

]
,

where a and b are any constants. In terms of normal solutions

[
x1
x2

]
= a

[ −2− sin t
2+ sin t − cos t

]
e0 + b

[
1
0

]
et . �

In the preceding theory, det�(t) appeared repeatedly, where � is a fundamental matrix of
the regular system ẋ = A(t)x. This has a simple representation, as follows.

Definition 9.3 Let [φ1(t),φ2(t), . . . ,φn(t)] be a matrix whose columns are any solutions of
the n-dimensional system ẋ = A(t)x. Then

W(t) = det[φ1(t),φ2(t), . . . ,φn(t)] (9.24)

is called the Wronskian of this set of solutions, taken in order.

Theorem 9.4 For any t0, the Wronskian of ẋ = A(t)x is

W(t) = W(t0) exp
(∫ t

t0

tr{A(s)}ds
)
, (9.25)

where tr{A(s)} is the trace of A(s) (the sum of the elements of its principal diagonal).

Proof If the solutions are linearly dependent, W(t) ≡ 0 by Theorem 8.5, and the result is true
trivially.
If not, let �(t) be any fundamental matrix of solutions, with �(t) = [φij (t)]. Then dW/dt

is equal to the sum of n determinants 
k, k = 1, 2, . . . , n, where 
k is the same as det[φij (t)],
except for having φ̇kj (t), j = 1, 2, . . . , n in place of φkj (t) in its kth row. Consider one of the

k, say 
1:


1 =

∣∣∣∣∣∣∣∣
φ̇11 φ̇12 · · · φ̇1n
φ21 φ22 · · · φ2n
· · · · · · · · · · · ·
φn1 φn2 · · · φnn

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

n∑
m=1

a1mφm1

n∑
m=1

a1mφm2 · · ·
n∑

m=1
a1mφmn

φ21 φ22 · · · φ2n
· · · · · · · · · · · ·
φn1 φn2 · · · φnn

∣∣∣∣∣∣∣∣∣∣
(from eqn (8.14))

=
n∑

m=1
a1m

∣∣∣∣∣∣∣∣
φm1 φm2 · · · φmn

φ21 φ22 · · · φ2n
· · · · · · · · · · · ·
φn1 φn2 · · · φnn

∣∣∣∣∣∣∣∣
= a11

∣∣∣∣∣∣∣∣
φ11 φ12 · · · φ1n
φ21 φ22 · · · φ2n
· · · · · · · · · · · ·
φn1 φn2 · · · φnn

∣∣∣∣∣∣∣∣
= a11W(t),
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since all the other determinants have repeated rows, and therefore vanish. In general 
k =
akkW(t). Therefore

dW(t)

dt
= tr{A(t)}W(t),

which is a differential equation for W having solution (9.25). �

For periodic systems we have the following result.

Theorem 9.5 For the system ẋ = P (t)x, where P (t) has minimal period T , let the
characteristic numbers of the system be µ1, µ2, . . . ,µn. Then

µ1µ2 . . . µn = exp
(∫ T

0
tr{P(s)}ds

)
,

a repeated characteristic number being counted according to its multiplicity.

Proof Let �(t) be the fundamental matrix of the system for which

�(0) = I . (9.26)

Then, (eqn (9.15)),

�(T ) = �(0)E = E, (9.27)

in the notation of Theorem 9.1. The characteristic numbers µi are the eigenvalues of E,
given by

det(E − µI ) = 0.

This is an nth-degree polynomial in µ, and the product of the roots is equal to the constant
term: that is, equal to the value taken when µ = 0. Thus, by (9.27),

µ1µ2 . . . µn = det(E) = det�(T ) = W(T ),

but by Theorem 9.4 with t0 = 0 and t = T ,

W(T ) = W(0)
∫ T

0
tr{P (s)}ds

and W(0) = 1 by (9.26). �

Example 9.3 Verify the formula in Theorem 9.5 for the product of the characteristic numbers of Example 9.1.

In Example 9.1, T = 2π and

P (t) =
[
1 1
0 (cos t + sin t)/(2+ sin t − cos t)

]
.
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Then ∫ 2π

0
tr{P (s)}ds =

∫ 2π

0

[
1+ cos s + sin s

2+ sin s − cos s

]
ds =

∫ 2π

0

[
1+ d(sin s − cos s)/ds

2+ sin s − cos s

]
ds

= [s + log(2+ sin s − cos s)]2π0 = 2π .

Therefore

exp

[∫ 2π

0
tr{P (s)}ds

]
= e2π = µ1µ2,

by Example 9.1. �

Exercise 9.2
Find the matrix E for the system[

ẋ1
ẋ2

]
=
[

1 cos t − 1
0 cos t

] [
x1
x2

]
,

and obtain its characteristic numbers. Verify the result in Theorem 9.5.

9.3 Mathieu’s equation arising from a Duffing equation

We now return to look in more detail at Mathieu’s equation (9.10)

ẍ + (α + β cos t)x = 0, (9.28)

As a first-order system it can be expressed as[
ẋ

ẏ

]
=
[

0 1
−α − β cos t 0

] [
x

y

]
, (9.29)

In the notation of the previous section,

P (t) =
[

0 1
−α − β cos t 0

]
. (9.30)

Clearly P (t) is periodic with minimal period 2π . The general structure of the solution is deter-
mined by Theorem 9.3, whilst the question of the stability of a solution can be decided, through
Theorem 8.9, by the boundedness or otherwise of the solution for given values of the parame-
ters α and β. We are not particularly interested in periodic solutions as such, though we shall
need them to settle the stability question.
From eqn (9.30),

tr{P (t)} = 0. (9.31)
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Therefore, by Theorem 9.5,

µ1µ2 = e0 = 1, (9.32)

where µ1, µ2 are the characteristic numbers of P (t). They are solutions of a quadratic
characteristic equation (9.16), with real coefficients, which by (9.16) has the form

µ2 − φ(α,β)µ+ 1 = 0.

where the value of φ, depending on E (eqn (9.27)) can, in principle, be found in a particular
case. The solutions µ are given by

µ1,µ2 = 1
2 [φ ±

√
(φ2 − 4)]. (9.33)

Although φ(α,β) is not specified explicitly, we can make the following deductions.

(i) φ >2. The characteristic numbers are real, different, and positive, and by (9.32), one of
them, say µ1, exceeds unity. The corresponding characteristic exponents (9.20) are real
and have the form ρ1= σ >0, ρ2= − σ <0. The general solution is therefore of the form
(Theorem 9.3)

x(t) = c1eσ tp1(t)+ c2e−σ tp2(t),

where c1, c2 are constants and p1, p2 have minimal period 2π . The parameter region
φ(α,β) > 2 therefore contains unbounded solutions, and is called an unstable parameter
region.

(ii) φ=2. Then µ1=µ2=1, ρ1= ρ2=0. By (9.21), there is one solution of period 2π on the
curves φ(α,β)=2. (The other solution is unbounded.)

(iii) −2 < φ < 2. The characteristic numbers are complex, and µ2 = µ̄1. Since also |µ1| =
|µ2| = 1, we must have ρ1 = iν, ρ2 = −iν, ν real. The general solution is of the form

x(t) = c1eiνtp1(t)+ c2e−iνtp2(t) (p1,p2 period 2π).

and all solutions in the parameter region −2<φ(α,β)<2 are bounded. This is called the
stable parameter region. The solutions are oscillatory, but not in general periodic, since
the two frequencies ν and 2π are present.

(iv) φ = −2. Then µ1 = µ2 = −1(ρ1 = ρ2 = 1
2 i), so by Theorem 9.1, eqn (9.14), there is

one solution with period 4π at every point on φ(α,β) = −2. (The other solution is in fact
unbounded.)

(v) φ < −2. Then µ1 and µ2 are real and negative. Since, also, µ1µ2 = 1, the general solution
is of the form

x(t) = c1e(σ+
1
2 i)tp1(t)+ c2e

(
−σ+ 1

2 i
)
t
p2(t),
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where σ >0 and p1, p2 have period 2π . For later purposes it is important to notice that
the solutions have the alternative form

c1eσ tq1(t)+ c2e−σ tq2(t), (9.34)

where q1, q2 have period 4π .

From (i) to (v) it can be seen that certain curves, of the form

φ(α,β) = ±2,
separate parameter regions where unbounded solutions exist (|φ(α,β)|>2) from regions where
all solutions are bounded (|φ(α,β)|<2) (Fig. 9.2). We do not specify the function φ(α,β)
explicitly, but we do know that these are also the curves on which periodic solutions, period
2π or 4π , occur. Therefore, if we can establish, by any method, the parameter values for which
such periodic solutions can occur, then we have also found the boundaries between the stable
and unstable region by Theorem 8.8. These boundaries are called transition curves.

Figure 9.2

First, we find what parameter values α, β give periodic solutions of period 2π . Represent
such a solution by the complex Fourier series

x(t) =
∞∑

n=−∞
cneint .

We now adopt the following formal procedure which assumes convergence where necessary.
Substitute the series into Mathieu’s equation

ẍ + (α + β cos t)x = 0

replacing cos t by 1
2 (e

it + e−it ). The result is

−
∞∑

n=−∞
cnn

2eint +
[
α + 1

2β(e
it + e−it )

] ∞∑
n=−∞

cneint = 0.
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which becomes after re-ordering the summation,

∞∑
n=−∞

[βcn+1 + 2(α − n2)cn + βcn−1]eint = 0.

This equation can only be satisfied for all t if the coefficients of eint are all zero, that is if

βcn+1 + 2(α − n2)cn + βcn−1 = 0, n = 0,±1,±2, . . . .
Assume that α 	= n2, and express this equation in the form

γncn+1 + cn + γncn−1 = 0, where γn = β

2(α − n2)
, (n = 0,±1,±2, . . .), (9.35)

but observe that γ−n = γn. The infinite set of homogeneous linear equations in (9.35) for the
sequence {cn} has nonzero solutions if the infinite determinant (Whittaker and Watson, 1962),
known as a Hill determinant, formed by their coefficients is zero, namely if∣∣∣∣∣∣∣∣∣∣

· · · · · · · · · · · · · · · · · · · · ·
· · · γ1 1 γ1 0 0 · · ·
· · · 0 γ0 1 γ0 0 · · ·
· · · 0 0 γ1 1 γ1 · · ·
· · · · · · · · · · · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣∣
= 0. (9.36)

The condition that γn = O(n−2) (from (9.35)) ensures the convergence of the determinant. This
equation is equivalent to φ(α,β) = 2 (see Section 9.3(ii)).
The determinant in (9.36) is tridiagonal (zero elements everywhere except on the leading

diagonal and the diagonals immediately above and below it), and a recurrence relation can be
established for n× n approximations. Let

Dm,n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 γm 0 0 · · · · · · · · · · · · · · · · · · · · ·
γm−1 1 γm−1 0 · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · 0 γ0 1 γ0 0 · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · 0 γn−1 1 γn−1
· · · · · · · · · · · · · · · · · · · · · 0 0 γn 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (9.37)

Dm,n is a determinant with m+ n+ 1 rows and columns. Expansion by the first row leads to

Dm,n = Dm−1,n − γmγm−1Dm−2,n.

Note that Dm,n = Dn,m. Let En = Dn,n, Pn = Dn−1,n and Qn = Dn−2,n. Put m = n, n+ 1, n+ 2
successively in (9.37) resulting in

En = Pn − γn γn−1Qn, (9.38)

Pn+1 = En − γn+1 γnPn, (9.39)

Qn+2 = Pn+1 − γn+2 γn+1En. (9.40)
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Eliminate Qn between (9.38) and (9.40), so that

En+2 = Pn+2 − γn+2 γn+1Pn+1 + γ 2
n+2 γ

2
n+1En. (9.41)

Now eliminate En between (9.39) and (9.41), so that

2γn+1 γn+2Pn+1 = En+1 − En+2 + γ 2
n+1 γ

2
n+2En.

Finally substitute this formula for Pn back into (9.39) to obtain the following third-order
difference equation

En+2 = (1− γn+1 γn+2)En+1 − γn+1 γn+2(1− γn+1 γn+2)En + γ 2
n γ

3
n+1 γn+2En−1,

for n ≥ 1. In order to solve this difference equation we require E0, E1 and E2, which are
given by

E0 = 1, E1 =
∣∣∣∣∣∣

1 γ1 0
γ0 1 γ0
0 γ0 1

∣∣∣∣∣∣ = 1− 2γ0γ1,

E2 =

∣∣∣∣∣∣∣∣∣∣

1 γ2 0 0 0
γ1 1 γ1 0 0
0 γ0 1 γ0 0
0 0 γ1 1 γ1
0 0 0 γ2 1

∣∣∣∣∣∣∣∣∣∣
= (γ1γ2 − 1)(γ1γ2 − 1+ 2γ0γ1).

The sequence of determinants {En} is said to converge if there exists a number E such that

lim
n→∞En = E.

It can be shown (see Whittaker and Watson (1962), Section 2.8) that En converges if the sum
of the non-diagonal elements converges absolutely. The sum is

2γ0 + 4
∞∑
i=1

γi ,

which is absolutely convergent since |γn| = O(n−2) as n→∞.
Given β we solve the equations Ei = 0 for α for i increasing from 1 until α is obtained to

the required accuracy. However there can be convergence problems if α is close to 1, 22, 32, . . ..
To avoid this numerical problem rescale the rows in E to eliminate the denominators α − n2.
Hence we consider instead the zeros of (we need not consider E0)

H1(α,β) =
∣∣∣∣∣∣
2(α − 12) β 0

β 2α β

0 β 2(α − 12)

∣∣∣∣∣∣ = 23α(α − 12)2E1,
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H2(α,β) =

∣∣∣∣∣∣∣∣∣∣

2(α − 22) β 0 0 0
β 2(α − 12) β 0 0
0 β 2α β 0
0 0 β 2(α − 12) β

0 0 0 β 2(α − 22)

∣∣∣∣∣∣∣∣∣∣
= 25α(α − 12)2(α − 22)2E2,

and so on. The evaluations of the first three determinants lead to

H1(α,β) = 4(α − 1)(−2α + 2α2 − β2),

H2(α,β) = 2(16− 20α + 4α2 − β2)(16α − 20α2 + 4α3 + 8β2 − 3αβ2),

H3(α,β) = 8(−72+ 98α − 28α2 + 2α3 + 5β2 − αβ2)

(−288α + 392α2 − 112α3 + 8α4 − 144β2 + 72αβ2 − 8α2β2 + β4),

(computer software is needed to expand and factorize these determinants). It can be seen from
the determinants Hi(α, 0) that Hi(α, 0) = 0 if αj = j2 for j ≤ i. These are the critical values
on the α axis shown in Fig. 9.3.
The table shows the solutions of the equations Hi(α,β) = 0 for i = 1, 2, 3 for values of

β = 0, 0.4, 0.8, 1.2. As the order of the determinant is increased an increasing number of
solutions for α for fixed β appear. The results of a more comprehensive computation are shown

–

–

–

–

Figure 9.3 Stability diagram for Mathieu’s equation ẍ + (α + β cos t)x = 0.
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in Fig. 9.3. The dashed curves show the parameter values of α and β on which 2π -periodic
solutions of the Mathieu equation exist. The curves are symmetric about the α axis, one passes
through the origin, and the others have cusps at α = 1, 4, 9, . . ..

H1(α,β) = 0 H2(α,β) = 0 H3(α,β) = 0

β = 0 α = 0 α = 0 α = 0
α = 1 α = 1 α = 1

α = 4 α = 4
α = 9

β = 0.4 α = −0.074 α = −0.075 α = −0.075
α = 1.000 α = 0.987 α = 0.987
α = 1.074 α = 1.062 α = 1.062

α = 4.013 α = 4.005
α = 4.013 α = 4.005

β = 0.8 α = −0.255 α = −0.261 α = −0.261
α = 1.000 α = 0.948 α = 0.947
α = 1.256 α = 1.208 α = 1.207

α = 4.052 α = 4.021
α = 4.053 α = 4.022

β = 1.2 α = −0.485 α = −0.505 α = −0.505
α = 1.000 α = 0.884 α = 0.883
α = 1.485 α = 1.383 α = 1.381

α = 4.116 α = 4.046
α = 4.122 α = 4.052

For the 4π periodic solutions, let

x(t) =
∞∑

n=−∞
dne

1
2 int .

As in the previous case substitute x(t) into eqn (9.28) and equate to zero the coefficients of e
1
2 int

so that

1
2βdn+2 + (α − 1

4n
2)dn + 1

2dn−1 = 0, (n = 0, 1, 2 . . .).

This set of equations split into two independent sets for {dn}. If n is even then the equations
reproduce those of (9.35) for the 2π period solutions. Therefore we need only consider solutions
for n odd, and can put d2m = 0 for all m. For n odd, the set of equations have a nontrivial
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solutions if, and only if,∣∣∣∣∣∣∣∣∣∣∣∣

· · · · · · · · · · · · · · · · · · · · · · · ·
· · · δ2 1 δ2 0 0 0 · · ·
· · · 0 δ1 1 δ1 0 0 · · ·
· · · 0 0 δ1 1 δ1 0 · · ·
· · · 0 0 0 δ2 1 δ2 · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

where

δ1 = β

2(α − 1
41

2)
, δ2 = β

2(α − 1
43

2)
,

δm = β

2[α − 1
4 (2m− 1)2] , m = 1, 2, . . . ,

provided α 	= 1
4 (2m−1)2. The numerical relation between α and β can be computed by taking

finite approximations to the infinite determinant. The transition curves corresponding to the
4π periodic solutions are shown in Fig. 9.3. The curves pass through the critical points β = 0,
α = 1

4 (2m− 1)2, (m = 1, 2, 3, . . .).

Exercise 9.3
For the 4π-periodic solutions of Mathieu’s equation, let

G1(α,β) =
∣∣∣∣ 2(α − 1

4 ) β

β 2(α − 1
4 )

∣∣∣∣ ,

G2(α,β) =

∣∣∣∣∣∣∣∣
2(α − 9

4 ) β 0 0
β 2(α − 1

4 ) β 0
0 β 2(α − 1

4 ) β

0 0 β 2(α − 9
4 )

∣∣∣∣∣∣∣∣
.

Obtain the relations between β and α in the first two approximations to the zeros of
G1(α,β) = 0 and G2(α,β) = 0.

9.4 Transition curves for Mathieu’s equation by perturbation

For small values of |β| a perturbation method can be used to establish the transition curves. In
the equation

ẍ + (α + β cos t)x = 0, (9.42)
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suppose that the transition curves are given by

α = α(β) = α0 + βα1 + β2α2 · · · , (9.43)

and that the corresponding solutions have the form

x(t) = x0(t)+ βx1(t)+ β2x2(t)+ · · · , (9.44)

where x0, x1, . . . all have either minimal period 2π or 4π .
When (9.43) and (9.44) are substituted into (9.42) and the coefficients of powers of β are

equated to zero in the usual perturbation way, we have

ẍ0 + α0x0 = 0, (9.45a)

ẍ1 + α0x1 = −(α1 + cos t)x0, (9.45b)

ẍ2 + α0x2 = −α2x0 − (α1 + cos t)x1, (9.45c)

ẍ3 + α0x3 = −α3x0 − α2x1 − (α1 + cos t)x2, (9.45d)

and so on.
From the analysis in the Section 9.3, we are searching for solutions with minimum period

2π if α0 = n2, n − 0, 1, 2, . . ., and for solutions of minimum period 4π if α0 = (n + 1
2 )

2,
n = 0, 1, 2, . . .. Both cases can be covered by defining α0 = 1

4n
2, n = 0, 1, 2, . . . We consider

the cases n = 0 and n = 1.
(i) n = 0. In this case α0 = 0 so that ẍ0 = 0. The periodic solution of (9.45a) is x0 = a0,

where we assume that a0 is any nonzero constant. Equation (9.45b) becomes

ẍ1 = −(α1 + cos t)a0,

which has periodic solutions only if α1 = 0. We need only choose the particular solution

x1 = a0 cos t .

(inclusion of complementary solutions does not add generality since further arbitrary constants
can be amalgamated). Equation (9.45c) becomes

ẍ2 = −a0α2 − 1
2a0 − a0 cos2 t = −a0α2 − 1

2a0 − 1
2a0 cos 2t ,

which generates a periodic solution of 2π (and π) only if α2 + 1
2a0 = 0, that is, if α2 = −1

2a0.
Therefore choose

x2 = 1
8a0 cos 2t .

From (9.45d),

ẍ3 = −α3x0 − α2a0 cos t − 1
8a0 cos t cos 2t

= a0[−α3 − (α2 + 1
16 ) cos t − 1

16 cos 3t].
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Solutions will only be periodic if α3 = 0. Therefore, for small |β|,

α = −1
2β

2 +O(β4),

which is a parabolic approximation to the curve through the origin in the α,β shown in Fig. 9.3.
The corresponding 2π periodic solution is

x = a0[1+ β cos t + 1
8β

2 cos 2t] +O(β3).

(ii) n = 1. In this case α0 = 1
4 , and x0 = a0 cos 1

2 t + b0 sin 1
2 t . Equation (9.45b) becomes

ẍ1 + 1
4x1 = −(α1 + cos t)(a0 cos 1

2 t + b0 sin 1
2 t)

= −a0(α1+ 1
2 ) cos

1
2 t − b0(α1− 1

2 ) sin
1
2 t−1

2a0 cos
3
2 t − 1

2b0 sin
3
2 t (9.46)

There are periodic solutions of period 4π only if either b0 = 0, α1 = −1
2 , or a0 = 0, α1 = 1

2 .
Here are two cases to consider.
(a) b0 = 0, α1 = −1

2 . It follows that the particular solution of (9.46) is x1 = 1
4a0 cos

3
2 t .

Equation (9.45c) for x2 is

ẍ2 + 1
4x2 = −(α2 + 1

8 )a0 cos
1
2 t + 1

8a0 cos
3
2 t − 1

8a0 cos
5
2 t .

Secular terms can be eliminated by putting α2 = −1
8 . Hence one transition curve through α = 1

4 ,
β = 0 is

α = 1
4 − 1

2β − 1
8β

2 +O(β3). (9.47)

(b) a0 = 0, α1 = 1
2 . From (9.46), x1 = 1

4b0 sin
3
2 t . Equation (9.445c) becomes

ẍ2 + 1
4x2 = −(α2 + 1

8 )b0 sin
1
2 t − 1

8b0 sin
3
2 t − 1

8b0 sin
5
2 t .

Secular terms can be eliminated by putting α2 = −1
8 . Therefore the other transition curve is

given by

α = 1
4 + 1

2β − 1
8β

2 +O(β3). (9.48)

The transition curves given by (9.47) and (9.48) approximate to the computed curves through
α = 1

4 , β = 0 shown in Fig. 9.3.
The same perturbationmethod can be applied to approximate to the transition curves through

α = 1, 94 , 4,
25
4 . . . . Amore extensive investigation of perturbationmethods applied toMathieu’s

equation is given by Nayfeh and Mook (1979, Chapter 5).
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9.5 Mathieu’s damped equation arising from a Duffing equation

As we saw in Section 9.1, the variational equation for the undamped forced, pendulum
is Mathieu’s equation (9.10) or (9.28). With dissipation included, the Duffing equation in
standardized form is

ẍ + kẋ + x + εx3 = � cosωt . (9.49)

In Chapter 7 we also showed that this equation has periodic solutions which are approximately
of the form a cosωt + b sinωt where r = √(a2 + b2) satisfies

{
(ω2 − 1− 3

4εr
2)2 + ω2k2

}
r2 = �2, (9.50)

which reduces to eqn (7.23) if ε replaces β in the earlier notation. Following the notation and
procedure of Section 9.1, write (9.49) as the first-order system

ẋ =
[
ẋ

ẏ

]
=
[

y

−ky − x − εx3 + � cosωt

]
(9.51)

and put (approximately)

x∗ = a cosωt + b sinωt , y∗ = −aω sinωt + bω cosωt .

The variations ξ = x − x∗ and η = y − y∗ satisfy

ξ̇ + ẋ∗ = η + y∗,

η̇ + ẏ∗ = −k(η + y∗)− (ξ + x∗)− ε(ξ + x∗)3 + � cosωt .

By using (9.51) and retaining only the first powers of ξ and ηwe obtain corresponding linearized
equations

ξ̇ = η, η̇ = −kη − ξ − 3εx∗2ξ .

Elimination of η leads to the second-order equation

ξ̈ + kξ̇ + (1+ 3εx∗2)ξ = 0.

By substituting for x∗ its approximate form a cosωt + b sinωt we obtain

ξ̈ + kξ̇ +
{
1+ 3

2εr
2 + 3

2εr
2 cos(2ωt + 2c)

}
ξ = 0, (9.52)

where r, c are defined by

a cosωt + b sinωt = r cos(ωt + c).
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We can reduce the eqn (9.52) to ‘standard’ form by putting

τ = 2ωt + 2γ , ξ ′ ≡ dξ
dτ

,

κ = k

2ω
= κ1ε, ν = 2+ 3εr2

8ω2 = ν0 + εν1, β = 3εr2

8ω2 = β1ε,

say, so that

ξ ′′ + κξ ′ + (ν + β cos τ)ξ = 0, (9.53)

This is known as Mathieu’s equation with damping.
We assume that 0 < ε  1, k = O(ε) and ω ≈ 1 = 1 + O(ε) (near resonance). For near

resonance ν = 1
4 +O(ε). Let η = ξ ′ in (9.53). Then the corresponding first-order system is

ζ ′ =
[

ξ ′
η′
]
=
[

0 1
−ν − β cos τ −κ

] [
ξ

η

]
= P (τ )ζ , (9.54)

say. The characteristic numbers of P (τ ) satisfy (see Theorem 9.5)

µ1µ2 = exp

[∫ 2π

0
tr{P (τ )}dτ

]
= exp

[
−
∫ 2π

0
κdτ

]
= e−2πκ .

The numbers µ1 and µ2 are solutions of a characteristic equation of the form

µ2 − φ(ν,β, κ)µ+ e−2πκ = 0. (9.55)

The two solutions are

µ1,µ2 = 1
2 [φ ±

√{φ2 − 4e−2πκ}]. (9.56)

For distinct values of µ1 and µ2, (9.54) has 2 linearly independent solutions of the form (see
Theorem 9.3)

ζ i = pi (τ )eρiτ (i = 1, 2),

where e2ρiπ = µi , (i = 1, 2) and pi are functions of period 2π .
From (9.55), the general solution for ξ , the first component of ζ , is given by

ξ = c1q1(τ )eρ1τ + c2q2(τ )eρ2τ , (9.57)

where c1, c2 are constants and q1(τ ), q2(τ ) have minimum period 2π : η can then be found
from η′ = ξ . The stability or otherwise of the periodic solution of (9.53) will be determined by
the behaviour of ξ in (9.57). If the solution for ξ is damped then we can infer its stability. The
characteristic exponents may be complex, so that the limit ξ → 0 as τ →∞ will occur if both
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Figure 9.4 The boundaries of the shaded region are φ = 2λ, φ = 1+ λ2, and φ− 2λ, φ = −1− λ2, where λ = e−πκ .

Re(ρ1)<0 and Re(ρ2)<0. This is equivalent to |µ1|<1 and |µ2|<1. There are three cases to
consider.

• φ2>4e−2πκ . µ1 and µ2 are both real and positive, or both real and negative according to
the sign of φ: in both cases µ2<µ1. If they are both positive, then the periodic solution is
stable if

µ1 = 1
2 [φ +

√
(φ2 − 4e−2πκ)] < 1, or, φ < 1+ e−2πκ . (9.58)

For κ > 0, this lower bound is always greater than 2e−πκ . The shaded region in φ > 0 in
Fig. 9.4 shows the stability domain. Similarly if φ < −2e−πκ , then the stability boundaries
are φ = −2e−πκ and φ = −1− e−2πκ , which are also shown in Fig. 9.4.
• φ2 = 4e−2πκ . In this case µ1 = µ2 = 1

2φ = ±e−πκ = µ, say. If µ = e−πκ , then ρ = −1
2κ, and

if µ = −e−πκ , then Re(ρ) = −1
2κ. In both cases the solution is stable, also shown shaded in

Fig. 9.4.
• φ2<4e−2πκ . µ1 and µ2 are complex conjugates given by 1

2 (φ± iθ), where θ =√[4e−2πκ − φ2]. The system is therefore stable if |φ| < 2.

As in Section 9.5, we can search for periodic solutions of periods 2π and 4π by using Fourier
series. Let

ξ(τ ) =
∞∑

n=−∞
cneinτ .

Substitute this series into (9.50) so that

∞∑
n=−∞

[βcn+1 + 2{ν − n2 + iκn}cn + βcn−1]einτ = 0.
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where we have used cos τ = 1
2 (e

iτ + e−iτ ). These equations will only be satisfied for all τ if

βcn+1 + 2{ν − n2 + iκn}cn + βcn−1 = 0, n = 0,±1,±2, . . . . (9.59)

Let

γn = β

2(ν − n2 + iκn)
, (9.60)

and express eqns (9.59) in the form

γn+1cn+1 + cn + γn−1cn−1 = 0. (9.61)

There are non-zero solutions for the sequence {cn} if, and only if the infinite determinant is
zero, that is, ∣∣∣∣∣∣∣∣∣∣

· · · · · · · · · · · · · · · · · · · · ·
· · · γ1 1 γ1 0 0 · · ·
· · · 0 γ0 1 γ0 0 · · ·
· · · 0 0 γ−1 1 γ−1 · · ·
· · · · · · · · · · · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣∣
= 0,

or ∣∣∣∣∣∣∣∣∣∣

· · · · · · · · · · · · · · · · · · · · ·
· · · γ1 1 γ1 0 0 · · ·
· · · 0 γ0 1 γ0 0 · · ·
· · · 0 0 γ 1 1 γ 1 · · ·
· · · · · · · · · · · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣∣
= 0,

since γ−n = γ n (n = 1, 2, . . .), the conjugate of γn. We can approximate to the determinant by
choosing a finite number of rows. Let

E1 =
∣∣∣∣∣∣

1 γ1 0
γ0 1 γ0
0 γ 1 1

∣∣∣∣∣∣ = 1− β2(ν − 1)
2ν[(ν − 1)2 + κ2] .

With ν = 1
4 +O(ε),

E1 = 1+ 8
3β2ε

2 + o(ε2).

Hence E1 cannot be zero for ε small. The implication is that there are no 2π periodic solutions
in the variable τ .
To search for 4π periodic solutions, let

ξ =
∞∑

n=−∞
dne

1
2 inτ .
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Substitution of this series into (9.50) leads to

∞∑
n=−∞

[βdn+2 + 2{ν − 1
4n

2 + 1
2 iκn}dn + βdn−2]e1

2 inτ = 0.

These equations will only be satisfied for all τ if

βdn+2 + 2{ν − 1
4n

2 + 1
2 iκn}dn + βdn−2 = 0. (9.62)

As in Section 9.3 there are two independent sets of equations for n even and for n odd. The
even case duplicates the previous case for 2π periodic solutions so that we need not consider
it. For the case of n odd, let

δm = β

2[ν − 1
4 (2m− 1)2 + 1

2 (2m− 1)iκ] (m ≥ 1)

Elimination of {dn} in (9.62) results in the infinite determinant equation∣∣∣∣∣∣∣∣∣∣∣∣

· · · · · · · · · · · · · · · · · · · · · · · ·
· · · δ2 1 δ2 0 0 0 · · ·
· · · 0 δ1 1 δ1 0 0 · · ·
· · · 0 0 δ1 1 δ1 0 · · ·
· · · 0 0 0 δ2 1 δ2 · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

where δm is the conjugate of δm. The value of this determinant can be approximated by

G1 =
∣∣∣∣ 1 δ1
δ1 1

∣∣∣∣ = 1− δ1δ1 = 1− β2
1

4ν21 + κ21

+O(ε).

To lowest order, G1 = 0 if

1− β2
1

4ν21 + κ21

= 0, or ν1 = ±1
2
√
(β2

1 − κ21 ).

Therefore the stability boundaries are given by

ν = 1
4 ± 1

2ε
√
(β2

1 − κ21 )+O(ε)

Note that if κ1=0 (no damping), then the stability boundaries given by (9.45) can be
recovered. Note also that κ1<β1 is required. Using the stability boundaries, the periodic
solution of the Duffing equation is stable in the domain defined by

ν < 1
4 − 1

2ε
√
(β2

1 − κ21 ), or ν > 1
4 + 1

2ε
√
(β2

1 − κ21 ),

or

(ν − 1
4 )

2 > 1
4ε

2(β2
1 − κ21 ).
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Figure 9.5 The stability for the damped Duffing equation with εκ1 = 0.3 and ω ≈ 1.

A typical stability domain is shown in Fig. 9.5 for εκ1 = 0.3 in the neighbourhood of resonance
near ω = 1. In terms of the original variables, the condition becomes(

2+ 3εr2

8ω2 − 1
4

)2
− 1

4

⎡
⎣(3εr2

8ω2

)2
− k2

4ω2

⎤
⎦ > 0,

or

(1− ω2)2 + 3ε(1− ω2)r2 + 27
16ε

2r4 + k2ω2 > 0. (9.63)

Since the solutions of the dampedMathieu equation tend to zero in the stable region, asymptotic
stability is predicted, confirming the analysis of Chapter 7.
We can also confirm the remark made in Section 5.5 (vi): that stability is to be expected when

d(�2)

d(r2)
> 0, (9.64)

that is, when an increase or decrease in magnitude of � results in an increase or decrease
respectively in the amplitude. From (9.51) it is easy to verify that d(�2)/d(r2) is equal to the
expression on the left of (9.63), and the speculation is therefore confirmed.
In general, when periodic solutions of the original equation are expected the reduced equa-

tion (9.4) is the more complicated Hill type (see Problem 9.11). The stability regions for this
equation and examples of the corresponding stability estimatesmay be found inHayashi (1964).

Problems

9.1 The system

ẋ1 = (− sin 2t)x1 + (cos 2t − 1)x2, ẋ2 = (cos 2t + 1)x1 + (sin 2t)x2
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has a fundamental matrix of normal solutions:[
et (cos t − sin t) e−t (cos t + sin t)
et (cos t + sin t) e−t (− cos t + sin t)

]
.

Obtain the corresponding E matrix (Theorem 9.1), the characteristic numbers, and the characteristic
exponents.

9.2 Let the system ẋ = P (t)x have a matrix of coefficients P with minimal period T (and therefore also
with periods 2T , 3T , . . .). Follow the argument of Theorem 9.1, using period mT ,m > 1, to show that
�(t + mT ) = �(t)Em. Assuming that if the eigenvalues of E are µi , then those of Em are µm

i
, discuss

possible periodic solutions.

9.3 Obtain Wronskians for the following linear systems:
(i) ẋ1 = x1 sin t + x2 cos t , ẋ2 = −x1 cos t + x2 sin t ,

(ii) ẋ1 = f (t)x2, ẋ2 = g(t)x1.

9.4 By substituting x = c + a cos t + b sin t into Mathieu’s equation

ẍ + (α + β cos t)x = 0,

obtain by harmonic balance an approximation to the transition curve near α = 0, β = 0, (compare with
Section 9.4).

By substituting x = c + a cos 1
2 t + b sin 1

2 t , find the transition curves near α = 1
4 , β = 0.

9.5 Figure 9.6 represents a particle of mass m attached to two identical linear elastic strings of stiffness λ and
natural length l. The ends of the strings pass through frictionless guides A and B at a distance 2L, l <L,
apart. The particle is set into lateral motion at the mid-point, and symmetrical displacements a+ b cosωt ,
a >b, are imposed on the ends of the string. Show that, for xL,

ẍ +
(
2λ(L− l + a)

mL
+ 2λb

mL
cosωt

)
x = 0.

Figure 9.6

Analyse the motion in terms of suitable parameters, using the information of Sections 9.3 and 9.4 on the
growth or decay, periodicity and near periodicity of the solutions of Mathieu’s equation in the regions of
its parameter plane.

9.6 A pendulum with a light, rigid suspension is placed upside-down on end, and the point of suspension is
caused to oscillate vertically with displacement y upwards given by y = ε cosωt , ε  1. Show that the
equation of motion is

θ̈ +
(
−g

a
− 1

a
ÿ

)
sin θ = 0,

where a is the length of the pendulum, g is gravitational acceleration, and θ the inclination to the vertical.
Linearize the equation for small amplitudes and show that the vertical position is stable (that is, the
motion of the pendulum restricts itself to the neighbourhood of the vertical: it does not topple over)
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provided ε2ω2/(2ag)>1. For further discussion of the inverted pendulum and its stability see Acheson
(1997).

9.7 Let �(t) = (φij (t)), i, j = 1, 2, be the fundamental matrix for the system ẋ1 = x2, ẋ2 = −(α + β cos t)x1,
satisfying �(0) = I (Mathieu’s equation). Show that the characteristic numbers µ satisfy the equation

µ2 − µ{φ11(2π)+ φ22(2π)} + 1 = 0.

9.8 In Section 9.3, for the transition curves of Mathieu’s equation for solutions period 2π , let Dm,n be the
tridiagonal determinant given by

Dm,n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 γm 0
γm−1 1 γm−1

· · ·
γ0 1 γ0

· · ·
γn−1 1 γn−1
0 γn 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for m ≥ 0, n ≥ 0. Show that

Dm,n = Dm−1,n − γmγm−1Dm−2,n.

Let En = Dn,n and verify that

E0 = 1, E1 = 1− 2γ0γ1, E2 = (1− γ1γ2)
2 − 2γ0γ1(1− γ1γ2).

Prove that, for n ≥ 1,

En+2 = (1− γn+1γn+2)En+1 − γn+1γn+2(1− γn+1γn+2)En

+ γ 2
n γ

3
n+1γn+2En−1.

9.9 In eqn (9.38), for the transition curves of Mathieu’s equation for solutions of period 4π , let

Fm,n =

∣∣∣∣∣∣∣∣∣∣

1 δm
δm−1 1 δm−1

· · ·
δn−1 1 δn−1

δn 1

∣∣∣∣∣∣∣∣∣∣
.

Show as in the previous problem that Gn = Fn,n satisfies the same recurrence relation as En for n ≥ 2 (see
Problem 9.8). Verify that

G1 = 1− δ21,

G2 = (1− δ1δ2)
2 − δ21,

G3 = (1− δ1δ2 − δ2δ3)
2 − δ21(1− δ2δ3)

2.

9.10 Show, by the perturbation method, that the transition curves for Mathieu’s equation

ẍ + (α + β cos t)x = 0,

near α=1, β =0, are given approximately by α=1+ 1
12β

2, α=1− 5
12β

2.
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9.11 Consider Hill’s equation ẍ + f (t)x = 0, where f has period 2π , and

f (t) = α +
∞∑
r=1

βr cos rt

is its Fourier expansion, with α≈ 1
4 and |βr |1, r =1, 2, . . . . Assume an approximate solution eσ t q(t),

where σ is real and q has period 4π as in (9.34). Show that

q̈ + 2σ q̇ +
⎛
⎝σ2 + α +

∞∑
r=1

βr cos rt

⎞
⎠ q = 0.

Take q ≈ sin(12 t+γ ) as the approximate form for q and match terms in sin 1
2 t , cos

1
2 t , on the assumption

that these terms dominate. Deduce that

σ2 = −(α + 1
4 )+ 1

2
√
(4α + β21 )

and that the transition curves near α = 1
4 are given by α = 1

4 ± 1
2β1. (βn is similarly the dominant

coefficient for transition curves near α = 1
4n

2, n ≥ 1.)

9.12 Obtain, as in Section 9.4, the boundary of the stable region in the neighbourhood of ν=1, β =0 for
Mathieu’s equation with damping,

ẍ + κẋ + (ν + β cos t)x = 0,

where κ = O(β2).

9.13 Solve Meissner’s equation

ẍ + (α + βf (t))x = 0

where f (t) = 1, 0 ≤ t < π ; f (t) = −1, π ≤ t < 2π and f (t + 2π) = f (t) for all t . Find the conditions
on α, β, for periodic solutions by putting x(0)= x(2π), ẋ(0)= ẋ(2π) and by making x and ẋ continuous
at t =π . Find a determinant equation for α and β.

9.14 By using the harmonic balance method of Chapter 4, show that the van der Pol equation with parametric
excitation,

ẍ + ε(x2 − 1)ẋ + (1+ β cos t)x = 0

has a 2π -periodic solution with approximately the same amplitude as the unforced van der Pol equation.

9.15 The male population M and female population F for a bird community have a constant death rate k and
a variable birth rate µ(t) which has period T , so that

Ṁ = −kM + µ(t)F , Ḟ = −kF + µ(t)F .

The births are seasonal, with rate

µ(t) =
{
δ, 0 < t ≤ ε;

0, ε < t ≤ T .

Show that periodic solutions of period T exist for M and F if kT = δε.

9.16 A pendulum bob is suspended by a light rod of length a, and the support is constrained to move vertically
with displacement ζ(t). Show (by using the Lagrange’s equation method or otherwise) that the equation
of motion is

aθ̈ + (g + ζ̈ (t)) sin θ = 0,
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where θ is the angle of inclination to the downward vertical. Examine the stablity of the motion for the
case when ζ(t) = c sinωt , on the assumption that it is permissible to put sin θ ≈ θ .

9.17 A pendulum, with bob of mass m and rigid suspension of length a, hangs from a support which is
constrained to move with vertical and horizontal displacements ζ(t) and η(t) respectively. Show that the
inclination θ of the pendulum satisfies the equation

aθ̈ + (g + ζ̈ ) sin θ + η̈ cos θ = 0.

Let ζ = A sinωt and η = B sin 2ωt , where ω = √(g/a). Show that after linearizing this equation for
small amplitudes, the resulting equation has a solution

θ = −(8B/A) cosωt .

Determine the stability of this solution.

9.18 The equation

ẍ + (14 − 2εb cos2 1
2 t)x + εx3 = 0

has the exact solution x∗(t) = √(2b) cos 1
2 t . Show that the solution is stable by constructing the

variational equation.

9.19 Consider the equation ẍ + (α + β cos t)x=0, where |β|1 and α = 1
4 + βc. In the unstable region near

α = 1
4 (Section 9.4) this equation has solutions of the form c1eσ t q1(t)+ c2e−σ t q2(t), where σ is real,

σ > 0 and q1, q2 have period 4π . Construct the equation for q1, q2, and show that σ ≈ ±β√(14 − c2).

9.20 By using the method of Section 9.5 show that a solution of the equation

ẍ + ε(x2 − 1)ẋ + x = � cosωt

where |ε|1, ω=1+ εω1, of the form x∗ = r0 cos(ωt +α) (α constant) is asymptotically stable when

4ω2
1 + 3

16 r
4
0 − r20 + 1 < 0.

(Use the result of Problem 9.19.)

9.21 The equation

ẍ + αx + εx3 = εγ cosωt

has the exact subharmonic solution

x = (4γ )1/3 cos 1
3ωt ,

when

ω2 = 9
(
α + 3

41/3
εγ 2/3

)
.

If 0 < ε  1, show that the solution is stable.

9.22 Analyse the stability of the equation

ẍ + εxẋ2 + x = � cosωt

for small ε: assume � = εγ . (First find approximate solutions of the form a cosωt + b cosωt by the
harmonic balance method of Chapter 4, then perturb the solution by the method of Section 9.4.)

9.23 The equation ẍ + x + εx3 = � cosωt(ε1) has an approximate solution x∗(t) = a cosωt where
(eqn (7.10)) 3

4εa
3 − (ω2 − 1)a − �= 0: Show that the first variational equation (Section 9.4) is

ξ + {1+ 3εx∗2(t)}ξ = 0. Reduce this to Mathieu’s equation and find conditions for stability of x∗(t) if
� = εγ .
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9.24 The equation ẍ + x − 1
6x

3 = 0 has an approximate solution a cosωt where ω2 = 1 − 1
8a

2, a1
(Example 4.10). Use the method of Section 9.4 to show that the solution is unstable.

9.25 Show that a fundamental matrix of the differential equation

ẋ = A(t)x,
where

A(t) =
[

β cos2 t − sin2 t 1− (1+ β) sin t cos t
−1− (1+ β) sin t cos t −1+ (1+ β) sin2 t

]

is

�(t) =
[
eβt cos t e−t sin t
−eβt sin t e−t cos t

]
.

Find the characteristic multipliers of the system. For what value of β will periodic solutions exist?
Find the eigenvalues of A(t) and show that they are independent of t . Show that for 0 < β < 1 the

eigenvalues have negative real parts. What does this problem indicate about the relationship between the
eigenvalues of a linear system with a variable coefficients and the stability of the zero solution?

9.26 Find a fundamental matrix for the system

ẋ = A(t)x,
where

A(t) =
[

sin t 1
− cos t + cos2 t − sin t

]
.

Show that the characteristic multipliers of the system are µ1 = e2π and µ2 = e−2π . By integration
confirm that

exp

(∫ 2π

0
tr{A(s)}ds

)
= µ1µ2 = 1.
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10
Liapunov methods for
determining stability of
the zero solution

In Chapter 1, we described the ‘energy method’ for determining that an equilibrium point at
the origin is an attractor, in connection with simple systems that allow a discussion in terms
of the change in energy levels along the phase paths as time progresses. The Liapunov theory
described in this chapter may be regarded as a development of this idea. It has no necessary
connection with energy, concerns solution stability rather than Poincaré stability, and has a
broader field of application. We discuss only two-dimensional autonomous systems in detail,
but the theory can be extended to higher-dimensional and nonautonomous cases (Cesari 1971).
Sections 10.1 to 10.4 give a geometrical treatment for two-dimensional systems based on the

Poincaré–Bendixson theorem applied to topographic systems of a simple type. In particular it
is shown how a further requirement will frequently allow asymptotic stability to be proved by
using a weak Liapunov function. In Section 10.5 the theorems are proved in the usual, and
more general, form. With small changes in expression they also apply to n-dimensional cases.

10.1 Introducing the Liapunov method

To point the direction in which we are going, consider the following example.

Example 10.1 Investigate the phase paths of the system

ẋ = −y − x3, ẏ = x − y3.

The system has only one equilibrium point, at the origin. Consider the family of circles

V (x, y) = x2 + y2 = α, 0 < α <∞,

which are centred on the origin and fill the plane. We shall show that every path crosses these circles in an
inward direction; that is to say, the value α of V (x, y) strictly decreases along every phase path as time t

increases to infinity. This is illustrated for one path in Fig. 10.1.
To prove this, consider any particular phase path P, corresponding to a solution x(t), y(t). On this path

V (x, y) = V {x(t), y(t)},
so (

dV
dt

)
P
=
(
∂V

∂x
ẋ + ∂V

∂y
ẏ

)
P

= 2x(−y − x3)+ 2y(x − y3)

= −2(x4 + y4).

Except at the origin, (dV/dt) <0 on every phase path P, so V is strictly decreasing along P. In other words,
the representative point on P moves across successive circles of decreasing radius, as in Fig. 10.1. It is plausible
to deduce that unless its progress is blocked by a limit cycle, P enters the equilibrium point at the origin as
t →∞. �
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P

Figure 10.1 Path P crossing the family of circles in the inward direction.

The family of curves V (x, y)= x2+ y2=α in Example 10.1 is called a topographic system
for the problem, and it plays a similar role to the energy levels which appear in the energy
method of Chapter 1.
Some progress has been made beyond the linear approximation at the origin for this system,

which predicts a centre rather than a spiral. However, the proof that all paths enter the origin
as t → ∞ is incomplete, and we still need to prove Liapunov stability rather than Poincaré
stability.

Exercise 10.1
Show that V (x, y)= x2 + y2 is a topographic system for[

ẋ

ẏ

]
=
[−2 −1

1 −1
] [

x

y

]
.

What type of equilibrium point is the origin?

10.2 Topographic systems and the Poincaré–Bendixson theorem

We need to define a class of general topographic systems which have a topological structure
similar to the family of circles used in Example 10.1. They take the form

V (x, y) = α, α > 0,

and consist of a family of closed curves, surrounding the origin, which converge on to the origin
(continuously) as α→ 0, as suggested in Fig. 10.2. Formally, we shall adopt the conditions in
Definition 10.1, although these may be relaxed in some respects without affecting our results
(see Section 10.5). In the theorem statement, a connected neighbourhood of the origin can be
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Figure 10.2

regarded as any simple ‘patch’ on the x, y plane covering the origin that is also an open set,
in the sense that its boundary is excluded. Thus the set of points satisfying x2 + y2<1 is an
example of a connected neighbourhood of the origin.

Definition 10.1 (Topographic System) In some connected neighbourhoodN of the origin, let
V (x, y) satisfy:

(i) V (x, y) is continuous; ∂V/∂x, ∂V/∂y are continuous except possibly at the origin.

(ii) V (0, 0)=0 and V (x, y)>0 elsewhere in N .
(iii) Avalue ofµ>0 exists such that, for every value of the parameter α in the interval 0<α<µ,

the equation V (x, y)=α for (x, y) in N defines, uniquely, a simple closed curve Tα in N
which surrounds the origin. Then the family of curves V (x, y)=α, 0<α<µ is called a
topographic system on Nµ, where Nµ is a connected neighbourhood of the origin defined
by V (x, y)<µ, where Nµ ⊆ N .

Theorem 10.1 The topographic system of Definition 10.1 has the following properties:

(i) V (x, y)<α in the interior of the topographic curve Tα, 0<α<µ.

(ii) There is a topographic curve through every point interior to Tα, 0<α<µ (i.e., Nµ is a
connected neighbourhood of the origin).

(iii) If 0<α1<α2<µ, then Tα1 is interior to Tα2 , and conversely.

(iv) As α→ 0 monotonically, the topographic curves Tα close on to the origin.

Proof The proof of Theorem 10.1 is given in Appendix B. �

The neighbourhood Nµ can be regarded as the largest open set in which the conditions (i)
to (iii) hold good, but it is often convenient to use a smaller value of µ, so that Nµ is smaller,
and a smaller range of topographic curves is utilized.
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Despite the technicalities it is usually easy to seewhen the conditions are satisfied. For example
they are satisfied by the system

V (x, y) = x2 + y2 = α, Nµ is the whole plane;

or we may adopt a smaller Nµ, say x2+ y2<1.
For the function given by

V (x, y) = r2e−r2 = α,

the greatest Nµ allowed is the interior of the circle r =1, corresponding to µ= e−1 (otherwise
the uniqueness requirement in Definition 10.1 (iii) is not satisfied: to see this, sketch the curve
V = r2e−r2 , which turns over when r =1).

Consider the surface defined by the equation

z = V (x, y).

The contours or level curves on the surface, projected on to the x, y plane are given by

V (x, y) = α,

where the parameter α takes a range of values. If the contours form a topographic system on
a range 0<α<µ then the surface must be bowl shaped or trumpet shaped near enough to the
origin, as shown in Fig. 10.3.
Theorem 10.2, proved in Appendix B, defines a fairly broad class of eligible functions V (x, y)

which suffices for ordinary purposes, and which are usually easy to identify. They are restricted
to curves consisting of oval shapes that are concave with repect to the origin.

zz z

z a

a

Figure 10.3 Showing typical topographic curves as projections of contour of the function z = V (x, y).
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Theorem 10.2 In some neighbourhood N of the origin let V (x, y) be continuous, and
∂V/∂x, ∂V/∂y be continuous except possibly at the origin. Suppose that in N ,V (x, y) takes
the polar coordinate form

V (x, y) = rqf (θ)+ E(r, θ),

where

(i) V (0, 0) = 0;

(ii) q > 0;

(iii) f (θ) and f ′(θ) are continuous for all values of θ ;
(iv) f (θ) > 0, and has period 2π ;

(v) lim
r→0

r−q+1(∂E/∂r)=0 for all θ .

Then there exists µ>0 such that

V (x, y) = α, 0 < α < µ

defines a topographic system covering a neighbourhood of the origin Nµ, where Nµ lies in N .

Proof See Appendix B. �

As a special case, if V (x, y) can be represented by a Taylor series about the origin with
V (0, 0)=0, and the group of terms of lowest degree present has a minimum at the origin, then
the conditions are satisfied. A useful sub-class of this type are functions of the form

V (x, y) = f (x)+ g(y),

where f (x) and g(y) have Taylor series starting with terms Ax2n and By2m respectively with
A and B positive (see Fig. 10.3(a)).
The theorem also allows trumpet-shaped surfaces (see Fig. 10.3(b)) arising from expansion

in fractional powers, for example the radially symmetric system

V (x, y) = r1/2 − r = α, 0 < α < 1
4 .

Here µ= 1
4 , andNµ is the region r < 1

4 (to secure uniqueness of the topographic curves required
by Definition 10.1).
In tracking the progress of the paths in the vicinity of an equilibrium point the following

major theorem is frequently required.

Theorem 10.3 (The Poincaré–Bendixson theorem) Let R be a closed, bounded region in the
(x, y) plane on which the system ẋ=X(x, y), ẏ=Y (x, y) is regular (Appendix A). If a positive
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R R
R

H

H

H

L

Figure 10.4 (a) H is a closed paths, (b) H approaches a limit cycle; (c) H approaches an equilibrium point E.

half-path H defined in Section 8.11 lies entirely on R, then either

(i) H consists of a closed phase path on R;

(ii) H approaches a closed phase path on R;

(iii) H approaches an equilibrium point on R. �

The theorem confirms what we should expect: that for regular systems there are no limiting
cases other than closed phase paths and various types of equilibrium point, and that a path
cannot wander about at random forever. However, the proof is difficult (see, e.g., Cesari (1971)
or Andronov et al. (1973)). The three alternatives are illustrated in Fig. 10.4.

Exercise 10.2
Find the time solutions for the positive half-paths of

ẋ = x(1− x2 − y2)+ y, ẏ = y(1− x2 − y2)− x,

which start at (a) x=1, y=0, (b) x=2, y=0, at time t =0, and discuss their subsequent
behaviour. (Hint: switch to polar coordinates.)

10.3 Liapunov stability of the zero solution

We shall consider regular, autonomous systems (see Appendix A) having the form

ẋ = X(x, y), ẏ = Y (x, y), (10.1)

with an equilibrium point at the origin:

X(0, 0) = Y (0, 0) = 0; (10.2)

(assuming that, if necessary, the equilibrium point whose stability is being considered has been
moved to the origin by a translation of the axes).
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a

P

T

Figure 10.5 A phase path P crossing a topographic curve defined by V (x, y) = α.

We adopt a topographic system (Definition 10.1) defined in a neighbourhood Nµ of the
origin by a function V (x, y):

V (x, y) = α, 0 < α < µ; (10.3)

with V (0, 0) = 0.
Now define the function V̇ (x, y), whose sign at a point P will determine whether the

phase path of (10.1) through P crosses the topographic curve through P inwardly (α decreas-
ing) or outwardly (α increasing). In Fig. 10.5, T is the topographic curve and P the phase
path through the arbitrary point P : (x, y) in Nµ. Let the time solutions corresponding
to P be

x = x(t), y = y(t).

The time rate of change of V (x(t), y(t)) along P at the point P is given by

d
dt

V (x(t), y(t)) = ẋ
∂V

∂x
+ ẏ

∂V

∂y
= X

∂V

∂x
+ Y

∂V

∂y
.

This is a function of position, denoted by V̇ (x, y):

V̇ (x, y) = X
∂V

∂x
+ Y

∂V

∂y
. (10.4)

Then, as illustrated in Fig. 10.6.

if V̇ > 0 at P , P points outward from T ;

if V̇ < 0 at P , P points inward across T ;

if V̇ = 0 at P , P is tangential to T .

(10.5)

We shall refer to V (x, y) as a Liapunov test function for the system (10.1).



344 10 : Liapunov methods for determining stability of the zero solution

T T T
P

P

P

P

P

Figure 10.6 Phase path P crossing topographic curves T . (a) V̇ > 0 at P . (b) V̇ < 0 at P . (c) V̇ = 0 at P : the paths
are tangential and the directions undetermined.

Theorem 10.4 Let Tα be a topographic curve in Nµ, defined by

V (x, y) = α < µ,

and suppose that

V̇ (x, y) ≤ 0 in Nµ. (10.6)

Let H be any half-path that starts at a point P on, or in the interior of, Tα. Then H can never
escape from this region.

Proof (See Fig. 10.7). Let B be any point exterior to Tα. Since α <µ, there exists α1 with
α <α1<µ, such that the topographic curve Tα1 lies between Tα and the point B. In order to
reach B, P must cross Tα1 outwards, but since α1>α, this would contradict (10.6). This result
is used in Theorem 10.5 and at several points thereafter. �

a
aT T

H

Figure 10.7 If V̇ ≤ 0 on Nµ and the topographic curve Tα lies in Nµ, then the path from a point P inside Tα cannot
reach B.

Theorem 10.5 (Liapunov stability of the zero solution) Let V (x, y) satisfy the conditions of
Definition 10.1, and let the system ẋ = X(x, y), ẏ = Y (x, y) be regular in Nµ and have an
equilibrium point at the origin. Suppose that

V̇ (x, y) ≤ 0 (10.7)
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C
T C

H

Figure 10.8

in the region consisting of Nµ with the origin excluded. Then the zero solution is uniformly
stable in the Liapunov sense.

Proof The following construction (see Fig. 10.8) takes place in Nµ.Cε is a circle, centre the
origin, having arbitrary radius ε, and enclosing no equilibrium points except the origin, T is
any topographic curve interior to Cε, and Cδ is any circle of radius δ which interior to T . P is
any point in the interior of Cδ and H the half-path starting at P , at a time t0 which is arbitrary.
The same value of t0 is to be used for every such choice of initial point.

Since V̇ (x, y)≤0 in Nµ,H can never enter the region exterior to T (by Theorem 10.4);
therefore H can never reach the circle Cε. Stability of the zero time solution x∗(t)= y∗(t)=0,
follows immediately. Let the time solution correspoding to the arbitrarily chosen half-path H
be x(t), y(t), t ≥ t0. We have shown that given any ε >0 there exists δ >0 such that if

(x2(t0)+ y2(t0))
1/2 < δ

(i.e., if H starts in Cδ) then
(x2(t)+ y2(t))1/2 < ε, t ≥ t0;

(i.e., H never reaches Cε). These are the conditions of Definition 8.2 for Liapunov stability of
the zero solution. Also, since δ is independent of t0, the zero solution is uniformly stable. �

Notice the exclusion of the origin from the requirement (10.7). By (10.4), V̇ , is zero at the
origin of ∂V/∂x, ∂V/∂y exist there; but this is not required by Definition 10.1. We are only
interested in making the distinction between V̇ < 0 and V̇ ≤ 0 outside the origin.

Example 10.2 Show that the zero solution of the system

ẋ = X(x, y) = y, ẏ = Y (x, y) = −β(x2 − 1)y − x, β < 0 (10.8)

is Liapunov stable.

This represents the van der Pol equation ẍ+β(x2−1)ẋ+x = 0 with negative parameter β. Try the topographic
system given by the test function

V (x, y) = x2 + y2 = α, 0 < α < µ. (10.9)
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Then

V̇ (x, y) = X
∂V

∂x
+ Y

∂V

∂y
= −2β(x2 − 1)y2.

Therefore

V̇ (x, y) ≤ 0 when 0 < |x| < 1.

(We require µ ≤ 1 in (10.9).) Theorem 10.5 determines that the zero solution, represented by the equilibrium
point at the origin of the phase plane, is Liapunov stable. �
A function V (x, y) which satisfies the conditions of Theorem 10.5 and which therefore pre-

dicts stability of the zero solution, is called aweak Liapunov function. The word ‘weak’ is used
because the condition V̇ ≤ 0 is not alone ‘strong’ enough to distinguish asymptotic stability
when it occurs. In Section 10.5 we show how it can be made successful in some cases by adding
a further condition.

Exercise 10.3
Suggest a weak Liapunov function for the zero solution of

ẍ + kẋ + x3 = 0, ẋ = y.

10.4 Asymptotic stability of the zero solution

Asymptotic stability of the zero solution requires, first, that the solution be Liapunov stable
and second, that in the phase plane all half-paths starting sufficiently near to the origin at a time
t0 approach the origin. The conditions of the following theorem exclude the obstacles, namely
closed paths and extraneous equilibrium points, that would block the progress of half-paths
on their way to the origin.

Theorem 10.6 Let V (x, y) satisfy the conditions of Definition 10.1 for a topographic system
in Nµ, and let the system ẋ = X(x, y), ẏ = Y (x, y) be regular in Nµ. Suppose also that

V̇ (x, y) < 0 (10.10)

in the regionRµ, defined to be the neighbourhoodNµ with the origin excluded. Then (a) there
are no equilibrium points in Rµ (the only possible equilibrium point is at the origin); (b) Nµ

does not contain any closed phase paths (limit cycles).

Proof (a) Let P be any point inRµ. Then P cannot be an equilibrium point since, from (10.4),

V̇ = ẋ
∂V

∂x
+ ẏ

∂V

∂y

would be zero at P , which would contradict (10.10). Therefore the only possible equilibrium
point is at the origin.
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P

N

T

T

Figure 10.9

(b) (See Fig. 10.9) P is any phase path intersecting Nµ, and A is any point on P in Nµ. B is
any point in Nµ on P subsequent to A and TA,TB are the topographic curves through A and B

respectively: by (10.10), the direction of P is inward across TA and TB . P can never re-emerge
across TB to rejoin A, therefore P cannot be a closed phase path. In particular it cannot be a
closed phase path lying in Nµ. �

Theorem 10.7 (Asymptotic stability of the zero solution) Let V (x, y) satisfy the conditions
of Definition 10.1, of a topographic system, and in the neighbourhood Nµ of the definition let
the system ẋ = X(x, y), ẏ = Y (x, y) be regular and have an equilibrium point at the origin.
Suppose also that

V̇ (x, y) < 0 (10.11)

in the region consisting ofNµ with the origin excluded. Then the zero solution is (a) uniformly
and (b) asymptotically stable.

Proof (a) The zero solution is uniformly stable by Theorem 10.5, since the condition (10.11)
implies the truth of condition (10.7).
(b) Let P be any point in Nµ,T the topographic curve through P , and H the half-path

starting at P . The region consisting of T together with its interior is a closed region, so the
Poincaré–Bendixson theorem (Theorem 10.3) is applicable to H. Since, by Theorem 10.6, there
are no closed paths in Nµ, or any equilibrium points apart from the origin, H must approach
the origin. Since H is arbitrary in Nµ, all half-paths from Nµ approach the origin, so the zero
solution is asymptotically stable. �

A Liapunov test function satisfying the condition (10.11) for the system and therefore
determining asymptotic stability is called a strong Liapunov function.

Example 10.3 Investigate the stability of the zero solution of the system ẋ = −y − x3, ẏ = x − y3.

Here we return to complete Example 10.1. The family of curves

V (x, y) = x2 + y2 = α, 0 < α <∞,
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is a topographic system. Then

V̇ (x, y) = X
∂V

∂x
+ Y

∂V

∂y
= (−y − x3)2x + (x − y3)2y

= −2(x4 + y4)

which is negative everywhere except at the origin. Therefore we have found a strong Liapunov function for the
system, and by Theorem 10.7 the zero solution is uniformly and asymptotically stable in the Liapunov sense.
(This result brings with it the fact that all phase paths approach the origin as t →∞, which was the question
left unresolved in Example 10.1.) �
Example 10.4 By using the Liapunov test function V (x, y) = x2 + xy + y2, show that the zero solution of
the linear system ẋ = y, ẏ = −x − y is uniformly and asymptotically stable.

The proposed test function V (x, y) does define a topographic system, since

V (x, y) = x2 + xy + y2 = (x + 1
2y)

2 + 3
4y

2 > 0

for (x, y) 	= (0, 0). Also

V̇ (x, y) = y(2x + y)+ (−x − y)(x + 2y)

= −(x2 + xy + y2) = −V (x, y) < 0.

for (x, y) 	= (0, 0). Therefore, by Theorem 10.7, the zero solution is uniformly and asymptotically stable. (Also,
by Theorem 8.1, all the solutions have the same property since the system equations are linear.) �
Example 10.5 Investigate the stability of the system ẋ = −x − 2y2, ẏ = xy − y3.

The family of curves defined by

V (x, y) = x2 + by2 = α, α > 0, b > 0

constitutes a topographic system (of ellipses) everywhere. We obtain

V̇ (x, y) = −2(x2 + (2− b)xy2 + by4).

It is difficult to reach any conclusion about the sign of V̇ by inspection, but if we choose the value b = 2 we
obtain the simple form

V̇ (x, y) = −2(x2 + 2y4)

which is negative everywhere (excluding the origin). Therefore V (x, y) is a strong Liapunov function for the
system when

V (x, y) = x2 + 2y2.

By Theorem 10.7 the zero solution is uniformly and asymptotically stable. �

Exercise 10.4
Show that the system

ẍ + (2+ 3x2)ẋ + x = 0
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is equivalent to the first-order system

ẋ = y − x3, ẏ = −x + 2x3 − 2y.

Using the Liapunov function V (x, y) = x2 + y2, show that the origin in the (x, y) plane is
asymptotically stable.

In each of the cases of an asymptotically stable zero solution shown in Examples 10.3 to 10.5
we have displayed a neighbourhoodNµ fromwhich all half-paths approach the origin as t →∞.
Any neighbourhood having this property is called a domain of asymptotic stability or a domain
of attraction for the origin. Nµ will not, in general, be the largest possible domain of attraction,
since it depends on the Liapunov function chosen. If the domain of attraction consists of the
whole x, y plane, as in Example 10.4, the system is said to be globally asymptotically stable.

10.5 Extending weak Liapunov functions to asymptotic stability

In Example 10.2 we showed that the zero solution of the system ẋ = y, ẏ = −β(x2 − 1)y − x,
with β < 0 is Liapunov stable, by using a weak Liapunov function V (x, y) = x2+y2. However,
the linear approximation to the system,

ẋ = y, ẏ = −x + βy (β < 0),

predicts a stable spiral or a stable node (in the Poincaré sense) at the origin. It therefore seems
likely that the zero solution is not merely stable, but asymptotically stable, so there might exist
a strong Liapunov function, having the property V̇ (x, y) < 0 (rather than V̇ (x, y) ≤ 0) in a
region exterior to the origin. It is possible to construct such a function as will be shown in
Example 10.8; for example,

V (x, y) = {(2+ β2)x2 − 2βxy + 2y2}.
However, we now show how it is often possible, and simpler, to work with a weak Liapunov
function in order to demonstrate asymptotic stability when it does occur.

Theorem 10.8 Let V (x, y) satisfy the conditions for a topographic system in Definition 10.1,
and let the system equations be regular, in Nµ. Suppose that

(i) V̇ (x, y) ≤ 0 in the region consisting of Nµ with the origin excluded;

(ii) none of the topographic curves in Nµ is also a phase path.

Then Nµ does not contain a closed phase path.

Proof In Fig. 10.10, A is any point in Nµ, H is the half-path starting at A, and TA is
the topographic curve through A. TA is not a phase path (by the restriction (ii)) so H must
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T

T

H

N

Figure 10.10

separate from TA, either immediately, or after following TA for a time, but before completing
the cycle. Also, by (i) and Theorem 10.4, when H departs from TA its direction is inward,
as shown.
Let B be a subsequent point on H, and TB the topographic curve through B. By the same

argument, H must enter the interior of TB . Once there, it cannot emerge without violating
Theorem 10.4, so it can never rejoin A to form a closed phase path. Since the point A is
arbitrary there are, therefore, no closed phase paths in Nµ. �

Theorem 10.9 (Conditions for asymptotic stability from a weak Liapunov function) Let
V (x, y) satisfy the conditions inDefinition 10.1 for a topographic system V (x, y) = α, 0<α<µ

in a neighbourhood Nµ of the origin, in which also the system ẋ = X(x, y), ẏ = Y (x, y) is reg-
ular with a single equilibrium point, situated at the origin. Suppose also that
(i) V̇ (x, y)≤0 in the region consisting of Nµ with the origin excluded (i.e., V (x, y) is a weak
Liapunov function);

(ii) no (closed) curve of the topographic system is also a phase path.
Then the zero solution is uniformly and asymptotically stable.

Proof The zero solution is stable, by Theorem 10.5. We have to prove also that all half-paths
H starting in Nµ approach the origin as t →∞.
Choose any point P in Nµ. Let H be the half-path starting at P at time t0, and T the

topographic curve through P . By Theorem 10.4 H cannot enter the exterior of T , so it remains
in the closed region consisting of T and its interior.

By the conditions in the theorem statement there are no equilibrium points in this region
apart from the origin. Also the condition (ii) along with Theorem 10.8 ensures that there are
no closed phase paths on the region. Therefore, by the Poincaré–Bendixson theorem (Theorem
10.3) the arbitrarily chosen H, starting in Nµ, must approach the origin. The zero solution is
therefore asymptotically stable. �
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In Theorem 10.9, notice the importance for the proof of recording firstly that the zero solution
is stable. It is not enough to prove that all neighbouring phase paths approach the origin. Such
a stable-looking feature of the phase diagram indicates Poincaré stability, but it does not
automatically mean that the representative points remain in step as t →∞.
It will usually be very easy to determine, in particular cases, whether the condition (b) of

Theorem 10.7 is satisfied by inspecting any curves along which V̇ (x, y) = 0 in the light of the
following criteria:

Theorem 10.10 (Satisfaction of condition (b) of Theorem 10.9) Let C be any curve along
which V̇ (x, y) = 0, under the conditions of Theorem 10.9. If either (a) C is not closed in Nµ,
or (b) C is closed, but is not a topographic curve, or (c) C is not a phase path of the system,
then C is not a curve that need be considered under condition (b) of Theorem 10.7.

Proof (a) and (b) are obvious. For (c); if C proves to be a topographic curve, then it must be
tested against the differential equations since it might, by chance, prove to be a closed phase
path. (The possibility that V̇ (x, y) is equal to zero on a topographic curve does not imply that
it is a phase path: it might merely indicate that at every point on the curve the phase path is
tangential to it and then continues inward, as at P1 in Fig. 10.6(c).) �

In Example 10.2 we showed that the function V (x, y) = x2+y2 is a weak Liapunov function
for the van der Pol equation for a negative parameter β; this shows only that the zero solution
is stable. In Example 10.6 we shall use the reasoning above to show that it is asymptotically
stable.

Example 10.6 Show that the zero solution of the system ẋ = y, ẏ = −β(x2 − 1)y − x, with β < 0, is
asymptotically stable.

Use the test function V (x, y) = x2 + y2 = α, 0 < α < 1. In Example 10.7 we obtained

V̇ (x, y) = −2β(x2 − 1)y2 ≤ 0 in Nµ,

the neighbourhood Nµ being defined by x2+ y2<1. V̇ =0 on the curves y=0,−1≤ x <0 and y=0, 0<x ≤1
(since we exclude the equilibrium point (0,0)). These are not members of the topographic system (neither are
they closed; nor, plainly, are they solutions of the system). Therefore Theorem 10.9 applies and the zero
solution in asymptotically stable. �

10.6 A more general theory for autonomous systems

The following expression of the theory does not depend on the use of the Poincaré–Bendixson
theorem and the two-dimensional topographic systems of Definition 10.1, so the conditions
on the Liapunov functions are less restrictive. Also, comparatively small changes in wording
make the proofs available for n-dimensional systems.

We use the vector formulation. Put

x =
[
x1
x2

]
, ẋ =

[
ẋ1
ẋ2

]
, (10.12)
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then the system equations are

ẋ = X(x), (10.13)

where

X(x) =
[
X1(x)

X2(x)

]
,

and X1(x), X2(x) are scalar functions of position such that (10.13) satisfies the regularity
conditions of Appendix A.
A scalar function f (x) is called

positive definite if f (0) = 0, f (x) > 0 when x 	= 0;

positive semidefinite if f (0) = 0, f (x) ≥ 0 when x 	= 0;

negative definite if f (0) = 0, f (x) < 0 when x 	= 0;

negative semidefinite if f (0) = 0, f (x) ≤ 0 when x 	= 0.

The functions V (x) used in the previous sections are either positive definite or semidefi-
nite, but they have other restrictions imposed. Notice that if f (x) is definite, then it is also
semidefinite.

Theorem 10.11 (Liapunov stability) Suppose that in a neighbourhood N of the origin
(i) ẋ = X(x) is a regular system and X(0) = 0;

(ii) V (x) is continuous and positive definite;

(iii) V̇ (x) is continuous and negative semidefinite.
Then the zero solution of the system is uniformly stable.

Proof Choose any k >0 such that the circular neighbourhood |x|<k lies in N . Without loss
of generality, let ε be any number in the range 0<ε<k. In Fig. 10.11, Cε is the circle |x| = ε in
the phase plane.

C

C

H

Figure 10.11
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Since Cε is a closed set of points and V (x) is positive and continuous on Cε, V (x) attains its
minimum value m, say, with m > 0, at some point on Cε:

min
Cε

V (x) = m > 0,

so that

V (x) ≥ m > 0 on Cε. (10.14)

Since V (0) = 0 and V (x) is continuous at the origin

lim
x→0

V (x) = 0.

Therefore there exists δ > 0 such that

0 ≤ V (x) < m for all |x| < δ; (10.15)

that is, for all x interior to the circle Cδ having radius δ, shown in Fig. 10.11.
Let x0 be any point (excluding the origin) that is interior to Cδ; H the half-path starting at

x0 at the arbitrary time t0; and x(t), t ≥ t0, with x(t0) = x0, is the time solution corresponding
to H. By (10.15)

0 < V (x0) < m (10.16)

and by condition (iii)

V̇ (x(t)) ≤ 0 (10.17)

for all t ≥ t0 so long as the path remains in N . Therefore V (x(t)) is non-increasing along H, so
from (10.16) and (10.17)

0 < V (x(t)) < m for all t ≥ t0.

Therefore H can never meet Cε, since this would contradict (10.14). The existence of the
solution for all t ≥ t0 in the domain 0 < |x| < ε is then assured by Theorem A2 of Appendix A.

Therefore, given any ε > 0 there exists δ > 0 such that for any path x(t) the following is
true:

if |x(t0)| < δ, then |x(t)| < ε for all t ≥ t0.

This is the definition of uniform stability of the zero solution, since δ is independent of t0. �

Theorem 10.11 remains true for systems of dimension n > 2.

Theorem 10.12 (Asymptotic stability) Suppose that in some neighbourhoodN of the origin
(i) ẋ = X(x) is a regular system, and X(0) = 0;

(ii) V (x) is positive definite and continuous;

(iii) V̇ (x) is negative definite and continuous.
Then the zero solution is uniformly and asymptotically stable.

Proof V̇ (x) is negative definite, so it is also negative semidefinite and by Theorem 10.11
the zero solution is uniformly stable. It remains to show that, in terms of phase paths, there
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exists a neighbourhood of the origin from which every half-path approaches the origin, or that
limt→∞ x(t) = 0 for every such half-path.

Take any fixed value of k > 0 such that the circular neighbourhood

|x| < k

bounded by Ck (see Fig. 10.12) lies in N . By Theorem 10.11, there exists a number ρ > 0 such
that

|x(t0)| = |x0| < ρ ⇒ |x(t)| < k for t ≥ t0, (10.18)

where x(t) is the time solution with initial condition x(t0)= x0, represented in Fig. 10.12 by
the half-path H from x0, and where Cρ is the circular boundary |x| = ρ. Note that ρ depends
only on k since the system is autonomous.
Let Cη be any circle, however small, defined by

|x| = η, 0 < η < |x0| < ρ.

It will be shown that H will enter the interior of Cη at some time tη > t0.
Let R be the closed annular region defined by

η ≤ |x| ≤ k,

shown shaded in Fig. 10.12. By condition (iii), V̇ (x) attains its maximum value M on R and
this value is negative:

M = max
R

V̇ (x) < 0,

so that

V̇ (x) ≤ M < 0 no R. (10.19)

x0

C

C

C

H

Figure 10.12 R is shown as shaded.
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So long as H remains on R the values V (x(t)) along H are given by

0 ≤ V (x(t)) = V (x0)+
∫ t

t0

V̇ (x(τ )) dτ

≤ V (x0)+M(t − t0),

by (10.19). V is non-negative, but the right-hand side becomes negative for large enough t ;
therefore, H must exit from R at some time, through one of the boundaries |x| = k or |x| = η.
By (10.18), H cannot escape through Ck, so it must cross Cη and enter its interior. Denote the
time of its first arrival on Cη by tη.
Although η is arbitrarily small, H may, and in general will, emerge again and re-enter R. We

now show that, nevertheless, its distance from the origin remains infinitesimally bounded.
Choose any ε > 0 (however small) in the range

0 < ε < |x0| < ρ.

Since the solution is stable, there exists δ > 0 such that any path entering Cδ (see Fig. 10.13)
remains in the interior of Cε for all subsequent time. Choose the value of η in the foregoing
discussion in the range 0 < η < δ, and let Cη be the circle

|x| = η with 0 < η < δ.

We have shown above that H, starting in Cρ at time t0, will reach Cη at a certain time tη. Since
Cη is interior to Cδ, H will remain interior to Cε, for all t ≥ tη. (The existence of the solution is
secured by Theorem A2 of Appendix A.)
In terms of the corresponding time solution x(t) we have, proved that for arbitrary η > 0,

|x(t)| < ε for all t ≥ tη,

C

C

C

H

Figure 10.13
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or that

lim
t→∞ x(t) = 0,

for every solution with 0 < |x(t0)| < ρ. The region 0 < |x| < ρ is therefore a domain of
asymptotic stability. �

Theorem 10.12 remains true for systems of dimension n > 2.

Exercise 10.5
Using the Liapunov function V (x, y) = x2 + y2, show that the origin of

ẋ = −x + y(1− x2 − y2), ẏ = −y − x(1− x2 − y2)

is asymptotically stable.

10.7 A test for instability of the zero solution: n dimensions

The general approach of the Liapunov method can be adapted to test for instability of the
zero solution of an n-dimensional system. The notation ‖x‖ denotes any norm (a measure of
magnitude) of a vector x (see Section 8.2 and Appendix C).

Theorem 10.13 Let x(t) = 0, t ≥ t0, be the zero solution of the regular autonomous system
ẋ = X(x), of dimension n, where X(0) = 0. If there exists a function U(x) such that in some
neighbourhood ‖x‖ ≤ k

(i) U(x) and its partial derivatives are continuous;

(ii) U(0) = 0;

(iii) U̇ (x) is positive definite for the given system;

(iv) in every neighbourhood of the origin there exists at least one point x at which U(x) > 0;

then the zero solution (and therefore every solution) is unstable.

Proof By (iv), given any δ, 0<δ<k, there exists xδ such that 0< ‖xδ‖<δ and U(xδ)>0.
Suppose that x(δ, t), t ≥ t0, is the solution satisfying x(δ, t0)= xδ. Its path cannot enter the
origin as t→∞, because U(0)=0 (by (ii)) but U̇ (x)>0, x 	=0. Since U̇ is positive definite by
(iii), and continuous (by (i) and the regularity condition), and since the path is bounded away
from the origin there exists a number m>0 such that

U̇{x(δ, t)} ≥ m > 0, t ≥ t0

so long as

‖x(δ, t)‖ ≤ k.
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Therefore

U{x(δ, t)} − U{x(δ, t0)} =
∫ t

t0

U̇{x(δ, τ)}dτ ≥ m(t − t0). (10.20)

U(x) is continuous by (i) and therefore bounded on ‖x‖≤ k; but the right-hand side of (10.20)
is unbounded. Therefore x(δ, t) cannot remain in ‖x‖ ≤ k and so the path reaches the boundary
‖x‖= k.
Therefore, given any ε, 0 < ε < k, then for any δ, however small, there is at least one

solution x(δ, t) with ‖x(δ, t0)‖ < δ but ‖x(δ, t)‖ > ε for some t . Therefore the zero solution is
unstable. �

Typically (by (iv)), U(x) will take both positive and negative values close to x = 0. In the
plane, simple functions of the type xy, x2 − y2, may be successful, as in Example 10.7.

Example 10.7 Show that x(t) = 0, t ≥ t0, is an unstable solution of the equation ẍ − x + ẋ sin x = 0.

The equivalent system is ẋ = y, ẏ = x − y sin x. Consider

U(x, y) = xy

satisfying (i), (ii), and (iv) for every neighbourhood. Then

U̇ (x, y) = x2 + y2 − xy sin x.

It is easy to show that this has a minimum at the origin and since U̇ (0, 0) = 0, U̇ is positive definite in a
sufficiently small neighbourhood of the origin. Therefore the zero solution is unstable. (To show by calculus
methods that there is a minimum at the origin is sometimes the simplest way to identify such a function.) �

Exercise 10.6
Show that the origin in the system

ẋ = y, ẏ = −(1− x2)y + x

is an unstable equilibrium point.

10.8 Stability and the linear approximation in two dimensions

The specific question discussed is the following. For the two-dimensional autonomous system

ẋ = X(x) = Ax + h(x), (10.21)

where A is constant and h(x) is of smaller order of magnitude than Ax, does the instability
or asymptotic stability of the zero solution of ẋ=Ax imply the same property for the zero
solutions of the system ẋ=X(x)? To answer this question we shall construct explicit Liapunov
functions for the linearized system ẋ=Ax and show that they also work for the original system.
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Suppose that the linear approximate system

ẋ = Ax, or
[
ẋ

ẏ

]
=
[
a b

c d

] [
x

y

]
, (10.22)

is asymptotically stable. We show that a strong Liapunov function V (x) for this system can be
constructed which is a quadratic form, namely,

V (x) = xTKx, (10.23)

where the constant matrix K has to be determined. It follows that

V̇ (x) = ẋTKx + xTKẋ = xTATKx + xTKAx
= xT[ATK +KA]x.

We now arrange for V (x) to be positive definite and V̇ (x) negative definite: the second
requirement is satisfied if, for example, we can choose K so that

ATK +KA = −I , (10.24)

for then V̇ (x) = −x2− y2. To find K, in the notation of Chapter 2, let p = a+ d, q = ad − bc.
We shall show that there is a solution of (10.24) of the form

K = m(AT)−1A−1 + nI , (10.25)

where m and n are constants, which makes V (x) in (10.23) positive definite. The left of (10.24)
becomes

ATK +KA = m{A−1 + (AT)−1} + n(A+AT).

Since

A =
[
a b

c d

]
, A−1 =

[
d −b
−c a

]/
q,

then by (10.24) we require

ATK +KA = 1
q

[
2md + 2naq (nq −m)(b + c)

(nq −m)(b + c) 2ma + 2ndq

]
=
[−1 0

0 −1
]
.

This equation is satisfied if

m = −q/2p, n = −1/2p.
Then from (10.25)

K = − 1
2pq

[
c2 + d2 + q −ac − bd

−ac − bd a2 + b2 + q

]
. (10.26)
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The associated Liapunov function is given by (10.23):

V (x) = −{(c2 + d2 + q)x2 − 2(ac + bd)xy + (a2 + b2 + q)y2}/2pq
= −{(dx − by)2 + (cx − ay)2 + q(x2 + y2)}/2pq, (10.27)

which is positive definite at least when

p < 0, q > 0. (10.28)

Thus V is a strong Liapunov function for the linearized system (10.22) when (10.28) is satisfied.
Now, the stability regions for (10.22) are already known, and displayed in Fig. 2.10, which is
partly reproduced as Fig. 10.14. We see that (10.28) in fact exhausts the regions I of asymptotic
stability of eqn (10.22). This fact is used in Theorem 10.14.

Figure 10.14 Stability regions in the (p, q) plane for ẋ = ax + by, ẏ = cx + dy, where p = a + d and q = ad − bc

(see also Fig. 2.10).

Theorem 10.14 Let (0, 0) be an equilibrium point of the regular system[
ẋ

ẏ

]
=
[
a b

c d

] [
x

y

]
+
[
h1(x, y)
h2(x, y)

]
, (10.29)

where the order of magnitude of h1 and h2 as the origin approached are given by

h1(x, y) = O(x2 + y2), h2(x, y) = O(x2 + y2) (10.30)

as x2 + y2 → 0. Then the zero solution of (10.29) is asymptotically stable when its linear
approximation is asymptotically stable.

Proof We shall show that V given by (10.27) is also a strong Liapunov function for the system
(10.29). It is a function positive definite when p < 0, q > 0; that is, whenever the linearized
system is asymptotically stable.
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Also, for the given system (10.29),

V̇ = xT[ATK +KA]x + hT(x)Kx + xTKh(x)
= −xTIx + 2hT(x)Kx

= −(x2 + y2)+K11h
2
1 + 2K12h1h2 +K22h

2
2, (10.31)

where the symmetry of K has been used.
By (10.30), for any p, q, there is clearly a neighbourhood of the origin in which the first

term of (10.31) predominates, that is to say, where V̇ is negative definite. Therefore, V is a
strong Liapunov function for (10.29) in the parameter region p < 0, q > 0; that is, when the
linearized system is asymptotically stable. The result follows by Theorem 10.12. �

The open regions II, III, IV in Fig. 10.14 are, we know, where the solutions of ẋ = Ax

are unstable. To prove a statement in similar terms to the last theorem, only relating to the
instability of the zero solution of ẋ = Ax+h(x), we require a functionU(x)with the properties
stated in Theorem 10.13. There are two principal cases according to the eigenvalues ofA, given
as (i) and (ii) below:

(i) Instability: the eigenvalues of A real and different (regions II and III in Fig. 10.14)

Since we hope that the stability of ẋ = Ax will determine that of ẋ = Ax + h(x), we are
interested in the case where the solutions of ẋ = Ax are unstable: then (Theorem 8.11) at least
one eigenvalue of A is positive. This covers the regions II and III of Fig. 10.14. (We will not
consider the case when the eigenvalues are equal: the line p2 = 4q in Fig. 10.14; nor when one
of the eigenvalues is zero: q = 0.) In this case we can reduce the problem to a simpler one by a
transformation

x = Cu, (10.32)

where C is non-singular, and u = [u1, u2]T; whence the equation satisfied by u is

u̇ = C−1ACu. (10.33)

It is known that matrices of the form A and C−1AC have the same eigenvalues; hence the
stability criteria for x(t) and u(t) in terms of the eigenvalues are the same. When the eigenvalues
of A are real and different, it is known that C can then be chosen so that

C−1AC =
[

λ1 0
0 λ2

]
= D, say, (10.34)

where the columns of C are eigenvectors corresponding to λ1, λ2. Suitable C are given by

C =
[ −b −b

a − λ1 a − λ2

]
, b 	= 0;

C =
[ −c −c

d − λ1 d − λ2

]
, b = 0, c 	= 0,
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and if b = c = 0, the equations are already in a suitable form. Then from (10.33) and (10.34)

u̇ = Du, (10.35)

and we wish to establish the instability of the zero solution of this system.
Consider U defined by

U(u) = uTD−1u = u21/λ1 + u22/λ2. (10.36)

Then U(u)>0 at some point in every neighbourhood of u=0 (since instability requires λ1 or
λ2 positive). U(u) therefore satisfies conditions (i), (ii), and (iv) of Theorem 10.13 in the open
regions II and III of Fig. 10.14. Also

U̇ (u) = u̇TD−1u+ uTD−1u̇ = uTDD−1u+ uTD−1Du
= 2(u21 + u22), (10.37)

which is positive definite, so that Theorem 10.13 is satisfied.

(ii) Instability: the eigenvalues of A conjugate complex, with positive real part
(region IV of Fig. 10.14)

Write

λ1 = α + iβ, λ2 = α − iβ (α > 0).

The diagonalization process above gives u̇ = Du where D and u are complex. Since the
theorems refer to real functions, these cannot immediately be used. However, instead of
diagonalizing, we can reduce A by a matrix G so that

G−1AG =
[

α −β
β α

]
, (10.38)

say: an appropriate G is given by

G = C
[

1 i
1 −i

]
,

where C is as before. The system becomes

u̇ =
[

α −β
β α

]
u, (10.39)

with

x = Gu. (10.40)

Suppose we define U(u) by

U(u) = uTu. (10.41)
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This satisfies (i), (ii), and (iv) of Theorem 10.13 in region (IV) of Fig. 10.14. Also

U̇ (u) = 2α(u21 + u22) with (α > 0) (10.42)

as in case (i), so that U̇ is positive definite.
By using the prior knowledge of Chapter 2 as to the regions in which the linearized system

is unstable we have determined that wherever ẋ = Ax is unstable, U , given by either (10.36)
or (10.41) as appropriate, is a function of the type required for Theorem 10.13.

Theorem 10.15 Let (0, 0) be an equilibrium point of the regular two-dimensional system

ẋ = Ax + h(x) (10.43)

where

h(x) =
[
h1(x)

h2(x)

]
,

and h1(x), h2(x) = O(|x|2) as |x| → 0. When the eigenvalues of A are different, non-zero, and
at least one has positive real part, the zero solution of (10.43) is unstable.

Proof We shall assume that the eigenvalues of A are real and that one of them is positive
(the other case, with λ complex with positive real part, being closely similar). Assume that
equation (10.32) is used to reduce (10.43) to the form

u̇ = Du+ g(u); (10.44)

then if u(t) = 0 is unstable, so is x(t) = 0, and conversely. Also, for the components of g,

g1(u), g2(u) = O(x2 + y2) as x2 + y2→ 0. (10.45)

It is sufficient to display a function U(u) for the reduced system (10.44). U given by (10.36)
satisfies conditions (i), (ii), and (iv) of Theorem 10.13, namely

U(u) = u21/λ1 + u22/λ2.

From (10.44) we have

u̇1 = λ1u1 + g1(u), u̇2 = λ2u2 + g2(u),

so that

U̇ (u) = u̇1
∂U

∂u1
+ u̇2

∂U

∂u2

= 2(u21 + u22 + λ−11 u1g1(u)+ λ−12 u2g2(u)).

From (10.45), it is clear that U̇ is positive definite in a small enough neighbourhood of the origin,
satisfying (iii) of Theorem 10.13. Therefore, by Theorem 10.13, the zero solution u(t) = 0 is
unstable in regions II and III; thus x(t) = 0 is unstable. �

The calculation for region IV of Fig. 10.13 is similar, using U given by (10.41).
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Example 10.8 Show that the zero solution of van der Pol’s equation

ẍ + β(x2 − 1)ẋ + x = 0

is uniformly and asymptotically stable when β <0 and unstable when β >0. Construct a Liapunov function
for the stable case.

The equivalent system is ẋ = y, ẏ = −x + βy − βx2y. The linearized system is ẋ = y, ẏ = −x + βy. The
eigenvalues of

A =
[

0 1
−1 β

]

are given by λ1, λ2 = 1
2 (β ±

√
(β2 − 4)).

Suppose β < 0. Then the linearized system is asymptotically stable. Also hT(x)=[0,−βx2y]. Therefore, by
Theorem 10.14, the zero solution of the given equation is asymptotically stable.

By (10.23), (10.26), V = [x, y]K[x, y]T where

K = − 1
2β

[
2+ β2 −β
−β 2

]
.

Hence

V (x, y) = −{(2+ β2)x2 − 2βxy + 2y2}/(2β).

It can be confirmed that V̇ = −x2 − y2 − βx3y + 2x2y2, which is negative definite near the origin. The
associated topographic family

(1+ 1
2β

2)x2 − βxy + y2 = constant

would be preferable to the simpler family of circles x2 + y2 = constant, which is a weak Liapunov function.
Suppose β >0. The linearized system is unstable and Theorem 10.15 applies. �

Example 10.9 Investigate the stability of the equilibrium points of

ẋ = y(x + 1), ẏ = x(1+ y3).

There are two equilibrium points, at (0, 0) and (−1,−1). Near the origin the linear approximation is ẋ = y, ẏ =
x, with eigenvalues λ = ±1. Hence, the linear approximation has a saddle point at (0, 0). By Theorem 10.13,
the zero solution of the given equation is also unstable.

Near the point (−1,−1) put x = −1+ ξ , y = −1+ η. Then

ξ̇ = ξ(η − 1), η̇ = (ξ − 1){1+ (η − 1)3}.

The linear approximation is ξ̇ = −ξ , η̇ = −3η. The eigenvalues are λ=−1, −3, both negative. By Theo-
rem 10.14 the solution ξ(t)= η(t)= 0 is therefore asymptotically stable; so is the solution x(t)= y(t)=−1 of
the original solution.

Figure 10.15 shows the computed phase diagram. The shaded region shows the domain of attraction of the
point (−1,−1). �
The foregoing theorems refer to cases where the linearized system is asymptotically stable,

or is unstable, and make no prediction as to the effect of modifying, by nonlinear terms, a case
of mere stability. In this case the effect may go either way, as shown by Example 10.10.
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Figure 10.15 Phase diagram for Example 10.9: the domain of attraction of the node at (−1,−1) is shaded.

Example 10.10 Investigate the stability of the following systems:

(i) ẋ = y − x(x2 + y2), ẏ = −x − y(x2 + y2);

(ii) ẋ = y + x(x2 + y2), ẏ = −x + y(x2 + y2).

The linear approximation shows a centre in both cases.

(i) Let V = x2 + y2. Then

V̇ = −2(x2 + y2)2

which is negative definite so the zero solution is asymptotically stable, by Theorem 10.7 or 10.12.

(ii) Let U = x2 + y2 (positive in every neighbourhood of the origin). Then

U̇ = 2(x2 + y2)2

which is positive definite. Theorem 10.13 predicts instability. �

Exercise 10.7
For the linear system ẋ = Ax where

A =
[

1 3
−1 −2

]
,

find the matrix K defined by (10.26). Check that ATK +KA = −I .
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10.9 Exponential function of a matrix

It is convenient to have this technical device available in order to solve the equivalent of (10.29)
in n dimensions. Let A be a non-singular n× n matrix. Then eA is defined by

eA = I +A+ 1
2!A

2 + 1
3!A

3 . . . , (10.46)

whenever the series converges. The partial sums are n× n matrices and the series converges if
the elements of the partial-sum matrices converge, in which case eA is an n× n matrix. In fact
the series converges for all A, since for any r∥∥∥∥I +A+ · · · + 1

r!A
r

∥∥∥∥ ≤ 1+ ‖A‖ + · · · + 1
r!‖A‖

r ,

(where ‖ · · · ‖ denotes the Euclidean matrix norms: see Appendix C) and as r → ∞ the series
on the right always converges to e‖A‖. It also follows that

(i) ‖eA‖ ≤ e‖A‖.
(ii) eφ = I where φ is the zero matrix.

(iii) eAeB = eA+B when AB = BA.
(iv) e−A = (eA)−1 (e±A are nonsingular).

(v)
d
dt

eAt = AeAt = eAtA.

(vi) (eAt )T = eA
Tt , where T denotes the transpose.

(vii) Let the eigenvalues ofA ofA be λ1, λ2, . . . , λn. Then for any γ such that γ > max1≤i≤n(λi)
there exists a constant c >0 such that ‖eAt‖ < ceγ t .

(viii) The exponential function can be used to represent the solution of the system ẋ = Ax,
where A is constant. Let

x = eAtc, (10.47)

where c is any constant vector. Then x(0) = eφc = Ic = c and

ẋ = AeAtc = Ax,

by (v) above, which confirms the solution. In fact, eAt is a fundamental matrix for the
system, since eAt is nonsingular.

(ix) It can be shown (Ferrar 1951) that the exponential series (10.46) can be expressed as a
polynomial in A of degree less than n, whose coefficients are functions of the eigenvalues
ofA. We shall not need this result, but it is worth noting that it is not essential to evaluate
infinite series.
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Example 10.11 Find the solution of

ẋ =
[
ẋ

ẏ

]
=
[
1 1
0 1

] [
x

y

]
= Ax,

with x(0) = 1, y(0) = 1.

By (10.47) the solution has the form [
x

y

]
= eAt

[
c1
c2

]
.

Putting t = 0 we have c1 = 1, c2 = 1. The representation is obviously a generalization of the one-dimensional
solution ceαt . To evaluate eAt , note that

Ar =
[
1 r

0 1

]
= Br , r ≥ 1,

say. Therefore

eAt =
∞∑
r=0

Br t
r

r! =

⎡
⎢⎢⎣
∞∑
r=0

tr

r! 1+
∞∑
r=1

tr

(r −1)!
0

∞∑
r=0

tr

r!

⎤
⎥⎥⎦ =
[

et 1+ tet

0 et

]
.

Therefore

x = eAt
[
1
1

]
=
[
et 1+ tet

0 et

] [
1
1

]
=
[
et + 1+ tet

et

]
. �

The relation between the exponential matrix solution and the fundamental matrix solution
of ẋ = Ax can be obtained as follows. Suppose that A is an n × n matrix with n distinct
eigenvalues λ1, λ2, . . . , λn. Let the eigenvector associated with λr be cr , where

[A− λrI ]cr = 0 (r = 1, 2, . . . , n).

Let

C = [c1, c2, . . . , cn].
Then

AC = A[c1, c2, . . . , cn] = [Ac1, Ac2, . . . , Acn]
= [λ1c1, λ2c2, . . . , λncn]
= [c1, c2, . . . , cn]D = CD,

where D is the diagonal matrix of eigenvalues given by

D =

⎡
⎢⎢⎣
λ1 0 · · · 0
0 λ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · λn

⎤
⎥⎥⎦ .

Hence

A = A(CC−1) = (AC)C−1 = CDC−1,
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and

An = (CDC−1)(CDC−1) · · · (CDC−1) = CDnC−1,

since D is diagonal.
Finally, the solution of ẋ = Ax is

x = eAt =
∞∑
r=0

Ar t r

r! =
∞∑
r=0

CDrC−1t r

r! = C
∞∑
r=0

Dr t r

r! C
−1

= C
∞∑
r=0

⎡
⎢⎢⎣
λr1t

r/r! 0 · · · 0
0 λr2t

r/r! · · · 0
· · · · · · · · · · · ·
0 0 · · · λrnt

r/r!

⎤
⎥⎥⎦C−1

= C

⎡
⎢⎢⎣
eλ1t 0 · · · 0
0 eλ2t · · · 0
· · · · · · · · · · · ·
0 0 · · · eλnt

⎤
⎥⎥⎦C−1,

which is a fundamental matrix �(t) satisfying �(0) = CIC−1 = I .

Exercise 10.8
Solve the equation ⎡

⎣ẋ1ẋ2
ẋ3

⎤
⎦ =
⎡
⎣1 2 1
2 1 1
1 1 2

⎤
⎦
⎡
⎣x1x2
x3

⎤
⎦

using the exponential matrix method, and find the fundamental matrix �(t) for which
�(0) = I.

10.10 Stability and the linear approximation for nth order
autonomous systems

Given the n-dimensional nonlinear autonomous system

ẋ = Ax + h(x), h(0) = 0, (10.48)

and its linear approximation near the origin

ẋ = Ax, (10.49)
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we wish to identify conditions on h whereby asymptotic stability or instability of (10.49)
implies the similar property for the zero solutions of (10.48). We proceed as in Section 10.6
for the two-dimensional case.
Suppose first that the solutions of the linearized system (10.49) are asymptotically stable.

This implies (Theorem 8.8) that

Re{λi} < 0, i = 1, 2, . . . , n, (10.50)

where λi are the eigenvalues of A. We construct a strong Liapunov function for (10.48) which
is a quadratic form:

V (x) = xTKx, (10.51)

where the matrix K can be determined to make V positive definite and V̇ negative definite.
In order also to have any hope of making V̇ negative definite for the nonlinear system (10.48),

we at least need V̇ negative definite for the linearized system (10.49). From (10.51)

V̇ (x) = xT(ATK +KA)x, (10.52)

and we shall arrange that

ATK +KA = −I , (10.53)

which makes (10.52) negative definite:

V̇ (x) = −
n∑

i=1
x2i .

To achieve this, consider the product eA
T teA

t
. We have

d
dt
{eATteAt } = ATeA

TteAt + eA
TteAtA. (10.54)

By (vii) and (viii) of Section 10.9, when ẋ = Ax is asymptotically stable,

‖eAt‖ ≤ ceγ t , c > 0, γ < 0.

Since the eigenvalues of AT are the same as those of A we can choose c so that both

‖eAt‖ and ‖eATt‖ ≤ ceγ t , where c > 0, γ < 0. (10.55)

This ensures the convergence of the integrals below. From (10.54),∫ ∞
0

d
dt
{eATteAt }dt = AT

(∫ ∞
0

eA
TteAt dt

)
+
(∫ ∞

0
eA

TteAt dt
)
A;

and it also equals [eATteAt ]∞0 = −I , by (10.55). Comparing this result with (10.53) we see that

K =
∫ ∞
0

eA
TteAt dt (10.56)
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will satisfy (10.53). The matrix K is symmetrical by (iii) of Section 10.9. Note that (10.56),
and hence (10.53), hold whenever the eigenvalues of A are negative, that is, whenever ẋ = Ax
is asymptotically stable.
We have finally to show that V is positive definite. From (10.51) and (10.56),

V (x) = xTKx =
∫ ∞
0

(xTeA
Tt )(eAtx)dt

=
∫ ∞
0

(eAtx)T(eAtx)dt =
∫ ∞
0

B(t)TB(t)dt ,

where the matrix B(t) = eAtx. Since B(t)TB(t) ≥ 0 for all t (this true for any real square
matrix), V (x) is positive definite as required. We have therefore obtained a strong Liapunov
function V (x) for the linearized system (10.49).

Theorem 10.16 If the n-dimensional system ẋ = Ax + h(x), with A constant, is regular,
and

(i) the zero solution (hence every solution: Theorem 8.1) of ẋ = Ax is asymptotically stable;
(ii) h(0) = 0, and lim‖x‖→0 ‖h(x)‖/‖x‖ = 0, (10.57)

then x(t) = 0, t ≥ t0, for any t0 is an asymptotically stable solution of

ẋ = Ax + h(x). (10.58)

Proof We have to show there is a neighbourhood of the origin where V (x) defined by (10.51)
and (10.56) is a strong Liapunov function for (10.58). The function V given by

V (x) = xTKx,
where

K =
∫ ∞
0

eA
TteAt dt

is positive definite when (i) holds. Also for (10.58),

V̇ (x) = ẋTKx + xTKẋ
= xT(ATK +KA)x + hTKx + xTKh
= −xTx + 2hT(x)Kx, (10.59)

by (10.53) and the symmetry of K.
We have to display a neighbourhood of the origin inwhich the first term of (10.59) dominates.

From the Cauchy–Schwarz inequality (see Appendix C(vi))

|2hT(x)Kx| ≤ 2‖h(x)‖ ‖K‖ ‖x‖. (10.60)
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By (ii), given any ε > 0 there exists δ > 0 such that

‖x‖ < δ ⇒ ‖h(x)‖ < ε‖x‖,
so that from (10.60),

|2hT(x)Kx| ≤ 2ε‖K‖ ‖x‖2. (10.61)

Let ε to be chosen so that

ε < 1/(4‖K‖),
then from (10.61),

‖x‖ < δ ⇒ ‖2hT (x)Kx‖ < 1
2‖x‖2 = 1

2 (x
2
1 + x22 + · · · + x2n).

Therefore, by (10.59). V̇ (x) for (10.58) is negative definite on ‖x‖ < δ. By Theorem 10.12, the
zero solution is asymptotically stable. �

A similar theorem can be formulated relating to instability. Consider the regular system

ẋ = Ax + h(x), h(0) = 0, (10.62)

where A is constant. Let C be a nonsingular matrix, and change the variables to u by writing

x = Cu; (10.63)

then the original equation becomes

u̇ = C−1ACu+ h(Cu). (10.64)

Let C be chosen to reduce A to canonical form, as in Section 10.8. The eigenvalues are
unchanged, so whenever a solution x(t) of (10.62) is stable, the corresponding solution u(t) of
(10.64) is stable. Since the converse is also true, the same must apply to instability. The zero
solution of (10.62) corresponds with that of (10.64): we may therefore investigate the stability
of (10.64) in place of (10.62). The same applies to the linearized pair

ẋ = Ax, u̇ = C−1ACu. (10.65)

Suppose, for simplicity, that the eigenvalues of A are distinct, and that at least one of them
has positive real part. Then all solutions of (10.65) are unstable. There are two cases.

(i) Eigenvalues of A real, distinct, with at least one positive

It is known that a real C may be chosen so that

C−1AC = D, (10.66)

where D is diagonal with the elements equal to the eigenvalues of A. Then (10.64) becomes

u̇ = Du+ h(Cu). (10.67)
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(ii) When the eigenvalues of A are distinct, not all real, and at least one
has positive real part

It is then known that a real nonsingular matrix G may be chosen so that

G−1AG = D∗, (10.68)

where D∗ is block-diagonal: in place of the pair of complex roots λ, λ̄ in diagonal positions
which would be delivered by a transformation of type (10.62) and (10.65), we have a ‘block’
of the form

D∗ =

⎡
⎢⎢⎣
· · · 0

α −β
β α

0 · · ·

⎤
⎥⎥⎦ , (10.69)

where

λ = α + iβ.

The argument in the following theorem is hardly altered in this case.

Theorem 10.17 If A is constant, and

(i) the eigenvalues of A are distinct, none are zero, and at least one has positive real part;

(ii) lim‖x‖→0 ‖h(x)‖/‖x‖ = 0; (10.70)

then the zero solutions x(t) = 0, t ≥ t0, of the regular system

ẋ = Ax + h(x)
are unstable.

Proof We shall carry out the proof only for the case where the eigenvalues of A are all real.
Reduce (10.70) to the form (10.67):

u̇ = Du+ h(Cu),
where C is nonsingular andD is diagonal with the eigenvalues of A as its elements, at least one
being positive. As explained, it is only necessary to determine the stability of u(t) = 0, t ≥ t0.
Write

U(u) = uTD−1u =
n∑

i=1

u2i

λi
. (10.71)

If λk >0, then U(u)>0 when uk 	=0 and u1 = u2 = · · · = uk−l = uk+1 = · · · = un=0.
Therefore (i), (ii), and (iv) of Theorem 10.13 are satisfied.



372 10 : Liapunov methods for determining stability of the zero solution

Also, for (10.70),

U̇ (u) = u̇TD−1u = uTDD−1u+ uTD−1Du+ hTD−1u+ uTD−1h
= 2(u21 + u22 + · · · + u2n)+ 2uTD−1h(Cu), (10.72)

since DD−1 = D−1D = I and D is symmetrical. Theorem 10.13 requires U̇ to be positive
definite in a neighbourhood of the origin. It is clearly sufficient to show that the second term
in (10.72) is smaller than the first in a neighbourhood of the origin.
By (iii), given ε > 0 there exists δ > 0 such that

‖C‖ ‖u‖ < δ ⇒ ‖Cu‖ < δ ⇒ ‖h(Cu)‖ < ε‖Cu‖, (10.73)

or alternatively

‖u‖ < δ/‖C‖ ⇒ ‖h(Cu)‖ < ε‖C‖ ‖u‖.
Therefore (see (10.72)), ‖u‖ < δ/‖C‖ implies that

|2uTD−1h(Cu)| ≤ 2‖uT‖ ‖D−1‖ ‖h(Cu)‖,
≤ 2ε‖D−1‖ ‖C‖ ‖u‖2. (10.74)

If we choose

ε < 1/(2‖D−1‖ ‖C‖),
then (10.74) becomes

|2uTD−1h(Cu)| < ‖u‖2

for all u close enough to the origin. By referring to (10.72) we see that U̇ (u) is positive definite
in a neighbourhood of the origin, as required by (iii) of Theorem 10.11. Therefore the zero
solution is unstable. �
Example 10.12 Prove that the zero solution of the system

ẋ1 = −x1 + x22 + x23 , ẋ2 = x1 − 2x2 + x21 , ẋ3 = x1 + 2x2 − 3x3 + x2x3,

is uniformly and asymptotically stable.

Here we have

A =
⎡
⎣−1 0 0

1 −2 0
1 2 −3

⎤
⎦

and

h(x) = [x22 + x23 , x21 , x2x3]T.
The eigenvalues of A are −1, −2, −3; therefore the zero solution of ẋ = Ax is uniformly and asymptotically
stable. Also

‖h(x)‖ = x22 + x23 + x21 + |x2x3|,
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and

‖h(x)‖/‖x‖ = (x22 + x23 + x21 + |x2x3|)/(|x1| + |x2| + |x3|),
tending to zero with ‖x‖. By Theorem 10.16 the zero solution of the given system is therefore uniformly
asymptotically stable. �
Example 10.13 Show that the zero solution of the equation

...
x − 2ẍ − ẋ + 2x = ẍ(x + ẋ)

is unstable.

Write as the equivalent system

ẋ = y, ẏ = z, ż = −2x + y + 2z+ z(x + y).

Then

A =
⎡
⎣ 0 1 0

0 0 1
−2 1 2

⎤
⎦ ,

with eigenvalues 2, 1, −1, two of which are positive. Also

‖h(x)‖/‖x‖ = |z(x + y)|/(|x| + |y| + |z|)
which tends to zero with ‖x‖. Therefore, by Theorem 10.17, the zero solution of the given equation is
unstable. �

Exercise 10.9
For the linear system ẋ = Ax where

A =
[−2 1

1 −2
]
,

find the matrix K using

K =
∫ ∞
0

eA
TteAt dt .

Find the Liapunov function V (x) = xTKx, and check that

ATK +KA = −I .

10.11 Special systems

Quadratic systems

Consider the strongly nonlinear system whose lowest-order terms are of the second degree:

ẋ = X(x, y) ≈ a1x
2 + 2b1xy + c1y

2, (10.75)

ẏ = Y (x, y) ≈ a2x
2 + 2b2xy + c2y

2. (10.76)
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Neglecting any higher-order terms, the equations can be written as

ẋ = [x, y]A1

[
x

y

]
, ẏ = [x, y]A2

[
x

y

]
, (10.77)

where

A1 =
[
a1 b1
b1 c1

]
, A2 =

[
a2 b2
b2 c2

]
.

For Theorem 10.13 let

U(x, y) = αx + βy. (10.78)

Then for any non-zero α and β, U > 0 for some points in every neighbourhood of the origin.
Thus (i), (ii), and (iv) of Theorem 10.13 are satisfied. For (10.77), U̇ is given by

U̇ (x, y) = αẋ + βẏ = α[x, y]A1

[
x

y

]
+ β[x, y]A2

[
x

y

]

= [x, y]
[
αa1 + βa2 αb1 + βb2
αb1 + βb2 αc1 + βc2

] [
x

y

]
.

This quadratic form is positive definite if the conditions

αa1 + βa2 > 0,
(∝,β) > 0 (10.79)

hold, where


(α,β) = α2(a1c1 − b21)+ αβ(a1c2 + a2c1 − 2b1b2)+ β2(a2c2 − b22),

= (α,β)
[

a1c1−b21 1
2 (a1c2+a2c1−2b1b2)

1
2 (a1c2+a2c1−2b1b2) a2c2−b22

] [
α

β

]
. (10.80)

Consider whether α, β exist satisfying (10.79) and (10.80). On a plane for α,β, a1α+ b1β = 0
is a straight line, and (10.79) is represented by a half-plane, like that shown in Fig. 10.16(a).
Since 
(α,β) is a quadratic form it is either positive definite, positive on a ray or in a sector
as in Fig. 10.16(b), or negative definite. Unless 
(α,β) is negative definite, or unless it is
negative except on the line a1α + b1β = 0 where it is zero, there exist some values of α, β
making U(x) positive definite and therefore satisfying the final conditions of Theorem 10.13.
The zero solution of (10.75) and (10.79) is therefore unstable, except possibly in the particular
cases, depending on exact relations between the coefficients, mentioned above. We shall not
investigate these cases.

Hamiltonian problems in dynamics

Conservative problems, particularly in dynamics, can be expressed in the form

ṗi = −∂H
∂qi

, q̇i = ∂H
∂pi

, i = 1, 2, . . . , n, (10.81)
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Figure 10.16

whereH is a given function called the Hamiltonian of the system, qi is a generalized coordinate,
and pi a generalized momentum. The Hamiltonian is defined by

H(p, q) = T (p, q)+ V(q),

where T is the kinetic energy and V the potential energy: it is assumed that V(0) = 0. T , being
kinetic energy, is a positive definite quadratic form in pi , so H(0, 0) = 0, since T (p,0) = 0.

Suppose that q = 0 is a minimum of V(q) so that V, and hence H, is positive definite in a
neighbourhood of the origin. Then

Ḣ(p, q) =
n∑

i=1

∂H
∂pi

ṗi +
n∑

i=1

∂H
∂qi

q̇i = 0

by (10.81). Thus H is a weak Liapunov function for (10.81). Therefore, by Theorem 10.19
the zero solution p = 0, q = 0, a position of equilibrium, is stable when it is at a minimum
of V.

Now, suppose the origin is a maximum of V, and that V has the expansion

V(q) = PN(q)+ PN+1(q)+ · · · , N ≥ 2

where PN(q) is a homogeneous polynomial of degree N ≥1 in the qi . Consider a function
U(p, q), of the type in Theorem 10.13, defined by

U(p, q) =
n∑

i=1
piqi .
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Then U satisfies conditions (i), (ii), and (iv) of Theorem 10.13. Also

U̇ (p, q) =
n∑

i=1
piq̇i +

n∑
i=1

ṗiqi

=
n∑

i=1
pi

∂H
∂pi

−
n∑

i=1
qi
∂H
∂qi

=
n∑

i=1
pi

∂T
∂pi

−
n∑

i=1
qi
∂T
∂qi
−

n∑
i=1

qi
∂V
∂qi

= 2T −
n∑

i=1

∂T
∂qi
−NPN(q)− (N + 1)PN+1(q)+ · · · ,

where Euler’s theorem on homogeneous functions has been applied to T , PN , PN+1, . . . . The
dominating terms in the series near p= q =0 are 2T − NPN(q). Since, by hypothesis, PN

has a maximum at q =0 and T is positive definite, U̇ is positive definite in a neighbour-
hood of the origin. Therefore, by Theorem 10.13, the equilibrium is unstable when it is at a
maximum of V .

The Liénard equation

This is the equation

ẍ + f (x)ẋ + g(x) = 0, (10.82)

or the equivalent system in the Liénard plane

ẋ = y − F(x), ẏ = −g(x); (10.83)

where

F(x) =
∫ x

0
f (u)du.

Suppose that f and g are continuous and that

(i) f (x) is positive in a neighbourhood of the origin, except at x=0, where it is zero;

(ii) g(x) is positive / negative when x is positive / negative (implying g(0)=0).

Now let

G(x) =
∫ x

0
g(u)du, (10.84)

and consider the function

V (x, y) = G(x)+ 1
2y

2,
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as a possible weak Liapunov function. It is clearly positive definite since G(x) > 0 for x 	= 0.
Also, by (10.83),

V̇ (x, y) = g(x)ẋ + yẏ = −g(x)F (x).

This is negative semidefinite. The zero solution is therefore stable.

Exercise 10.10
Using the Liapunov function V (x, y) = G(x)+ 1

2y
2, show that the origin of the system

ẍ + [1+ f (x)]ẋ + g(x)+ F(x) = 0, ẋ = y − F(x),

is asymptotically stable: f (x), F(x), and g(x) satisfy the conditions of the Liénard equation
above. Apply the result to

ẍ + (1+ x2)ẋ + x + 1
3x

3 = 0.

Problems

10.1 Find a simple V or U function (Theorems 10.5, 10.11 or 10.13) to establish the stability or instability
respectively of the zero solution of the following equations:

(i) ẋ = −x + y − xy2, ẏ = −2x − y − x2y;

(ii) ẋ = y3 + x2y, ẏ = x3 − xy2;

(iii) ẋ = 2x + y + xy, ẏ = x − 2y + x2 + y2;

(iv) ẋ = −x3 + y4, ẏ = −y3 + y4;

(v) ẋ = sin y, ẏ = −2x − 3y;

(vi) ẋ = x + e−y − 1, ẏ = x;

(vii) ẋ = ex − cos y, ẏ = y;

(viii) ẋ = sin(y + x), ẏ = − sin(y − x);

(ix) ẍ = x3;

(x) ẋ = x + 4y, ẏ = −2x − 5y;

(xi) ẋ = −x + 6y, ẏ = 4x + y.

10.2 Show that α may be chosen so that V = x2 + αy2 is a strong Liapunov function for the system

ẋ = y − sin3 x, ẏ = −4x − sin3 y.

10.3 Find domains of asymptotic stability for the following systems, using V = x2 + y2:

(i) ẋ = −1
2x(1− y2), ẏ = −1

2y(1− x2);

(ii) ẋ = y − x(1− x), ẏ = −x.
10.4 Find a strong Liapunov function at (0, 0) for the system

ẋ = x(y − b), ẏ = y(x − a)

and confirm that all solutions starting in the domain (x/a)2+ (y/b)2<1 approach the origin.
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10.5 Show that the origin of the system

ẋ = xP (x, y), ẏ = yQ(x, y)

is asymptotically stable when P(x, y)<0, Q(x, y)<0 in a neighbourhood of the origin.

10.6 Show that the zero solution of

ẋ = y + xy2, ẏ = x + x2y

is unstable.

10.7 Investigate the stability of the zero solution of

ẋ = x2 − y2, ẏ = −2xy

by using the function U(x, y) = αxy2 + βx3 for suitable constants α and β.

10.8 Show that the origin of the system

ẋ = −y − x
√
(x2 + y2), ẏ = x − y

√
(x2 + y2)

is a centre in the linear approximation, but in fact is a stable spiral. Find a Liapunov function for the zero
solution.

10.9 Euler’s equations for a body spinning freely about a fixed point under no forces are

Aω̇1 − (B − C)ω2ω3 = 0,

Bω̇2 − (C − A)ω3ω1 = 0,

Cω̇3 − (A− B)ω1ω2 = 0,

where A, B, and C (all different) are the principal moments of inertia, and (ω1,ω2,ω3) is the spin of the
body in principal axes fixed in the body. Find all the states of steady spin of the body.

Consider perturbations about the steady state (ω0, 0, 0) by putting ω1=ω0+ x1, ω2= x2, ω3= x3,
and show that the linear approximation is

ẋ1 = 0, ẋ2 = {(C − A)/B}w0x3, ẋ3 = {(A− B)/C}ω0x2.

Deduce that this state is unstable if C < A < B or B < A < C.
Show that

V ={B(A−B)x22 +C(A−C)x23 }+ {Bx22 +Cx23 +A(x21 +2ω0x1)}2

is a Liapunov function for the case when A is the largest moment of inertia, so that this state is stable.
Suggest a Liapunov function which will establish the stability of the case in which A is the smallest
moment of inertia. Are these states asymptotically stable?

Why would you expect V as given above to be a first integral of the Euler equations? Show that each
of the terms in braces is such an integral.

10.10 Show that the zero solution of the equation

ẍ + h(x, ẋ)ẋ + x = 0

is stable if h(x, y) ≥ 0 in a neighbourhood of the origin.

10.11 The n-dimensional system

ẋ = grad W(x)
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has an isolated equilibrium point at x=0. Show that the zero solution is asymptotically stable if W has
a local minimum at x= 0. Give a condition for instability of zero solution.

10.12 A particle of mass m and position vector r = (x, y, z) moves in a potential field W(x, y, z), so that its
equation of motion is mr̈ =−grad W . By putting ẋ= u, ẏ= v, ż=w, express this in terms of first-order
derivatives. Suppose that W has a minimum at r =0. Show that the origin of the system is stable, by
using the Liapunov function

V = W + 1
2m(u2 + v2 + w2).

What do the level curves of V represent physically? Is the origin asymptotically stable?
An additional non-conservative force f (u, v,w) is introduced, so that

mṙ = −grad W + f .
Use the same Liapunov function to give a sufficient condition for f to be of frictional type.

10.13 Use the test for instability to show that if ẋ = X(x, y), ẏ = Y (x, y) has an equilibrium point at the origin,
then the zero solution is unstable if there exist constants α and β such that

αX(x, y)+ βY(x, y) > 0

in a neighbourhood of the origin and is zero at the origin.

10.14 Use the result of Problem 10.13 to show that the origin is unstable for each of the following:

(i) ẋ = x2 + y2, ẏ = x + y;

(ii) ẋ = y sin y, ẏ = xy + x2;

(iii) ẋ = y2m, ẏ = x2n (m, n positive integers).

10.15 For the system ẋ = y, ẏ = f (x, y), where f (0, 0) = 0, show that V given by

V (x, y) = 1
2y

2 −
∫ x

0
f (u, 0)du

is a weak Liapunov function for the zero solution when

{f (x, y)− f (x, 0)}y ≤ 0,
∫ x

0
f (u, 0)du < 0,

in a neighbourhood of the origin.

10.16 Use the result of Problem 10.15 to show the stability of the zero solutions of the following:

(i) ẍ = −x3 − x2ẋ;

(ii) ẍ = −x3/(1− xẋ);

(iii) ẍ = −x + x3 − x2ẋ.

10.17 Let

ẋ = −αx + βf (y), ẏ = γ x − δf (y),

where f (0) = 0, yf (y) > 0(y 	= 0), and αδ > 4βγ , where α, β, γ , δ are positive. Show that, for suitable
values of A and B,

V = 1
2Ax

2 + B

∫ y

0
f (u)du

is a strong Liapunov function for the zero solutions (and hence that these are asymptotically stable).

10.18 A particle moving under a central attractive force f (r) per unit mass has the equations of motion

ṙ − rθ̇2 = f (r),
d
dt

(r2θ̇ ) = 0.
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For a circular orbit, r = a, show that r2θ̇ =h, a constant, and h2 + a3f (a) = 0. The orbit is subjected
to a small radial perturbation r = a + ρ, in which h is kept constant. Show that the equation for ρ is

ρ̈ − h2

(a + ρ)3
− f (a + ρ) = 0.

Show that

V (ρ, ρ̇) = 1
2
ρ̇2 + h2

2(a + ρ)2
−
∫ ρ

0
f (a + u)du− h2

2a2

is a Liapunov function for the zero solution of this equation provided that 3h2 > a4f ′(a), and that the
gravitational orbit is stable in this sense.

10.19 Show that the following Liénard-type equations have zero solutions which are asymptotically stable:

(i) ẍ + |x|(ẋ + x) = 0;

(ii) ẍ + (sin x/x)ẋ + x3 = 0;

(iii) ẋ = y − x3, ẏ = −x3.
10.20 Give a geometrical account of Theorem 10.13.

10.21 For the system

ẋ = f (x)+ βy, ẏ = γ x + δy, (f (0) = 0),

establish that V given by

V (x, y) = (δx − βy)2 + 2δ
∫ x

0
f (u)du− βγ x2

is a strong Liapunov function for the zero solution when, in some neighbourhood of the origin,

δ
f (x)

x
− βγ > 0,

f (x)

x
+ δ < 0

for x 	= 0 (Barbashin 1970).
Deduce that for initial conditions in the circle x2 + y2 < 1, the solutions of the system

ẋ = −x3 + x4 + y, ẏ = −x,
tend to zero.

10.22 For the system ẋ = f (x)+ βy, ẏ = g(x)+ δy, f (0) = g(0) = 0, show that V given by

V (x, y) = (δx − βy)2 + 2
∫ x

0
{δf (u)− βg(u)}du

is a strong Liapunov function for the zero solution when, in some neighbourhood of the origin,

{δf (x)− βg(x)}x > 0, xf (x)+ δx2 < 0

for x 	= 0 (Barbashin 1970).
Deduce that the zero solution of the system ẋ = −x3+2x4+y, ẏ = −x4−y is asymptotically stable.

Show how to find a domain of initial conditions from which the solutions tend to the origin. Sketch
phase paths and a domain of asymptotic stability of the origin.

10.23 Consider van der Pol’s equation, ẋ + ε(x2 − 1)ẋ + x = 0, for ε < 0, in the Liénard phase plane,
eqn (10.83):

ẋ = y − ε(13x
3 − x), ẏ = −x.
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Show that, in this plane, V = 1
2 (x

2 + y2) is a strong Liapunov function for the zero solution, which is
therefore asymptotically stable. Show that all solutions starting from initial conditions inside the circle
x2 + y2 = 3 tend to the origin (and hence the limit cycle lies outside this region for every ε < 0. Sketch
this ‘domain of asymptotic stability’ in the ordinary phase plane with ẋ = y.

10.24 Show that the system ẋ = −x − xy2, ẏ = −y − x2y is globally asymptotically stable, by guessing a
suitable Liapunov function.

10.25 Assuming that the conditions of Problem 10.22 are satisfied, obtain further conditions which ensure
that the system is globally asymptotically stable.

Show that the system ẋ= y− x3, ẏ=− x− y is globally asymptotically stable.

10.26 Assuming that the conditions of Problem 10.23 are satisfied, obtain further conditions which ensure
that the system is globally asymptotically stable.

Show that the system ẋ = −x3 − x + y, ẏ = −x3 − y is globally asymptotically stable.

10.27 Give conditions on the functions f and g of the Liénard equation, ẍ + f (x)ẋ + g(x) = 0 which ensure
that the corresponding system ẋ = y−F(x), ẏ = −g(x) (Section 10.11) is globally asymptotically stable.

Show that all solutions of the equation ẍ + x2ẋ + x3 = 0 tend to zero.

10.28 (Zubov’s method.) Suppose that a function W(x, y), negative definite in the whole plane, is chosen as
the time derivative V̇ of a possible Liapunov function for a system ẋ = X(x, y), ẏ = Y (x, y), for which
the origin is an asymptotically stable equilibrium point. Show that V (x, y) satisfies the linear partial
differential equation

X
∂V

∂x
+ Y

∂V

∂y
= W

with V (0, 0) = 0.
Show also that for the path x(t), y(t) starting at (x0, y0) at time t0

V {x(t), y(t)} − V (x0, y0) =
∫ t

t0

W {x(u), y(u)}du.

Deduce that the boundary of the domain of asymptotic stability (the domain of initial conditions from
which the solutions go into the origin) is the set of points (x, y) forwhichV (x, y) is infinite, by considering
the behaviour of the integral as t → ∞, firstly when (x0, y0) is inside this domain and then when it is
outside. (Therefore the solution V (x, y) of the partial differential equation above could be used to give
the boundary of the domain directly. However, solving this equation is equivalent in difficulty to finding
the paths: the characteristics are in fact the paths themselves.)

10.29 For the system

ẋ = X(x, y) = −1
2x(1− x2)(1− y2),

ẏ = Y (x, y) = −1
2y(1− x2)(1− y2)

show that the Liapunov function V = x2+ y2 leads to V̇ = − (x2 + y2)(1 − x2)(1 − y2) and explain
why the domain of asymptotic stability (see Problem 10.30) contains at least the unit circle x2+y2 = 1.

Alternatively, start with V̇ = −x2 − y2 − 2x2y2 and obtain V from the equation

X
∂V

∂x
+ Y

∂V

∂y
= V̇ , V (0, 0) = 0

(see Problem 10.30). It is sufficient to verify that V = − log{(1− x2)(1− y2)}. Explain why the square
|x| < 1, |y| < 1 is the complete domain of asymptotic stability for the zero solution.
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10.30 Use the series definition of eAt to prove the following properties of the exponential function of amatrix:

(i) eA+B = eAeB if AB = BA;
(ii) eA is nonsingular and (eA)−1 = e−A;

(iii)
d
dt

eAt = AeAt = eAtA;

(iv) (eAt )T = eA
T t .

10.31 Let the distinct eigenvalues of the n × n matrix A be λ1, λ2, . . . , λn. Show that, whenever
γ > max1≤i≤n Re(λi), there exists a constant c > 0 such that ‖eAt‖ ≤ ceγ t .

10.32 Express the solution of [
ẋ

ẏ

]
=
[
0 1
1 0

] [
x

y

]
, x(0) = 0, ẋ(0) = 1,

in matrix form, and, by evaluating the exponential obtain the ordinary form from it.

10.33 Evaluate

K =
∫ ∞
0

eA
T teAt dt , where A = 1

2

[−3 1
1 −3

]
,

and confirm that ATK +KA = −I .
10.34 Show that, if B is an n× n matrix, A = eB and C is nonsingular, then C−1AC = eC

−1BC .

10.35 (i) Let L = diag(λ1, λ2, . . . , λn), where λi are distinct and λi 	= 0 for any i. Show that L = eD , where
D = diag(ln λ1, ln λ2, . . . , ln λn). Deduce that for nonsingular A with distinct eigenvalues, A = eB for
some matrix B.
(ii) Show that, for the system ẋ = P(t)x, where P(t) has period T , and E (eqn (9.15)) is nonsingular
with distinct eigenvalues, every fundamental matrix has the form�(t)=R(t)eMt , whereR(t) has period
T , andM is a constant matrix. (See the result of Problem 10.35.)

10.36 Using the results from Problem 10.36, show that the transformation x = R(t)y reduces the system
ẋ = P (t)x, where P (t) has period T, to the form ẏ =My, whereM is a constant matrix.



11
The existence of
periodic solutions

Suppose that the phase diagram for a differential equation contains a single, unstable equilib-
rium point and a limit cycle surrounding it, as in the case of the van der Pol equation. Then in
practice all initial states lead to the periodic oscillation represented by the limit cycle. In such
cases the limit cycle, is the principal feature of the system from the practical point of view, and
it is desirable to be able to decide with certainty whether it is there or not. Hitherto our attitude
to this question has been intuitive; we assemble qualitative evidence supporting the existence
of a limit cycle, from energy considerations or geometrical arguments, then attempt to estimate
the radius by the methods of Chapters 4, 5, and 7, a definite result being taken as further
confirmation that the limit cycle is really there. The present chapter contains theorems and
methods for proving positively the existence or non-existence of limit cycles and centres for
certain types of equation. The cases chosen can be interpreted physically as involving a balance
between energy gain and loss on various regions in the phase plane; they include the type dis-
cussed in Sections 1.5 and 4.1; also others with different symmetry. The latter serve as a guide
to intuition for related types which do not quite fit the conditions of the theorems. Further
theorems can be found, for example, in Andronov et al. (1973a) and Cesari (1971).

11.1 The Poincaré–Bendixson theorem and periodic solutions

We shall be concerned with second-order autonomous differential equations. A limit cycle is an
isolated periodic motion, which appears as an isolated closed curve in the phase plane. We take
Fig. 3.18 as showing the general nature of a limit cycle; neighbouring paths resemble spirals
which approach, or recede from, the limit cycle, though the appearence of actual limit cycles
may be somewhat different (see, e.g., Fig. 3.24). In Section 3.4, we gave criteria whereby it
can sometimes be shown that no limit cycle can exist in a certain region, and also a necessary
condition for a limit cycle (the index requirement), but we have no tests giving sufficient con-
ditions for existence. In particular we lack information when the differential equations do not
contain a small parameter.
We require the Poincaŕe–Bendixson theorem, which describes the ultimate behaviour on

t → ∞ of a phase path which enters and remains on a closed bounded region. This theorem
was stated and described in Section 10.2 (Theorem 10.3), but in order to preserve continuity
we state it again here:

Theorem 11.1 (The Poincaré–Bendixson theorem) Let R be a closed, bounded region con-
sisting of nonsingular points of a plane system ẋ = X(x) such that some positive half-path H
of the system lies entirely within R. Then either H is itself a closed path, or it approaches a
closed path, or it terminates at an equilibrium point. �
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H
H H

R

R

R

Figure 11.1 Possible behaviour of half-paths restricted to a bounded region R shown shaded: (a) closed path; (b)
path approaching a closed path; (c) path approaching an equilibrium point.

C

C

L

R

Figure 11.2 All paths are directed into the shaded region R as they cross C1 and C2. There exists at least one limit
cycle L in R.

If we can isolate a region from which some path cannot escape, the theorem describes what
may happen to it. The possibilities are illustrated in Fig. 11.1. The theorem implies, in particular,
that if R contains no equilibrium points, and some half-path H remains in R, then R must
contain a periodic solution.
The theorem can be used in the following way. Suppose (Fig. 11.2) that we can find two

closed curves, C1 and C2, with C2 inside C1, such that all paths crossing C1 and C2 enter the
annular region R between them. Then no path which enters R can ever escape from R. If,
further, we know that R has no equilibrium points in it, then the theorem predicts at least one
closed path L somewhere in R. Evidently L must wrap round the inner curve C2 as shown, for
the index of a closed path is 1 and it must therefore have an equilibrium point interior to it,
but R contains no equilibrium points. There must exist suitable equilibrium points interior to
C2 for all this to be possible.
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The same result is true if paths are all outward from R across C1 and C2 (by reversing the
time variable).
The practical difficulty is in finding, for a given system, a suitable C1 and C2 to substantiate

in this way the existence of a limit cycle. There is a similarity between this process and that of
finding Liapunov functions (Chapter 10).

Example 11.1 Show that the system

ẋ = x − y − (x2 + 3
2y

2)x, ẏ = x + y − (x2 + 1
2y

2)y

has a periodic solution.

The system has an equilibrium point, at (0, 0). Any other equilibrium points must satisfy

y = x − (x2 + 3
2y

2)x, x = −y + (x2 + 1
2y

2)y.

A sketch of these curves indicates that they cannot intersect.
We shall try to find two circles, centred on the origin, with the required properties. In Fig. 11.3(a), n = (x, y)

is a normal, pointing outward at P from the circle radius r, and X = (X,Y ) is in the direction of the path
through P . Also cosφ = n · X/|n||X| and therefore n · X is positive or negative according to whether X is
pointing away from, or towards, the interior of the circle. We have

n ·X = xX + yY = x2 + y2 − x4 − 1
2y

4 − 5
2x

2y2

= r2 − r4 + 1
2y

2(y2 − x2)

= r2 − r4(1+ 1
4cos 2θ − 1

4cos
2 2θ). (11.1)

When, for example, r = 1
2 , this is positive for all θ and so all paths are directed outwards on this circle, and

when r = 2 it is negative, with all paths directed inwards. Therefore, somewhere between r = 1
2 and r = 2,

there is at least one closed path, corresponding to periodic solution, since there are no equilibrium points in
this annulus. Figure 11.3(b) shows the computed stable limit cycle.

We can look for the pair of circles which pin down the narrowest annular region in which we can predict
that a closed path exists. The interval of r in which a closed path might lie is that for which, given a value of
r,X points inward on some points of the circle, outward on others; that is to say, values of r in this region give

n

X

Figure 11.3 (a) Notation for Example 11.1. (b) Showing the computed limit cycle, and the region between the inner
and outer ‘cycles with contact’, 0.97 ≤ r ≤ 1.41, shown shaded.
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circles to which X is tangential at some point (‘cycles with contact’: Andronov et al. 1973). For such values of
r the equation

r2 − r4
(
1+ 1

4cos 2θ − 1
4cos

2 2θ
)
= 0

has a solution (r, θ ). Write this in the form

4
(

1

r2
− 1
)
= cos 2θ − cos2 2θ .

Investigation of the maximum and minimum values of the right-hand side shows that

−2 ≤ cos 2θ − cos2 2θ ≤ 1
4

so that solutions will exist for values of the left-hand side which lie in this range, that is, when

4√
17 ≤ r ≤ √2, or 0.97 ≤ r ≤ 1.41,

which is shown as the shaded annular region in Fig. 11.3(b). This figure also shows the computed limit cycle
and neighbouring phase paths. �
Another point of view, closely resembling that of the Liapunov functions of Chapter 10, is

the following. Let

v(x, y) = c > 0, c1 < c < c2,

be a ‘band’ of closed curves for some range of c including c = c0 (the curve C0), the outer curves
corresponding to larger c (Fig. 11.4). If, for every P ,[

dv
dt

]
p

= v̇(x, y) = X
∂v

∂x
+ Y

∂v

∂y
> 0, P ∈ C0,

then all paths point outwards on C0 (see Fig. 11.4). Similarly, we may seek a closed curve over
which all paths are inward.

C

Figure 11.4
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Example 11.2 Show that the system

ẋ = y − x3 + x, ẏ = −x − y3 + y

has at least one closed path in the phase plane.

A sketch of the cubic curves y = −x + x3, x = y + y3 indicates that they intersect only at (0, 0) which implies
that the origin is the only equilibrium point.

Put v(x, y) = x2 + y2. Then

dv
dt
= 2x(y − x3 + x)+ 2y(−x − y3 + y) = 2(x2 + y2 − x4 − y4).

If x2 + y2 < 1 then

x2 + y2 > (x2 + y2)2 = x4 + 2x2y2 + y4 ≥ x4 + y4.

Hence dv/dt is strictly positive on the circle x2 + y2 = c for any c such that 0 < c < 1. On the other hand, for
x2 + y2 > 2,

2(x4 + y4) ≥ (x2 + y2)2 > 2(x2 + y2).

As a result dv/dt is strictly negative on the circle x2 + y2 = c for any c > 2. Therefore the system has at least
one closed path lying between the two concentric circles. �

It is generally difficult to find curves v(x, y) = c with the required properties. It may be pos-
sible, however, to construct supporting arguments which are not rigorous, as in the following
example.

Example 11.3 Show that the system

ẋ = y, ẏ = −4x − 5y + 6y

1+ x2

has a periodic solution.

These equations are a simplified version of equations for a tuned-grid vacuum-tube circuit (Andronov and
Chaikin 1949). The only equilibrium point on the finite plane is at x = 0, y = 0. Near the origin, the linear
approximation is ẋ = y, ẏ = −4x + y, an unstable spiral. As in the previous example, the existence of a
Liapunov function for the stable spiral (see Chapter 10) guarantees that there is in the present case a closed
curve surrounding the origin over which the paths point outward.

To find what happens at a great distance use, for example, the mapping z = 1/x, u = y/x (eqn (3.15)); the
system becomes

ż = −vz, u̇ = −4− 5u− u2 + 6uz2/(z2 + 1).

The equilibrium points on the horizon z = 0 are at u = −1 and u = −4 and these are unstable.
The situation is better viewed in the diametrical plane P∗ of Section 3.3. The picture is as in Fig. 11.5, giving

a reasonable assurance of a periodic solution, shown by the heavy line in the figure. �
The Poincaré–Bendixson principle can be employed to obtain theorems covering broad types

of differential equation, of which the following is an example.

Theorem 11.2 The differential equation

ẍ + f (x, ẋ)ẋ + g(x) = 0 (11.2)
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Figure 11.5 Phase diagram plotted on to a disc in the (x∗, y∗) plane (see Section 3.3) showing a stable limit cycle.
At infinity the equilibrium points marked A are saddle point and those marked B unstable nodes.

(the Liénard equation), or the equivalent system

ẋ = y, ẏ = −f (x, y)y − g(x).

where f and g are continuous, has at least one periodic solution under the following
conditions:

(i) there exists a > 0 such that f (x, y) > 0 when x2 + y2 > a2;

(ii) f (0, 0) < 0 (hence f (x, y) < 0 in a neighbourhood of the origin);

(iii) g(0) = 0, g(x) > 0 when x > 0, and g(x) < 0 when x < 0;

(iv) G(x) = ∫ x0 g(u)du→∞ as x →∞.

Proof (iii) implies that there is a single equilibrium point, at the origin.
Consider the function

E(x, y) = 1
2y

2 +G(x). (11.3)

This represents the energy of the system (potential plus kinetic) when it is regarded, say, as repre-
senting a spring–particle system with external forces. Clearly, G(0) = 0,G(x) > 0 when x 	= 0,
and G is monotonic increasing to infinity (by (iv)); and is continuous. Therefore E(0, 0) = 0,
and E(x, y) > 0 for x 	= 0 and y 	= 0 (E is positive definite). Also E is continuous and increases
monotonically in every radial direction from the origin. Therefore (Fig. 11.6) the family of
contours of E with parameter c > 0:

E(x, y) = c (11.4)

consists of simple closed curves encircling the origin. As c tends to zero they approach the origin
and as c→∞ they become infinitely remote (the principal consequence of (iv)).
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C

C

H

Figure 11.6

Wecan choose c, c = c1, small enough for the corresponding contour, C1, to be entirelywithin
the neighbourhood of the origin where, by (ii), f (x, y) < 0. We will examine a half-path H
starting at a point on C1.
Consider Ė(x, y) on H:

Ė(x, y) = g(x)ẋ + yẏ = g(x)y + y{−f (x, y)y − g(x)}
= −y2f (x, y). (11.5)

This is positive, except at y = 0, on C1. Choose H to start at a point on C other than y = 0.
Then it leaves C1 in the outward direction. It can never reappear inside C1, since to do so it
must cross some interior contours in the inward direction, which is impossible since, by (11.5),
Ė ≥ 0 on all contours near to C1, as well as on C1.
Now consider a contour C2 for large c, c = c2 say. C2 can be chosen, by (iv), to lie entirely

outside the circle x2 + y2 = a2, so that, by (i), f (x, y) > 0 on C2. By (11.5), with f (x, y) > 0,
all paths crossing C2 cross inwardly, or are tangential (at y = 0), and by a similar argument to
the above, no positive half-path, once inside C2, can escape.
Therefore H remains in the region bounded by C1 and C2, and by Theorem 11.1, there is a

periodic solution in this region. �

The theorem can be interpreted as in Section 1.5: near to the origin the ‘damping’ coefficient,
f , is negative, and we expect paths to spiral outwards due to intake of energy. Further out,
f (x, y) > 0, so there is loss of energy and paths spiral inwards. Between the families we expect
a closed path.

Example 11.4 Show that the equation ẍ + (x2 + ẋ2 − 1)ẋ + x3 = 0 has a limit cycle, and locate it between
two curves E(x, y) = constant.

With ẋ = y, the only equilibrium point is at (0, 0). In Theorem 11.2, f (x, y) = x2+ y2−1, g(x) = x3,G(x) =
1
4x

4. Therefore (11.4) gives the contours of E : 1
4x

4 + 1
2y

2 = c. The closed path located by the theorem lies

between two such contours, one inside, the other outside, of the curve f (x, y) = 0, or x2+y2 = 1, and is most
closely fixed by finding the smallest contour lying outside this circle and the largest lying inside. We require
respectively min/max of x2 + y2 subject to 1

4x
4 + 1

2y
2 = c, c being then chosen so that the min/max is
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Figure 11.7 The shaded region is bounded by the curves 1
4x

4+ 1
2y

2= 1
4 and 1

4x
4+ 1

2y
2= 1

2 .

equal to 1. The calculation by means of a Lagrange multiplier gives c = 1
2 and c = 1

4 respectively (see
Fig. 11.7). �

Exercise 11.1
Using the function v(x, y) = x2 + 1

2y
2, show that the system

ẋ = x + y − xr2, ẏ = −2x + 2y − yr2, r2 = x2 + y2

has a periodic solution which lies between

v(x, y) = 1
2 and v(x, y) = 1.

11.2 A theorem on the existence of a centre

The following theorem involves ingredients different from those previously considered.
(For a theorem of similar form but with less restrictive conditions see Minorsky
1962, p. 113.)

Theorem 11.3 The origin is a centre for the equation

ẍ + f (x)ẋ + g(x) = 0,

or for the equivalent system

ẋ = y, ẏ = −f (x)y − g(x), (11.6)

when, in some neighbourhood of the origin, f and g are continuous, and

(i) f (x) is odd, and of one sign in the half-plane x > 0;
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(a) (b)

Figure 11.8

(ii) g(x) > 0, x > 0, and g(x) is odd (implying g(0) = 0);

(iii) g(x) > αf (x)F (x) for x > 0, where F(x) = ∫ x0 f (u)du, and α > 1.

Proof We may assume that f (x) > 0 when x > 0, since the other case, f (x) < 0, reduces
to this by putting −t for t . The equation may describe a particle–spring system, with positive
damping (loss of energy) for x > 0, and negative damping (gain in energy) for x < 0. Since
f and g are odd, the paths are symmetrical about the y axis (put x = −z, t = −τ into
(11.6)). As in Theorem 11.2, (ii) ensures that there is a single equilibrium point, at the origin.
Figure 11.8 shows possible types of closed path satisfying these conditions: we have to exclude
possibilities such as (b).
Let

E(x, y) = 1
2y

2 +G(x), (11.7)

where

G(x) =
∫ x

0
g(u)du.

As in Theorem 11.2, the family of contours

E(x, y) = c > 0, (11.8)

where c is a parameter, define a family of closed curves about the origin (but this time only in
some neighbourhood of the origin where the conditions hold, or for small enough c), and as
c→ 0 the closed curves approach the origin.
Let C0 be an arbitrary member of the family (11.8) in the prescribed neighbourhood of the

origin, and consider the half-path H starting at A on the intersection of C0 with the y axis
(Fig. 11.9). On H,

Ė(x, y) = ∂E
∂x

ẋ + ∂E
∂x

ẏ = g(x)y + y[−f (x)y − g(x)] = −y2f (x). (11.9)
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C
H

Figure 11.9

While y >0, ẋ >0, so H constantly advances to the right in the first quadrant. Also, by (11.9),
Ė(x, y)<0, so y moves continuously to curves with smaller E . Since H remains within C0 it
leaves the quadrant at some point B on the positive x axis, inside C0.
On the axis y = 0, x > 0 we have, by (ii),

ẋ = 0, ẏ = −g(x) < 0.

Therefore all paths cut the positive x axis vertically downward, and so cannot re-enter the first
quadrant from the fourth. Moreover, since Ė(x, y) < 0 in the fourth quadrant, H continues to
lie inside C0; therefore it must either enter the origin (the only equilibrium point), or cross the
y axis at some point C for which y < 0.
We shall show that it does not enter the origin. In the fourth quadrant,

ẋ < 0 (11.10)

but

ẏ = −f (x)y − g(x), (11.11)

which is sometimes negative and sometimes positive. We can deal with (11.11) as follows
(Fig. 11.9). OQ is the curve or isocline on which ẏ = 0 (and dy/dx = 0), dividing the region
where ẏ > 0 from that where ẏ < 0 (eqn (11.11)). Assume initially that this curve approaches
the origin, that is, that

lim
x→0
{−g(x)/f (x)} = 0. (11.12)

For this case, H turns over in the manner indicated; is horizontal at R, and has negative slope
up to C, where dy/dx = 0 again. We have to show that y0 < 0. On RC

y1 − y0 =
∫ x1

0

dy
dx

dx.
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Therefore,

y0 = y1 +
∫ x1

0
{f (x)+ y−1g(x)}dx (by (11.6)),

= − g(x1)

f (x1)
+ F(x1)+

∫ x1

0
y−1g(x)dx (sinceF(0) = 0),

< − g(x1)

f (x1)
+ F(x1) (since g(x) > 0, y ≤ 0 on 0 ≤ x ≤ x1),

< −αF(x1)+ F(x1) < 0 (by (iii)).

Therefore y0<0, and ABRC is half of a closed path which is its own reflection in the y axis.
Now return to the possibility that the curve y = −g(x)/f (x) does not pass through the origin.

Since g(x) > 0 and f (x) > 0 when x > 0, it lies entirely below the x axis, and Fig. 11.10 shows
how H must in this case also remain below the x axis, and therefore cannot enter the origin.
Finally, since the argument is independent of A near enough to the origin, the origin is a

centre. �

H

Figure 11.10

Example 11.5 The equation ẍ + xẋ + x3 = 0 has a centre at the origin.

With ẋ = y, the system had only one equilibrium point at the origin. It cannot be classified by linearization.
Theorem 11.3 will be applied with f (x) = x and g(x) = x3, so that F(x) = 1

2x
2. Conditions (i) and (ii) of

Theorem 11.3 are satisfied. Also

f (x)F (x) = 1
2x

3.

Therefore,

g(x)− αf (x)F (x) = 1
2x

3(2− α)

so (iii) is satisfied with 1 < α < 2 (see Fig. 11.11). �
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4

3

2

1

1

2

12

Figure 11.11 Computed paths for ẍ+ xẋ+ x3=0 together with the isocline ẏ=0(y = −x2).

Exercise 11.2
In equation ẍ+f (x)ẋ+f (x) = 0 f (x) satisfies the conditions of Theorem 11.3. Show that
the origin is a centre if ∫ x

0
f (u)du < 1.

If f (x) = xe−x2 , find the equation of the phase paths of the centre.

11.3 A theorem on the existence of a limit cycle

We consider the equation

ẍ + f (x)ẋ + g(x) = 0, (11.13)

where, broadly speaking, f (x) is positive when |x| is large, and negative when |x| is small, and
where g is such that, in the absence of the damping term f (x)ẋ, we expect periodic solutions
for small x. Van der Pol’s equation, ẍ + β(x2 − 1)ẋ + x = 0, β > 0, is of this type. Effectively
the theorem demonstrates a pattern of expanding and contracting spirals about a limit cycle.
Paths far from the origin spend part of their time in regions of energy input and part in regions
of energy loss, so the physical argument for a limit cycle is less compelling than in the case of
Theorem 11.2.
The proof is carried out on a different phase plane from the usual one:

ẋ = y − F(x), ẏ = −g(x), (11.14)
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(the Liénard plane) where

F(x) =
∫ x

0
f (u)du.

The use of this plane enables the shape of the paths to be simplified (under the conditions of
Theorem 11.4, ẏ = 0 only on x = 0) without losing symmetry, and, additionally, allows the
burden of the conditions to rest on F rather than f , f being thereby less restricted.

Theorem 11.4 The equation ẍ + f (x)ẋ + g(x) = 0 has a unique periodic solution if f and g

are continuous, and
(i) F(x) is an odd function;

(ii) F(x) is zero only at x = 0, x = a, x = −a, for some a > 0;

(iii) F(x)→∞ as x →∞ monotonically for x > a;

(iv) g(x) is an odd function, and g(x) > 0 for x > 0.
(Conditions (i) to (iii) imply that f (x) is even, f (0)<0 and f (x)>0 for x >a.)

Proof The characteristics of f (x) and F(x) are shown schematically in (Fig. 11.12). The
general pattern of the paths can be obtained from the following considerations.

Figure 11.12 Relation between f (x) and F(x).

(a) If x(t), y(t) = ẋ − F(x) is a solution, so is −x(t), −y(t) (since F and g are odd); therefore
thewhole phase diagram is symmetrical about the origin (but not necessarily the individual
phase paths).

(b) The slope of a path is given by
dy
dx
= −g(x)

y − F(x)

so the paths are horizontal only on x = 0 (from (iv)), and are vertical only on the curve
y = F(x). Above y = F(x), ẋ > 0, and below, ẋ < 0.

(c) ẏ < 0 for x > 0, and ẏ > 0 for x < 0, by (iv).
In what follows, the distance between any two points, say A and B, is denoted by AB. The

(directed) phase path joining two points C andD, or any three points C, D, and E, are denoted

by �
CD and �

CDE respectively.

Some typical phase paths are shown in Fig. 11.13. A path �YY ′Y ′′ is closed if and only if Y
and Y ′′ coincide. The symmetry condition (a) implies that this is the case if and only if

OY = OY ′. (11.15)
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Figure 11.13

We prove the theorem by showing that for the path �Y0Y ′0Y ′′0 through A: (0, a), where F(α) = 0
(condition (ii) and Fig. 11.12),

OY0 −OY ′0 < 0,

and that as Y recedes to infinity along the positive y axis

OY −OY ′ → ∞

monotonically. There will then be exactly one point Y for which OY −OY ′ is zero, and this
identifies the (single) closed path. Thus we are really confirming a pattern of spirals converging
on a limit cycle.
Now let

v(x, y) =
∫ x

0
g(u)du+ 1

2y
2, (11.16)

and for any two points, S and T say, on a phase path write (Fig. 11.14)

v �
ST
= vT − vS =

∫
�
ST

dv, (11.17)
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a a

Figure 11.14
�
YQY ′ and�Y1Q1Y

′
1 are the representative paths considered in the text.

where the integral is a line integral. Along an element of a path we have

dv = y dy + g dx = y dy + g
dx
dy

dy (from (11.16))

= y dy + g
y − F

−g dy (from (11.14))

= F dy. (11.18)

Let the ordinate BB ′ (through x = a) separate the parts of the right-hand half plane where
F(x) is positive from where it is negative. We consider these parts separately in estimating VYY ′
expressed as the sum

V�
YY ′ = V�

YB ′ + V�
BB ′ + V�

B ′Y ′ . (11.19)

The proof is carried out through the steps (A) to (F) below.
(A) As Q moves out from A along AC,VYB + VB′Y′ is positive and

monotonic decreasing

Choose any fixed path �
YQY ′, withQ at the point (α,F(α)) as shown, and another, �Y1Q1Y

′
1,

with Q1 at the point (α1,F(α1)), where α1 > α.
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By (11.14), since y > 0 and F(x) < 0 on �
YB, �Y1B1,

0 <

(
dy(x)
dx

)
�
YB

<

(
dy(x)
dx

)
�
Y1B1

(11.20)

for every x. Similarly, since y <F(x) (from (b)) and F(x)<0 on �
B ′Y ′, �B ′1Y ′1,

0 <

(
dy(x)
dx

)
�
B ′1Y

′
1

<

(
dy(x)
dx

)
�
B ′Y ′

(11.21)

(That is to say, �Y1B1 and �
B ′1Y

′
1 are shallower than �

YB and �
B ′Y ′, respectively.) Therefore from

(11.18), with F(x) < 0,

VYB =
∫
�
YB

F dy =
∫
�
YB

(−F)

(
−dy
dx

)
dx >

∫
�
Y1B1

(−F)

(
−dy
dx

)
dx

= V �
Y1B1

> 0 (11.22)

using (11.20). Similarly,
V �

B ′Y ′
> V �

B ′1Y
′
1

> 0. (11.23)

The result (A) follows from (11.21) and (11.23).

(B) As Q moves out from A along AC, �VBB′ is monotonic decreasing

Choose �
BQB ′ arbitrarily to the right of A and let �B1Q1B

′
1 be another path with Q1 to the

right of Q, as before. Then F(x) > 0 on these paths, and we write

V �
B1B

′
1

= −V �
B ′1B1
−
∫
�
B ′1B1

F(x)dy ≤ −
∫
�
H ′1H1

F(x)dy,

(where �
BH1,

�
B ′H ′1 are parallel to the x axis)

≤ −
∫
�
B ′B

F(x)dy = V�
BB ′ (11.24)

(since, for the same values of y, F(x) on B ′B is less than or equal to F(x) on H ′1H1).

(C) From (A) and (B) we deduce that VYY′ is monotonic decreasing as Q moves
from A to infinity in the direction of C.

(D) VBB′ tends to −∞ as the paths recede to infinity

Let S be a point on the curve y = F(x), to the right of A, and let �BQB ′ be an arbitrary path
with Q to the right of S. The line PSNP ′ is parallel to the y axis. Then, as before, referring to
Fig. 11.14,

VBB ′ = −
∫
�
B ′B

F(x)dy ≤
∫
�
P ′P

F (x)dy.
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Also

F(x) ≥ NS on PP ′

since F(x) is monotonic increasing by (iii); therefore

V�
BB ′ ≤ −NS

∫
�
P ′P

dy = −NS · PP ′ ≤ −NS · NP . (11.25)

But as Q goes to infinity towards the right, NP → ∞.

(E) From (C) and (D), VYY′ is monotonic decreasing to −∞, to the right of A

(F) VYY′ > 0 when Q is at A or to the left of A (For then F(x) < 0 and dy < 0.)

From (E) and (F), there is one and only one path for which VYY ′ = 0, and this, by eqn (11.17)
and the symmetry of the paths, is closed. �

Example 11.6 The van der Pol equation ẍ + β(x2 − 1)ẋ + x = 0,β > 0, has a unique limit cycle. (The case
β < 0 is exactly similar (put −t for t). Also note that this proof holds even when β is not small.)

The phase plane x, y is defined by

ẋ = y − βx(13x
2 − 1), ẏ = x

in this first-order form of the van der Pol equation.
Here,

f (x) = β(x2 − 1), g(x) = x

so that

F(x) = β(13x
3 − x).

The conditions of the theorem are satisfied, with a = √3. The x-extremities of the limit cycle must be beyond
x = ±√3. �
Example 11.7 Show that the equation

ẍ + x2 + |x| − 1

x2 − |x| + 1
ẋ + x3 = 0

has a unique periodic solution.

We apply Theorem 11.4 with f (x) = (x2 + |x| − 1)/(x2 − |x| + 1) and g(x) = x3. The graph of f (x) versus
x is shown in Fig. 11.15(a). Since f (x) → 1 as x → ∞, (iii) is satisfied, and (i), (ii), and (iv) are obviously
satisfied. Therefore a limit cycle exists, its extreme x-values being beyond the nonzero roots of F(x)=0. The
computed limit cycle is shown in Fig. 11.15(b). �
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(a) (b)

Figure 11.15 (a) Graph of f (x) versus x; (b) phase diagram showing the limit cycle.

Exercise 11.3
Compute the phase diagram for the van der Pol equation

ẍ + β(x2 − 1)ẋ + x = 0 (β > 0),

in the phase plane defined by

ẋ = y − F(x), ẏ = −x
(see Theorem11.4 and Example 11.6). Possible parameter values are β = 0.5, 1, 2. Compare
with Fig. 3.24.

11.4 Van der Pol’s equation with large parameter

Van der Pol’s equation with large parameter β

ẍ + β(x2 − 1)ẋ + x = 0

is equivalent (by putting δ = 1/β) to the equation

δẍ + (x2 − 1)ẋ + δx = 0 (11.26)

with δ small. This can be regarded as a singular perturbation problem in terms of Chapter 6
(the small parameter is the coefficient of the highest order derivative), in which the influence
of the various terms is differently disposed on different parts of the solution curves, or on the
phase paths. The existence of a limit cycle is confirmed in Example 11.6. Here we shall look
briefly at the analytical construction of the limit cycle of (11.26) for small δ in the usual phase
plane with ẋ = y, and not the Liénard plane. It is necessary to piece together the limit cycle
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from several approximate solutions corresponding to different balances between the terms.
The approximations are made for δ > 0; the phase path is then completed by invoking its
symmetry in the origin.
The equation for the phase path is

dy
dx
= −x2 − 1

δ
− x

y
, (11.27)

and the isocline for zero slope is the curve y = δx/(1− x2).
In eqn (11.26) put t = µτ , so that

δ

µ2 x
′′ + 1

µ
(x2 − 1)x′ + δx = 0. (11.28)

When µ = O(δ) the first two terms predominate, and to the first order

x′′ + (x2 − 1)x′ = 0. (11.29)

If x = a (the amplitude) when y = 0, then integration of (11.29) gives

x′ = x − 1
3x

3 − a + 1
3a

3, (11.30)

or
x′ = 1

3 (x − a)(3− x2 − ax − a2).

If a > 1, then on x′ > 0 (the upper half of the phase plane)

1
2 {−a +

√
(12− 3a2)} < x < a,

and (11.30) represents the phase path in this interval: the amplitude a will be determined later.
When we put µ = O(δ−1) in (11.28), the second and third terms predominate and are of the

same order, so that
x′ = x/(1− x2), (11.31)

which is essentially the zero-slope isocline of (11.27). This equation can only be valid for y > 0
and −a < x < −1 because of the singularity at x = −1.

The two approximate solutions given by (11.30) and (11.31) must be connected by a third
equation in the neighbourhood of x = −1. To the required order the solution given by (11.30)
must pass through y = 0, x = −1: whence

1
2 {−a +

√
(12− 3a2)} = −1, or a = 2.

For the transition, put z = x + 1; then (11.28) becomes

δ

µ2 z
′′ + 1

µ
{(z− 1)2 − 1}z′ + δz− δ = 0.

Now put µ = O(δα), and let z = δβu; then a balance is achieved between the terms containing
z′′, z′, z and the constant if

1− 2α + β = −α + 2β = 1;
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that is, if α = 1
3 and β = 2

3 . The differential equation for the transition region is

u′′ − 2uu′ − 1 = 0, (11.32)

an equation without an elementary solution, relating u′ and u.
There remains the solution around x = −2 to be constructed. Put z = x + 2 in (11.28):

δ

µ2 z
′′ + 1

µ
{(z− 2)2 − 1}z′ + δz− 2δ = 0.

Again, put µ = O(δα) and z = δβu. The equation

u′′ + 3u′ = 2 (11.33)

follows if 1− 2α + β = β − α = 1, or if α = 1, β = 2. From (11.33)

1
3u
′ + 2

9 log(2− 3u′)+ u = constant.

When u = 0, u′ = 0, so finally

1
3u
′ + 2

9 log(2− 3u′)+ u = 2
9 log 2.

After restoring the original variables, x and t , the sections of the limit cycle on the phase
plane for y > 0 are as follows:

(i) −2 ≤ x < −2+O(δ2):

1
3δy + 2

9δ
2 log(1− 3

2δ
−1y) = −(x + 2);

(ii) −2+O(δ2) < x < −1−O(δ2/3):

y = δx/(1− x2);

(iii) −1−O(δ2/3) < x < −1+O(δ2/3): the appropriate solution of

δẍ − 2(x + 1)ẋ = δ;

(iv) −1+O(δ2/3) < x ≤ 2:

x = 1
3y

3 + δy − 2
3 .

The complete limit cycle can now be constructed since it is symmetrical about the origin.
Figure 11.16(a) shows the computed limit cycle for β = 10, and the corresponding time solution
is shown in Fig. 11.16(b).
The van der Pol equation for large parameter β (or small δ) is an example of a relaxation

oscillation, in which typically, as Fig. 11.16(b) shows, the system displays a slow build-up
followed by a sudden discharge, repeated periodically.
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Figure 11.16 (a) Limit cycle for van der Pol’s equation (11.26) with δ = 1/β = 0.1; (b) time-solution curve
corresponding to the limit cycle

Problems

11.1 Prove that the equilibrium point of

ẍ + x

1+ x2
ẋ + x ln(1+ x2) = 0, ẋ = y

is a centre in the (x, y) plane. Compute the phase diagram in the neighbourhood of (0, 0).

11.2 A system has exactly one equilibrium point, n limit cycles, and no other periodic solutions. Explain why
an asymptotically stable limit cycle must be adjacent to unstable limit cycles, but an unstable limit cycle
may have stable or unstable cycles adjacent to it.

Let cn be the number of possible configurations, with respect to stability, of n nested limit cycles.
Show that c1=2, c2=3, c3=5, and that in general

cn = cn−1 + cn−2.

(This recurrence relation generates the Fibonacci sequence.) Deduce that

cn = {(2+√5)(1+√5)n−1 + (−2+√5)(1−√5)n−1}/(2n−1√5).

11.3 By considering the path directions across each of the suggested topographic systems show that in each of
the cases given there exists a limit cycle. Locate the region in which a limit cycle might exist as closely as
possible. Show that in each case only one limit cycle exists:

(i) ẋ = 2x + 2y − x(2x2 + y2), ẏ = −2x + y − y(2x2 + y2)
(topographic system x2 + y2 = constant);

(ii) ẋ = −x − y + x(x2 + 2y2), ẏ = x − y + y(x2 + 2y2)
(topographic system x2 + y2 = constant);

(iii) ẋ = x + y − x3 − 6xy2, ẏ = −1
2x + 2y − 8y3 − x2y

(topographic system x2 + 2y2 = constant); compute the phase diagram, and show the topographic
system.

(iv) ẋ = 2x + y − 2x3 − 3xy2, ẏ = −2x + 4y − 4y3 − 2x2y
(topographic system 2x2 + y2 = constant).

11.4 Show that the equation ẍ + β(x2 + ẋ2 − 1)ẋ + x3 = 0 (β > 0) has at least one periodic solution.
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11.5 Show that the origin is a centre for the equations
(i) ẍ − xẋ + x = 0;

(ii) ẍ + xẋ + sin x = 0.

11.6 Suppose that f (x) in the equation ẍ + f (x)ẋ + x = 0 is given by f (x) = xn. Show that the origin is a
centre if n is an odd, positive integer.

11.7 Show that the equation

ẍ + β(x2 − 1)ẋ + tanh kx = 0

has exactly one periodic solution when k > 0, β > 0. Decide on its stability.
The ‘restoring force’ resembles a step function when k is large. Is the conclusion the same when it is

exactly a step function?

11.8 Show that

ẍ + β(x2 − 1)ẋ + x3 = 0

has exactly one periodic solution.

11.9 Show that

ẍ + (|x| + |ẋ| − 1)ẋ + x|x| = 0

has at least one periodic solution.

11.10 Show that the origin is a centre for the equation

ẍ + (kẋ + 1) sin x = 0.

11.11 Using the method of Section 11.4, show that the amplitude of the limit cycle of

εẍ + (|x| − 1)ẋ + εx = 0, ẋ = y (0 < ε  1),

is approximately a = 1+√2 to order ε. Show also that the solution for y > 0 is approximately

εy = (x − a)− 1
2x

2sgn(x)+ 1
2a

2, (−1 < x < a).

Compare the curve with the computed phase path for ε = 0.1.

11.12 Let F and g be functions satisfying the conditions of Theorem 11.4. Show that the equation

ü+ F(u̇)+ g(u) = 0

has a unique periodic solution (put u̇ = −z). Deduce that Rayleigh’s equation ü +
β(13 u̇

3 − u̇)+ u = 0 has a unique limit cycle.

11.13 Show that the equation

ẍ + β(x2 + ẋ2 − 1)ẋ + x = 0,

unlike the van der Pol equation, does not have a relaxation oscillation for large positive β.

11.14 For the van der Pol oscillator

δẍ + (x2 − 1)ẋ + δx = 0

for small positive δ, use the formula for the period, eqn (1.13), to show that the period of the limit cycle
is approximately (3−2 ln 2)δ−1. (Hint: the principal contribution arises from that part of the limit cycle
given by (ii) in Section 11.4.)

11.15 Use the Poincaré–Bendixson theorem to show that the system

ẋ = x − y − x(x2 + 2y2), ẏ = x + y − y(x2 + 2y2)

has at least one periodic solution in the annulus 1/
√
2 < r < 1, where r = √(x2 + y2).



12 Bifurcations and manifolds

A characteristic of nonlinear oscillating systems which has become a subject of considerable
recent interest is the great variety of types of response of which they are capable as initial condi-
tions or parameter values change. The passage from one set of responses to another often occurs
very suddenly, or ‘catastrophically’: instances of this were shown in Section 1.7 in connection
with a parameter-dependent conservative system, and in Section 7.3 on the jump phenomenon
of Duffing’s equation. Further examples of such changes are given in the present chapter, the
linking concept being the idea of bifurcation, where the sudden change in behaviour occurs
as a parameter passes through a critical value, called a bifurcation point. A system may con-
tain more than one parameter, each with its own bifurcation points, so that it can display
extremely complex behaviour, and computer studies play an important part in providing a
taxonomy for the behaviour of such systems. We shall look at some of the elementary charac-
teristics of bifurcations as they arise in the fold and cusp catastrophes, and theHopf bifurcation.
More discussion of bifurcations with many examples is given by Hubbard and West (1995). A
manifold is a subspace of a phase or solution space on which a characteristic property such as
stability can be associated.

12.1 Examples of simple bifurcations

In this section we take an intuitive view of some simple bifurcations. Consider the system

ẋ = y, ẏ = −λx
containing a parameter λ with values in (−∞,∞). The phase diagram contains a centre for
λ > 0 and a saddle for λ < 0, these classifications representing radically different types of
stable and unstable system behaviour. The change in stability occurs as λ passes through λ = 0:
a bifurcation is said to occur at λ = 0, and λ = 0 is called the bifurcation point.

The behaviour of the damped system

ẋ = y, ẏ = −ky − ω2x, (12.1)

with ω > 0 given and k the bifurcation parameter, depends on the roots of the characteristic
equation

m2 + km+ ω2 = 0.

The phase diagram is an unstable node for k <−2ω, an unstable spiral for −2ω<k <0, a
stable spiral for 0<k<2ω, and a stable node for k >2ω. It might appear at first sight that,
for example, the transition from stable spiral to stable node should indicate a bifurcation, but
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an important common feature is that both are asymptotically stable, so that even though the
stable spiral looks different from a stable node we do not call the value k = 2ω a bifurcation
point. However, the transition of k from negative k to positive k through k = 0 is accompanied
by a change of stability. Therefore we regard the system as having a bifurcation point at k = 0.
We shall say more about the general linear problem in Section 12.3.
The equation

ẍ − k(x2 + ẋ2 − 1)ẋ + x = 0

(see Example 1.9) has a limit cycle x2 + y2 = 1 in the phase plane with ẋ = y. Let k be the
bifurcation parameter. The behaviour close to the origin is indicated by the linearized equation

ẍ + kẋ + x = 0

which is essentially the same as (12.1) with ω = 1. The equilibrium point at (0, 0) passes
through the same bifurcation as that of (12.1). The limit cycle x2 + y2 = 1 is always present
but its stability changes from stable to unstable as k increases through zero, so in this example
the change in the phase diagram is not limited just to the equilibrium point but also to other
features.

Example 12.1 Find the bifurcation points of the system ẋ=−λx+ y, ẏ=−λx−3y.

Let

x =
[
x

y

]
, A(λ) =

[−λ 1
−λ −3

]

so that, in matrix form, the system is equivalent to

ẋ = A(λ)x.

If λ 	= 0, the system has only one equilibrium point, at the origin: if λ=0, equilibrium occurs at all points on
y = 0. Following the method of Chapter 2, we find the eigenvalues m of A(λ) from

|A(λ)−mI | = 0,

or ∣∣∣∣−λ−m 1
−λ −3−m

∣∣∣∣ = 0.

Hence m satisfies

m2 + (3+ λ)m+ 4λ = 0,

which has the roots

m1, m2 = 1
2 [−λ− 3±√{(λ− 1)(λ− 9)}].

We look for bifurcations where the character of the roots changes—having regard to whether they are real or
complex, and to the sign when they are real or the sign of the real part when they are complex.
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Figure 12.1

The classification of the origin is:

λ m1,m2 Type

λ < 0 Real, opposite signs Saddle
0 < λ < 1 Real, negative Stable node
1 < λ < 9 Complex, negative real part Stable spiral
λ > 9 Real negative Stable node

The transitions are shown in Fig. 12.1. The system has a single bifurcation point λ = 0, where there is a change
from a stable node to a saddle. �

Exercise 12.1
In Example 12.1, ẋ = Ax where

A =
[−λ 1
−λ −3

]
.

Referring back to Fig. 2.10, express p and q in terms of λ. Show that q = −4(p + 3), and
draw this line on Fig. 2.10. Discuss the bifurcations of the system.

12.2 The fold and the cusp

Bifurcations of systems are closely linked to catastrophes. In general terms a system experiences
a catastrophe when a smooth change in the values of a parameter results in a sudden change in
the response of the system. A comprehensive account of catastrophe theory is given by Poston
and Stewart (1978). Here we shall in a general way relate the two simplest catastrophes and
their associated bifurcation sets of parameters as they arise in the ‘conservative’ systems of
Section 1.3, which take the standard form

ẍ = f (x) = −V ′(x),

where V is called the potential energy, or potential, of the system.
Suppose we have a potential containing a parameter λ, defined by

V(λ, x) = 1
3x

3 + λx. (12.2)
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The equilibrium points occur where ∂V/∂x = 0, or where

x2 + λ = 0. (12.3)

If λ<0 there are two equilibrium points, at x = ±√λ, one if λ=0, and none if λ > 0. The
phase diagrams may be obtained by using the method of Section 1.3: a plot of V against x for
constant λ is made, and must take one of the forms shown in Fig. 12.2, depending on the value
of λ. If λ<0 then V has a minimum at x=√λ, indicating a centre at this point, and a maximum
at x=−√λ, indicating a saddle there. The case λ=0 and λ>0 may be discussed similarly.

Equation (12.3) defines the so-called ‘catastrophe manifold’ for this problem: this is the curve
shown in Fig. 12.3. In effect it shows the positions of the equilibrium points in terms of the
values of λ, but its real significance is to display the fact that λ = 0 is a bifurcation point for
the problem, where the nature of the solutions suddenly changes.
The stability of the equilibrium points to which the two branches of the curve relate can be

deduced from the method of Section 1.7. If the region where (−∂V/∂x)>0 is shaded, then equi-
librium points which form the boundary above this region are stable and the rest are unstable.

V V V

Figure 12.2

V

Figure 12.3 Manifold curve for the fold catastrophe.
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Potentials may contain two or more parameters. Suppose now that the potential consists of
a fourth-degree polynomial in x of the form

V(λ,µ, x) = 1
4x

4 − 1
2λx

2 + µx (12.4)

where λ and µ are two parameters. Equilibrium points occur where ∂V/∂x = 0, or where

M(λ,µ, x) ≡ x3 − λx + µ = 0. (12.5)

Regarding (12.5) as a cubic equation for x, the nature of its solutions depends on the sign of
the discriminant

D (λ,µ) = µ2 + 4
(−λ

3

)3 = µ2 − 4
27λ

3

(see, e.g., Ferrar, 1950). If D > 0 there is one real solution and two complex ones; if D = 0
there are two real roots one of which is a repeated root; and if D < 0 there are three real roots,
all different. The potential V then takes one of the forms shown in Fig. 12.4.
The catastrophe manifold defined by (12.5) is this time a surface in λ,µ, x space (Fig. 12.5).

A fold grows from the origin in the general direction of the λ axis. The two curves radiating

V V V

Figure 12.4

Figure 12.5 Manifold for the cusp catastrophe.
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from the origin along which the fold turns over are of particular interest, since they form a
demarcation between the parameter region where there is a single equilibrium point and the
region inwhich there are three. We therefore project the latter region on to the λ,µ, plane. At the
edge of
the fold

∂M

∂x
= 3x2 − λ = 0. (12.6)

The projection of the boundary of the fold is obtained by eliminating x between (12.5) and
(12.6), and the resulting curves in the λ, µ=1 plane are given by

µ = ± 2
3
√
3
λ3/2

as shown in Fig. 12.6. (This expression is equivalent to D(λ,µ) = 0.)
Figure 12.6 is called a catastrophe map (of a cusp catastrophe): it indicates the critical

values of the parameters at which sudden change in the nature of the equation’s output can be
expected. The bifurcation set consists of the cusp itself. In the shaded region between the two
branches of the curve there are three equilibrium points, and outside there is one.
The technique of Section 1.7 can again be used to establish which parts of the surface of

Fig. 12.5 represent stable equilibrium points, and which unstable, by noticing that the surface
divides the space into two parts, and that in the ‘lower’ half (∂V/∂x) is negative and in the
‘upper’ half positive (the separation occurring when (−∂V/∂x) = 0, which is the equation
of the surface itself). The connecting portion of the fold between the upper and lower parts
therefore represents unstable equilibrium points, and the rest are stable. The unstable set lies
between the branches of the cusp in Fig. 12.6. Thus if the parameter values undergo a change
in which they cross the cusp a marked change in response of the system is to be expected, this
change taking place ‘catastrophically’.

Figure 12.6 Bifurcation set for the cusp catastrophe.
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It is shown in Section 7.3 how Duffing’s equation generates a similar cusp catastrophe when
the parameters are taken to be the forcing amplitude and the forcing frequency: the observed
variables in that case are not equilibrium points and their stability, but amplitudes of steady
forced oscillations and their stability, as parametrized in the van der Pol plane.

Exercise 12.2
In the conservative system

ẍ = −∂V(λ,µ, x)
∂x

,

let

V(λ,µ, x) = 1
4x

4 − 1
3λx

3 + µx.

Show that equilibrium points occur where

M(λ,µ, x) ≡ x3 − λx2 + µ = 0.

Reduce this equation to standard form (12.5) by the transformation x = z+ 1
3λ. Show that

in the equation for z the discriminant is

D(λ,µ) = µ2 − 4
27µλ

3.

12.3 Further types of bifurcation

In this section we examine further parametric bifurcations of first-order systems, mainly in
two variables. The approach is through examples, and no attempt is made to cover general
bifurcation theory. However, we can first make some general observations about the first-
order autonomous system in n real variables which contains m real parameters. This can be
expressed in the form

ẋ = X(µ, x), x ∈ R
n, µ ∈ R

m, (12.7)

where µ is an m-dimensional vector of real parameters (the letter R stands for the set of real
numbers). Equilibrium points occur at the solutions for x of the n scalar equations expressed
in vector form by

X(µ, x) = 0 (12.8)

for any given µ.
Suppose that (µ0, x0) is a solution of this equation. Then µ=µ0 is a bifurcation point if the

structure of the phase diagram changes as µ passes through µ0. This rather imprecise definition
covers a number of possibilities including a change in the number of equilibrium points as µ
passes through µ0, or a change in their stability. There are many ways in which µ can pass
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through µ0: if m=3 then we would look at changes in all straight lines through µ0. Some
directions might produce a bifurcation and some might not, but if at least one does so then
µ0 is a bifurcation point. Another possibility is that equilibrium points appear and disappear
although their number remains fixed, causing the phase diagram to suffer a discontinuous
change (see Example 12.5).
Geometrically, the equilibrium points occur where the n surfaces given by (12.8) in the

n-dimensional x space intersect, but obviously the locations of these surfaces will vary with
changes in the parameter vector µ. Alternatively, we can view the equilibrium points as the
intersections of the surfaces in the (m+n) dimensional (x,µ) space. Any projectionµ = constant
vector in this space will give the n surfaces in the x subspace, whose intersections determine
the equilibrium points of the system.
We shall look at some examples of further common bifurcations which occur in plane systems

containing a single parameter.

Saddle-node bifurcation (or fold bifurcation)

Consider the equations

ẋ = y, ẏ = x2 − y − µ. (12.9)

Equilibrium points occur where y = 0, x2−y−µ = 0. Geometrically they lie on the intersection
of the plane y = 0 and the surface y = x2−µ in (x, y,µ) space. In this case, all the equilibrium
points lie in the plane y = 0, so that we need only show the curve x2 = µ of equilibrium points
in the (x,µ) plane as shown in Fig. 12.7(a). There is a bifurcation point at µ = µ0 = 0 where
x = x0 = 0, y = y0 = 0. For µ < 0 there are no equilibrium points whilst for µ > 0 there are
two at x = ±√µ.
For µ > 0, let x = ±√µ+ x′, y = y′ in (12.12). Hence, to the first order

ẋ′ = y′, ẏ′ = (±√µ+ x′)2 − y′ − µ ≈ ±2x′√µ− y′. (12.10)

In the notation of the linear approximation (Section 2.4)

p = −1, q = ∓2√µ, 
 = 1± 8
√
µ. (12.11)

Hence, for x >0 the equilibrium point is a saddle; whilst for x <0, the equilibrium point is a
stable node, which becomes a stable spiral for

√
µ> 1

8 . However the immediate bifurcation as
µ increases through zero is of saddle-node type. Figure 12.7(b) shows the saddle-node phase
diagram for µ=0.01.

Transcritical bifurcation

Consider the parametric system

ẋ = y, ẏ = µx − x2 − y.

It has equilibrium points at (0, 0) and (µ, 0). Again all the equilibrium points lie only in the
plane y = 0 in the (x, y,µ) space. The bifurcation curves are given by x(x −µ) = 0, which are
two straight lines intersecting at the origin (see Fig. 12.8).
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= 1/64

= 1/8

Figure 12.7 (a) A saddle-node bifurcation; (b) phase diagram for µ = 0.01.

1/4–1/4

Figure 12.8 A transcritical bifurcation.



414 12 : Bifurcations and manifolds

There is a bifurcation point at µ = µ0 = 0, since the number of equilibrium points changes
from two (µ < 0) to one (µ = 0) and back to two (µ > 0) as µ increases. Near the origin[

ẋ

ẏ

]
≈
[
0 1
µ −1

] [
x

y

]
.

Thus in the notation of eqns (2.35) and (2.36),

p = −1, q = −µ, 
 = 1+ 4µ.

For µ<0, the origin is stable; a node if −1
4 <µ<0, and a spiral if µ<−1

4 . If µ>0 then the
origin is a saddle.
Near x = µ, with x = µ+ x′ and y = y′,[

ẋ′
ẏ′
]
≈
[
0 1
−µ −1

] [
x′
y′
]
.

Hence

p = −1, q = µ, 
 = 1− 4µ.

For µ < 0, x = µ is a saddle; if µ > 0 then x = µ is a stable node for 0 < µ < 1
4 and a stable

spiral for µ > 1
4 .

This is an example of a transcritical bifurcation where, at the intersection of the two bifur-
cation curves, stable equilibrium switches from one curve to the other at the bifurcation point.
As µ increases through zero, the saddle point collides with the node at the origin, and then
remains there whilst the stable node moves away from the origin.

Pitchfork (or flip) bifurcation

Consider the system

ẋ = y, ẏ = µx − x3 − y. (12.12)

The (x,µ) bifurcation diagram, shown in Fig. 12.9, has a bifurcation point at µ = µ0 = 0.
Near the origin [

ẋ

ẏ

]
≈
[
0 1
µ −1

] [
x

y

]
.

Hence

p = −1, q = −µ, 
 = 1+ 4µ.

If µ<0, then the origin is stable, a node if −1
4 <µ<0 and a spiral if µ<−1

4 ; if µ>0 then the
origin is a saddle point.
The additional equilibrium points are at x=±√µ for µ>0. Linearization about these points

shows that x=±√µ are stable nodes for 0<µ< 1
8 , and stable spirals for µ> 1

8 . As µ increases
through zero the stable node for µ<0 bifurcates into two stable nodes and a saddle point for
µ>0. This is an example of a pitchfork bifurcation named after its shape in the (x,µ) plane.
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Figure 12.9 A pitchfork bifurcation.

The bead on the rotating circular wire (Example 1.12) is a possible mechanical model for a
pitchfork bifurcation.
Pitchfork bifurcations are often associated with symmetry breaking. In the system above,

x = 0 is the only (stable) equilibrium point for µ < 0, but as µ increases through zero the
system could be disturbed into either stable mode, thus destroying symmetry.

Example 12.2 Investigate the bifurcation point of

ẋ = x − 2y − µ, ẏ = y − x2 + µ. (12.13)

Equilibrium occurs where

x − 2y − µ = 0, y − x2 + µ = 0.

In the (x, y,µ) space, the equilibrium points lie on the curve where plane x − 2y −µ = 0 intersects the surface
y− x2+µ = 0. Elimination of µ leads to y = x− x2. Hence parametically the curve of intersection is given by

x = w, y = w − w2, µ = −w + 2w2, (12.14)

where w is the parameter. The projection of this three-dimensional curve onto the (µ, y) plane is shown in
Fig. 12.10. Bifurcation occurs where µ has a maximum or a minimum in terms of w. Thus dµ/dw = 0 where
w = 1

4 , for which value µ = −1
8 . Hence there are no equilibrium points for µ < −1

8 and two for µ > −1
8 .

Suppose that (µ1, x1, y1) is an equilibrium state with µ1≥−1
8 . Let x= x1 + x′ and y= y1+ y′. The linear

approximations to (12.13) are

ẋ′ = x1 + x′ − 2y1 − 2y′ − µ1 = x′ − 2y′, (12.15)

ẏ′ = y1 + y′ − (x1 + x′)2 + µ1 ≈ −2x1x′ + y′. (12.16)

Hence

p = 2, q = 1− 4x1, 
 = p2 − 4q = 16x1.



416 12 : Bifurcations and manifolds

Figure 12.10 Projection of the equilibrium curve in the (x, y,µ) space on to the (µ, y) plane: the bifurcation point
occurs at µ1 = 1

8 .

From (12.14), 2x21 − x1 − µ1 = 0, so

x1 = 1
4 [1±

√
(1+ 8µ1)] (µ1 ≥ −1

8 ).

The upper sign corresponds to a saddle since q <0, whilst the lower sign implies that q >0, 
>0, which
means that this branch is an unstable node for µ1 ≥ 0 and small (see Fig. 12.10). �
Example 12.3 Show that

ẋ = y, ẏ = [(x + 1)2 − µ+ y][(x − 1)2 + µ+ y]
has two equilibrium points for all µ. Discuss the bifurcation which takes place at µ = 0.

Equilibrium occurs where y = 0 and

(x + 1)2 − µ = 0, or, (x − 1)2 + µ = 0.

The equilibrium curves are shown in Fig. 12.11. There are always two equilibrium points for all µ, but
one point disappears for µ>0 and another appears at µ=0 (see Fig. 12.11). They are both saddle-node
bifurcations with bifurcation points at (0,−1) and (0, 1) in the (µ, x) plane. (See Exercise 12.3 at the end of this
section.) �
As a final example in elementary bifurcation theory, we shall consider in detail a one-

parameter plane system which has several bifurcations including a Hopf bifurcation (see
Section 12.5), and requires a three-dimensional view.

Example 12.4 Investigate the bifurcations of the system

ẋ = X(x, y) = 2x(µ− x)− (x + 1)y2, ẏ = Y (x, y) = y(x − 1).

Equilibrium occurs where

2x(µ− x)− (x + 1)y2 = 0, y(x − 1) = 0,

which can be separated into three curves in (x, y,µ) space:

C1: x = 0, y = 0; C2: x = µ, y = 0; C3: x = 1, y2 = µ− 1(µ ≥ 1).
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Figure 12.11

The equilibrium states are shown in Fig. 12.12. The Jacobian of [X(x, y), Y (x, y)]T is

J (x, y,µ) =

⎡
⎢⎢⎣
∂X

∂x

∂X

∂y

∂Y

∂x

∂Y

∂y

⎤
⎥⎥⎦ =
[
2µ− 4x − y2 −2(x + 1)y

y x − 1

]
.

We need to investigate the eigenvalues of J (x, y,µ) in each equilibrium state since this will decide the type of
each linear approximation.

C

C

C

Figure 12.12 Equilibrium curves for ẋ = 2x(µ− x)− (x + 1)y2, ẏ = y(x − 1).

(a) Equilibrium points on C1. Here

J (0, 0,µ) =
[
2µ 0
0 −1

]
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and the eigenvalues of J (0, 0,µ) are given by

det[J (0, 0,µ)−mI2] =
∣∣∣∣2µ−m 0

0 −1−m

∣∣∣∣ = 0,

so that m=−1 or 2µ. Hence for µ<0, the equilibrium point is a stable node and for µ>0 a saddle point.

(b) Equilibrium points on C2. In this case

J (µ, 0,µ) =
[−2µ 0

0 µ− 1

]
.

The eigenvalues of J (µ, 0,µ) are m = −2µ or µ− 1. Hence for µ < 0 and µ > 1, the eigenvalues are real
and of opposite signs, indicating a saddle, whilst for 0 < µ < 1 the eigenvalues are both real and negative
indicating a stable node.

From (a) and (b) it follows that there is a transcritical bifurcation at µ = 0. The situation at µ = 1 is
more complicated since curve C3 intersects C2 there.

(c) Equilibrium points on C3. On this curve

J (1,
√
(µ− 1),µ) =

[
µ− 3 −4√(µ− 1)√
(µ− 1) 0

]
.

Hence the eigenvalues are given by

∣∣∣∣µ− 3−m −4√(µ− 1)√
(µ− 1) −m

∣∣∣∣ = 0, or m2 − (µ− 3)m+ 4(µ− 1) = 0.

The eigenvalues can be defined as

m1,m2 = 1
2 [µ− 3±√{(µ− 11)2 − 96}].

The eigenvalues for µ > 1 are of the following types:

(I) 1<µ<11−4
√
6 (≈1.202): m1, m2 real and negative (stable node);

(II) 11−4
√
6<µ<3: m1, m2 complex conjugates with negative real part (stable spiral);

(III) 3<µ<11+ 4
√
6 (≈ 20.798): m1, m2 complex conjugates with positive real part (unstable spiral);

(IV) 11+4
√
6<µ: m1, m2 both real and positive (unstable node).

Results (b) and (c)(I) above show that a pitchfork bifurcation occurs at the bifurcation point at µ=1. As µ
increases throughµ= 3, the stable spirals at x=1, y=√2 become unstable spirals. Henceµ=3 is a bifurcation
point indicating a change of stability. A similar bifurcation occurs at the symmetric point x=1, y=−√(µ−1).
These are often referred to as Hopf bifurcations: as we shall see in the next section this stability change of a
spiral can generate a limit cycle under some circumstances, but not in this example.

To summarize, the system has three bifurcation points: a transcritical bifurcation at µ = 0, a pitchfork
bifurcation at µ = 1 and Hopf bifurcations at µ = 3. �
Further elementary discussion on bifurcation theory can be found in the books by Hubbard

and West (1995) and Grimshaw (1990); a more advanced treatment is given by Hale and
Kocak (1991).
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Exercise 12.3
In Example 12.3, x satisfies

ẍ = [(x + 1)2 − µ+ ẋ][(x − 1)2 + µ+ ẋ].
Equilibrium occurs where

(x + 1)2 − µ = 0, (x − 1)2 + µ = 0.

Investigate the linear approximations for µ > 0. For the equilibrium point at x = −1+√µ,
let x = −1+√µ+ Z, and show that Z satisfies approximately

Z̈ − h(µ)Ż − 2
√
µh(µ)Z = 0,

where h(µ) = (
√
µ − 2)2 + µ. Confirm that this equilibrium point is a saddle. Similarly

show that x = −1−√µ is an unstable node.

Exercise 12.4
Discuss all bifurcations of the system

ẋ = x2 + y2 − 2, ẏ = y − x2 + µ.

Compute phase diagrams for typical parameter values.

12.4 Hopf bifurcations

Some bifurcations generate limit cycles or other periodic solutions. Consider the system

ẋ = µx + y − x(x2 + y2), (12.17)

ẏ = −x + µy − y(x2 + y2), (12.18)

where µ is the bifurcation parameter. The system has a single equilibrium point, at the origin.
In polar coordinates the equations become

ṙ = r(µ− r2), θ̇ = −1.
If µ ≤ 0 then the entire diagram consists of a stable spiral. If µ > 0 then there is an unstable
spiral at the origin surrounded by a stable limit cycle which grows out of the origin—the
steps in its development are shown in Fig. 12.13. This is an example of a Hopf bifurca-
tion which generates a limit cycle. Typically for such cases the linearization of (12.17) and
(12.18) predicts a centre at the origin, which proves to be incorrect: the origin changes from
being asymptotically stable to being unstable without passing through the stage of being
a centre.
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Figure 12.13 Development of a limit cycle in a Hopf bifurcation.

The following is a simple version, restricted to polar-type equations, of a more general
result.

Theorem 12.1 Given the equations ẋ = µx + y − xf (r), ẏ = −x + µy − yf (r), where
r = √(x2 + y2), f (r) and f ′(r) are continuous for r ≥ 0, f (0) = 0, and f (r) > 0 for r > 0.
The origin is the only equilibrium point. Then

(i) for µ < 0 the origin is a stable spiral covering the whole plane;

(ii) for µ = 0 the origin is a stable spiral;

(iii) for µ > 0 there is a stable limit cycle whose radius increases from zero as µ increases
from zero.

Proof Choose the Liapunov function V (x, y)= 1
2 (x

2+y2) (see Section 10.5 for the Liapunov
method). Then

V̇ (x, y) = ∂V

∂x
ẋ + ∂V

∂y
ẏ

= x[µx + y − xf (r)] + y[−x + µy − yf (r)]

= r2(µ− f (r)) < 0.

Supposeµ ≤ 0. By Theorem 10.7 the origin is asymptotically stable and its domain of attraction
is the entire plane. That it is a spiral can be seen from the polar form of the equations

ṙ = r(µ− f (r)), θ̇ = −1.
Note that the case µ = 0 is included.
Suppose µ > 0. Reverse the time, so t is replaced by (−t) in the equations. Select the same

Liapunov function. Then

V̇ (x, y) = r2(f (r)− µ) < 0

for µ>0 in some interval 0<r < r1 by continuity of f (r) and the inequality f (r)>0 for
r >0. This proves that the origin of the time-reversed system is stable, so the original system is
unstable, and the polar equation confirms that it is a spiral in 0<r < r1.
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Finally in some interval 0<µ<µ1, µ− f (r)=0 must have exactly one solution for µ1
sufficiently small. For this value of r, the corresponding circular path is a limit cycle. The polar
equations confirm that this limit cycle must be stable. �

Example 12.5 Show that the equation

ẍ + (x2 + ẋ2 − µ)ẋ + x = 0

exhibits a Hopf bifurcation as µ increases through zero.

We can apply Theorem 3.5 to show that the system has no periodic solutions for µ < 0. Write the equation as

ẋ = X(x, y) = y,

ẏ = Y (x, y) = −(x2 + y2 − µ)y − x.

Then

∂X

∂x
+ ∂Y

∂y
= −x2 − 3y2 + µ < 0

for all (x, y) and all µ < 0. Hence by Theorem 3.5, there can be no closed paths in the phase plane.
For the critical case µ = 0, we can use the Liapunov function

V (x, y) = 1
2 (x

2 + y2)

which results in

V̇ (x, y) = −(x2 + y2)y2.

Since V̇ (x, y) vanishes along the line y = 0, but is otherwise strictly negative, the origin is an asymptotically
stable equilibrium point (see Section 10.5). For µ>0 the system has a stable limit cycle with path x2+ y2=µ

(cf. Example 1.6) which evidently emerges from the origin at µ=0 with a radius which increases with µ. �

Exercise 12.5
A system is given by

ṙ = −µr + r2 − r3, θ̇ = −1, 1 > µ > 0

in polar coordinates. As µ decreases from 1, show that a limit cycle of radius 1
2 appears

when µ = 1
4 , which then bifurcates into stable and unstable limit cycles. Sketch the phase

diagrams for 1
4 < µ < 1, µ = 1

4 and µ < 1
4 .

Exercise 12.6
Discuss the bifurcations of the limit cycles of the system

ṙ = (r4 − 2r2 + µ)r, θ̇ = −1.
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12.5 Higher-order systems: manifolds

This section contains further development of n-th order autonomous systems introduced in
Section 8.9. There we considered the real system

ẋ = X(x), x = [x1, x2, . . . , xn]T, (12.19)

X = [X1,X2, . . . ,Xn]T ∈ R
n,

which has equilibrium points where

X(x) = 0.

If x = x0 is an equilibrium point then the linear approximation to (12.19) will be, after putting
x = x0 + x′,

ẋ′ = J (x0)x′ = Ax′, say,

where J is the Jacobian matrix of derivatives of X evaluated at x = x0, namely

J (x0) = [Jij (x0)] =
[
∂Xi(x)

∂xj

]
x=x0

(i, j = 1, 2, . . . , n).

The stability classification of equilibrium points of linear approximations will depend on
the eigenvalues of A as we explained in Section 8.9. If all the eigenvalues of A have negative
real part then the linear approximation is asymptotically stable and so may be is the nonlinear
system. Conditions under which this holds good are provided in Section 10.8. If at least one
eigenvalue has positive real part then the equilibrium point will be unstable. (There are also
critical case where the eigenvalues have either negative real part or zero real part (imaginary
eigenvalues) which require further investigation regarding stability.)
In this section we shall look specifically at the solutions which approach the equilibrium

point either as t→∞ or t→−∞. In the case of a two-dimensional saddle point, such time
solutions correspond to the four asymptotes or separatrices (see, e.g., Fig. 2.6). Higher-order
systems will be introduced by way of the following three-dimensional example.

Example 12.6 Find the eigenvalues and eigenvectors associated with

ẋ =
⎡
⎣ẋẏ
ż

⎤
⎦ =
⎡
⎣1 2 1
2 1 1
1 1 2

⎤
⎦
⎡
⎣xy
z

⎤
⎦ ,

and identify stable and unstable solutions.
The eigenvalues of A are given by

det[A−mI3] =
∣∣∣∣∣∣
1−m 2 1

2 1−m 1
1 1 2−m

∣∣∣∣∣∣ = (4−m)(−1−m)(1−m) = 0.
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Let the eigenvalues be denoted by m1 = 4, m2 = 1, m3 = −1. The eigenvalues are real with two positive and
one negative so that the origin will be an unstable equilibrium point. The corresponding eigenvectors r1, r2, r3
are given by

r1 =
⎡
⎣ 1
1
1

⎤
⎦ , r2 =

⎡
⎣ −1−1

2

⎤
⎦ , r3 =

⎡
⎣ 1
−1
0

⎤
⎦ ,

so that the general solution is ⎡
⎣xy
z

⎤
⎦ = α

⎡
⎣11
1

⎤
⎦ e4t + β

⎡
⎣−1−1

2

⎤
⎦ et + γ

⎡
⎣ 1
−1
0

⎤
⎦ e−t ,

where α, β, and γ are constants.
The equilibrium point is unstable since two eigenvalues are positive and one is negative. It can be described

as being of three-dimensional saddle type. Any solutions for which α = β = 0 initially will always lie on the
line given parametrically by

x = γ e−t , y = −γ e−t , z = 0, or by x + y = 0, z = 0.

Any solution which starts on this straight line will approach the origin as t →∞. This line of initial points is
an example of a stable manifold of the equilibrium point. Any solution for which γ = 0 will lie in the plane
x − y = 0 (obtained by eliminating α and β in the solutions for x, y and z) for all t , and approach the origin
as t → −∞. Every solution which starts on the plane x − y = 0 ((x, y) 	= (0, 0)) approaches the origin as
t →−∞. This collection of initial points defines the unstable manifold of the equilibrium point. �

We have used the term manifold rather loosely in the previous example. Technically a man-
ifold is a subspace of dimension m ≤ n in R

n usually satisfying continuity and differentiability
conditions. Thus the sphere surface x2 + y2 + z2 = 1 is a manifold of dimension 2 in R

3, the
solid sphere x2 + y2 + z2 < 1 is a manifold of dimension 3 in R

3; and the parabola y = x2

is a manifold of dimension 1 in R
2. If a solution of a differential equation starts on a given

space, surface or curve (that is, a manifold) remains within it for all time, then the manifold
is said to be invariant. For example, van der Pol’s equation has a limit cycle (Section 11.3).
Any solution which starts on the limit cycle will remain on it for all time. Hence this closed
curve in the phase plane is an invariant manifold (the term set is also used instead of manifold).
Equilibrium points are invariant manifolds, as are any complete phase paths, or sets of phase
paths. Since the context is clear in this book, and since we only discuss invariant manifolds,
the term invariant has been dropped. Further details of the mathematical background can be
found in the book by Arrowsmith and Place (1990).
We shall use the result of the following Example to illustrate how a homoclinic path lies on

both the stable and unstable manifolds on the equilibrium point.

Example 12.7 Consider the system

ẋ = −1
2x − y + 1

2z+ 2y3, (12.20)

ẏ = −1
2x + 1

2z, (12.21)

ż = z− (x + z)y2. (12.22)

Where is the system in equilibrium? Investigate the linear approximation in the neighbourhood of the origin.
Confirm that

ẋ − 2ẏ + ż = (x − 2y + z)(12 − y2), (12.23)
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and deduce that time-solutions exist that lie in the plane x − 2y + z = 0. Hence show that there exists a
homoclinic solution of the origin given by

x = (1+ tanh t)sech t , y = sech t , z = (1− tanh t)sech t .

For equilibrium, we must have

−1
2x − y + 1

2z+ 2y3 = −1
2x + 1

2z = z− (x + z)y2 = 0.

Hence

z = x, y(1− 2y2) = 0, x(1− 2y2) = 0.

Thus equilibrium occurs at the origin and at all points on the line of intersection of the planes z = x, y = ±1/√2.
Near the origin the linear approximation of the differential equations is

⎡
⎣ẋẏ
ż

⎤
⎦ =
⎡
⎢⎢⎣
−1

2 −1 1
2

−1
2 0 1

2

0 0 1

⎤
⎥⎥⎦
⎡
⎣xy
z

⎤
⎦ .

Hence the eigenvalues are given by

∣∣∣∣∣∣∣
−1

2 −m −1 1
2

−1
2 −m 1

2
0 0 1−m

∣∣∣∣∣∣∣ = 0,

which reduces to

(m− 1)(2m− 1)(m+ 1) = 0.

Denote the solutions by m1 = −1,m2 = 1
2 and m3 = 1. The eigenvectors are given by

r1 =
⎡
⎣21
0

⎤
⎦ , r2 =

⎡
⎣−11

0

⎤
⎦ , r3 =

⎡
⎣01

2
1

⎤
⎦ ,

from which it follows that the general solution is⎡
⎣xy
z

⎤
⎦ = αr1e

−t + βr2e
1
2 t + γ r3e

t , (12.24)

where α, β, and γ are constants. Since the eigenvalues are real but not the same sign the origin is an unstable
equilibrium point of saddle type.

From the original differential equations (12.20), (12.21) and (12.22)

d
dt

(x − 2y + z) = (x − 2y + z)

(
1
2
− y2
)
.

Therefore there exist time-solutions which lie in the plane

x − 2y + z = 0. (12.25)
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Figure 12.14 Homoclinic paths of the origin and the eigenvector directions in Example 12.9.

To obtain these solutions use (12.25) to eliminate x from (12.21) and (12.22), leading respectively to

ẏ = z− y, (12.26)

ż = z− 2y3. (12.27)

By eliminating z and ż between (12.26) and (12.27) we obtain ÿ = y − 2y3, which has a particular solution

y(t) = sech t . (12.28)

By substituting (12.28) into (12.27) we obtain ż = z− 2sech3t , which has a solution

z(t) = sech t(1− tanh t). (12.29)

Finally, from (12.25) again, we have

x(t) = 2y(t)− z(t) = sech t(1+ tanh t). (12.30)

The functions x(t), y(t), z(t)→ 0 as t →±∞, confirming that the corresponding phase path is homoclinic to
the origin. This path (which lies in the quadrant x > 0, y > 0, z > 0 on the plane (12.25)), together with its
reflection in the origin, which is also homoclinic there, are shown in Fig. 12.14. �
In Example 12.7, the eigenvalues associated with the origin are −1, 12 , 1: two are positive

and one is negative. The homoclinic path in x > 0, which is known exactly by (12.28), (12.29)
and (12.30), emerges from the origin in the direction of the eigenvector r3(α = β = 0) (see eqn
(12.24)), and approaches the origin in the direction of r1(β = γ = 0). Since the origin has only
one negative eigenvalue all initial coordinates which lie on this homoclinic path are the only
points whose solutions approach the origin as t → ∞. This curve defines explicitly the stable
manifold of the origin.
Now consider all initial points in the phase space whose solutions approach the origin as

t →−∞. Since the origin has two positive eigenvalues the points will lie on a two-dimensional
manifold which is the unstable manifold. This surface must contain the stable manifold as a
curve embedded in it. The tangent plane to the unstable manifold as t →∞ is defined locally
near the origin by the plane through the eigenvectors r2 and r3.
Generally the notations W s and Wu will be used to denote stable and unstable manifolds.

Stable and unstable manifolds can be computed (as we shall see in Section 13.5) by considering
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appropriate initial points close to the origin and then extrapolating solutions either forwards
or backwards in time. However they can be quite complex structures which are difficult to
visualize. The following rather contrived example shows explicit manifolds.

Example 12.8 Find the stable and unstable manifolds of

ẋ = y, ẏ = x − x3, ż = 2z.

This is really a plane system with an added separable equation for z. There are equilibrium points at (0, 0, 0),
(1, 0, 0), and (−1, 0, 0). The eigenvalues of the linear approximation at the origin arem1 = −1,m2 = 1,m3 = 2
with corresponding eigenvectors

r1 = [−1, 1, 0]T, r2 = [1, 1, 0]T, r3 = [0, 0, 1]T.
Two eigenvectors lie in the (x, y) plane and one points along the z axis. The homoclinic paths associated with
the origin are given by (see, Example 3.10)

x = ±√2 sech t , y = ∓√2 sech t tanh t , z = 0.

Only solutions with initial points on these curves, which define the stable manifoldsW s of the origin, approach
the origin as t →∞ since z = Ce2t . On the other hand, solutions with initial points on the cylinders

x = ±√2 sech t , y = ∓√2 sech t tanh t
approach the origin as t→−∞ since z = Ce2t . These cylinders define the unstable manifoldsWu of the origin
(see Fig. 12.15). �

Of course the previous example is a special case in which the stable manifold is embedded
in the unstable manifold as shown in Fig. 12.15. If friction is added to the system as in the
damped Duffing equation

ẋ = y, ẏ = −ky + x − x3, ż = 2z,

Figure 12.15 Stable and unstable manifolds for ẋ = y, ẏ = x − x3, ż = 2z.
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Figure 12.16 Stable and unstable manifolds for ẋ = y, ẏ = −ky + x − x3, ż = 2z.

with separable z equation, then, for k > 0, the origin still has two positive eigenvalues and one
negative eigenvalue. Here there is no homoclinic path. The stable manifolds are still curves,
and the unstable manifolds remain as cylindrical surfaces as shown in Fig. 12.16, but the two
no longer meet except at the origin.
Stable and unstable manifolds must be associated with either equilibrium points or limit

cycles as we shall see in the next chapter. For example, we can discuss manifolds of an equilib-
rium point of a system, but manifolds without such a reference point or limit cycle would be
meaningless. They do not exist as separate entities.

12.6 Linear approximation: centre manifolds

Suppose that an nth order nonlinear autonomous system has an equilibrium point at the origin
(if it is at some other point, we can always move it to the origin by a translation of x), with
linear approximation

ẋ = Ax,
where A is a constant n× n matrix. The manifolds of the origin are determined by the signs of
the real parts of the eigenvalues of A. If all the eigenvalues of A have negative real part then
the stable manifold will be the whole of R

n for the linear system, and there will be no unstable
manifold. For a nonlinear system the stable manifold will occupy a subset of R

n including a
neighbourhood of the origin.
We shall concentrate on the local behaviour of the nonlinear system by looking at its linear

approximation. If A has p < n eigenvalues with negative and n − p eigenvalues with positive
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real part then the stable manifold will be a p dimensional subspace of R
n, whilst the unsta-

ble manifold will be a n − p dimensional subspace of R
n. As we have seen in the previous

section if n = 3 and p = 2 then the stable manifold will be a plane and the unstable one a
straight line.

Example 12.9 Find the local behaviour of the stable and unstable manifolds of

ẋ = 1
4 (−sin x + 5y − 9z),

ẏ = 1
4 (4x − ez + 1),

ż = 1
4 (4x − 4 sin y + 3z)

near the origin.

The system has an equilibrium point at the origin, where its linear approximation is ẋ′ = Ax′, and

A = 1
4

⎡
⎣−1 5 −9

4 0 −1
4 −4 3

⎤
⎦ .

The eigenvalues of A are m1 = −1
4 − i, m2 = −1

4 + i, m3 = 1, and its corresponding eigenvectors are

r1 =
⎡
⎣−i1
1

⎤
⎦ , r2 =

⎡
⎣ i1
1

⎤
⎦ , r3 =

⎡
⎣11
0

⎤
⎦ .

Hence the general linear approximation is⎡
⎣x′y′
z′

⎤
⎦ = αr1e

(− 1
4−i)t + ᾱr2e

(− 1
4+i)t + βr3e

t ,

where α is a complex constant and β is a real constant. Solutions for which β = 0 lie in the plane y = z, which
defines the tangent plane to the stable manifold of the nonlinear system at the origin. Solutions for which α = 0
are given by

x = βet , y = βet , z = 0,

which is a straight line defining the tangent to the unstable manifold. The manifolds of the linear approximation
are shown in Fig. 12.17. �

This is a useful stage to summarize properties of manifolds for equilibrium points of higher
order systems which have linearized approximations with eigenvalues having nonzero real
parts. As stated in Section 2.5, such equilibrium points are said to be hyperbolic. Consider the
autonomous system.

ẋ = f (x) = Ax + g(x), x ∈ R
n, (12.31)

where f (0) = g(0) = 0. In (12.31) it is assumed that x = 0 is an isolated equilibrium point
(any equilibrium point can always be translated to the origin). It is also assumed that

‖g‖ = o(‖x‖) as ‖x‖ → 0,

where the norms are defined in Section 8.3.
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CC

Figure 12.17 Stable and unstable manifolds of the linear approximations at the origin in Example 12.9. C1 is a phase
path in the stable manifold, whilst C2 is a path starting from a neighbouring initial point to that of C1. Ultimately this
path approaches the unstable manifold.

The stable and unstable manifolds of the linear approximation

ẋ′ = Ax′ (12.32)

are known as linear manifolds of the original system (12.31) and their spaces are denoted by Es

andEu. HereEs is a subspace defined by the k, (0 ≤ k ≤ n) eigenvectors whose eigenvalues have
negative real parts, and Eu is the subspace defined by the eigenvectors whose eigenvalues have
positive real parts. The full nonlinear equations (12.31) will have stable and unstable manifolds
denoted byW s andWu of the origin, to which the subspaces Es and Eu are tangential at x = 0.
So far the case in which pure imaginary eigenvalues occur has been excluded. If any eigen-

values are pure imaginary, then a third manifold Ec arises for the linear approximation. This
is known as the centre manifold.
The definitions imply that, in general, any linear approximation at the origin may contain

any or all of the three manifolds Es, Eu, and Ec. This is illustrated in the following example of
a linear system.

Example 12.10 Find the manifolds for the linear system

ẋ = −x + 3y,

ẏ = −x + y − z,

ż = −y − z.



430 12 : Bifurcations and manifolds

The eigenvalues of

A =
⎡
⎣−1 3 0
−1 1 −1
0 −1 −1

⎤
⎦

are given by ⎡
⎣−1−m 3 0
−1 1−m −1
0 −1 −1−m

⎤
⎦ = −(m+ 1)(m2 + 1) = 0.

Let m1 = −i, m2 = i, m3 = −1: the corresponding eigenvectors are

r1 =
⎡
⎣ −3−1+ i

1

⎤
⎦ , r2 =

⎡
⎣ −3−1− i

1

⎤
⎦ , r3 =

⎡
⎣−10

1

⎤
⎦ .

Since m3 = −1 is the only real eigenvalue and it is negative, it follows that there is no unstable manifold, and
that, parametrically, the stable manifold is the straight line x = −u, y = 0, z = u(−∞ < u < ∞). The centre
manifold Ec (which must always have even dimension) is the plane x + 3z = 0. In algebraic terminology, we
say that Es is spanned by r3, and that Ec is spanned by r1 and r2, written as

Es = span{r3}, Eu = span{0}, Ec = span{r1, r2}.
This terminology entails the linear structure of the associated solution sets. For example, Ec consists of the
(real) solution set αr1em1t + βr2em2t , where m2 = m̄1, r2 = r̄1 and β = ᾱ, α being an arbitrary complex
constant. Some phase paths of the system are shown in Fig. 12.18. �

For a nonlinear system having an equilibrium point with linearmanifoldsEs, Eu, andEc, the
actual manifoldsW s, Wu, andW c are locally tangential to Es, Eu, and Ec. Whilst solutions on
W s andWu behave asymptotically as solutions on Es and Eu as t →±∞ respectively, the same

Figure 12.18 The centre manifold Ec lies in the plane x + 3z = 0, and the stable manifold Es is the line x = −t ,
y = 0, z = t . �
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is not true of W c. Solutions on W c can be stable, unstable, or oscillatory (more information on
the mathematics of manifolds can be found in the book by Wiggins 1990).
In the linear problem in Example 12.10, the origin is a stable equilibrium point but it is

not asymptotically stable, due to the presence of Ec. The question arises: if, at an equilibrium
point, the linear approximation to a nonlinear problem has a centre manifold, what can we say
anything about the stability of the equilibrium point? The subject of pure imaginary eigenvalues
and their relation with stability is known as centre manifold theory, and a detailed account of
it can be found in the book by Carr (1981). Here we shall look at an illustrative example.
Consider the system

ẋ = −y − xz, (12.33)

ẏ = x − y3, (12.34)

ż = −z− 2xy − 2x4 + x2. (12.35)

The system has three equilibrium points, at (0, 0, 0), (2
1
2 , 2− 5

6 , 2
1
3 ), (−21

2 ,−2− 5
6 , 2

1
3 ). The

equilibrium point at the origin has the linear approximation given by

ẋ′ =
⎡
⎣ẋ′ẏ′
ż′

⎤
⎦ =
⎡
⎣0 −1 0
1 0 0
0 0 −1

⎤
⎦
⎡
⎣x′y′
z′

⎤
⎦ = Ax′.

The eigenvalues of A are m1 = i,m2 = −i,m1 = −1 with corresponding eigenvectors

r1 =
⎡
⎣ 1
−i
0

⎤
⎦ , r2 =

⎡
⎣1i
0

⎤
⎦ , r3 =

⎡
⎣00
1

⎤
⎦ ,

Since A has two pure imaginary eigenvalues, it follows that the center manifold Ec is given by
the coordinate plane z = 0, and the stable manifold Es by the z axis.
System (12.33)–(12.35) has a surface through the origin on which solutions exist. From

(12.33) and (12.35) after elimination of y,

ż = −z+ x2 + 2xẋ − 2x4 + 2x2z,

or

d
dt

(z− x2) = −(z− x2)(1− 2x2).

Thus there are solutions for which z = x2: this is a manifold to which Ec, given by z = 0, is
tangential at the origin as shown in Fig. 12.19. On this surface x and y satisfy

ẋ = −y − x3, (12.36)

ẏ = x − y3, (12.37)

from (12.33) and (12.34). Thus solutions which start on this surface remain on it.
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Figure 12.19 The centre manifolds Ec and W c of the origin for the system ẋ = −y − xz, ẏ = x − y3, ż =
−z−2xy−2x4+x2. A stable spiral solution is shown onW c which is the surface z = x2. The origin is asymptotically
stable.

For (12.36) and (12.37) introduce a Liapunov function V (x, y) = x2 + y2 (see Chapter 10).
It follows that

dV
dt
= −∂V

∂x
ẋ − ∂V

∂y
ẏ = −2x4 − 2y4 < 0

for (x, y) 	= (0, 0). Hence by Theorems 10.7or 10.12, the system given by (12.36) and (12.37)
has an asymptotically stable equilibrium point at the origin. In fact all paths which start on
the surface z = x2 remain on it for all subsequent times, and approach the origin at t → ∞.
Also there is an exact solution x = y = 0, z = βe−t . All this suggests that the origin is, overall,
asymptotically stable.
The centre manifold W c is defined to be a set of paths in the nonlinear system which has Ec

as its tangent plane at the origin. Thus W c in the case considered above is the surface z = x2.
A computed spiral path on W c is shown in Fig. 12.19.

This example illustrates an essential feature of a centre manifold theorem which can be
summarized as follows.
Consider an n-dimensional system expressed in the form

ẋ = Ax + h(x), (12.38)

where all linear terms on the right-hand side are included in the term Ax. Suppose that the
constant matrix A can be represented in the block-diagonal form

A =
[
B 0
0 C

]
, (12.39)

where C is an m×mmatrix, and B is an (n−m)× (n−m)matrix. All other elements are zero.
(A block-diagonal matrix is one in which the leading diagonal consists of square matrices with
zeros everywhere else. Also, a linear transformation may be required to formulate the system
in block-diagional form.) It is assumed that h(0) = 0, so that the origin is an equilibrium point.
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Let x be partitioned in the form

x =
[
u

v

]
,

where u is an n−m vector and v an m vector. Then (12.38) can be replaced by the two vector
equations

u̇ = Bu+ f (u, v), (n−m equations),

v̇ = Cv + g(u, v), (m equations),

where

h(x) =
[
f (u, v)
g(u, v)

]
.

It is assumed that the origin is an isolated equilibrium point, and that f and g are sufficiently
smooth for any required derivatives and expansions to exist.
The n eigenvalues ofA (assumed to be all different) comprise the (n−m) eigenvalues ofB and

the m eigenvalues of C. centre manifold theory is concerned with the stability of equilibrium
points which have some imaginary eigenvalues.

Theorem 12.2 (centre manifold) Suppose that the matrix B has only imaginary eigenvalues
(which implies that n−m must be an even integer) and that the eigenvalues of C have negative
real part. The stable manifoldWs has dimension m, and the centre manifoldWc has dimension
n−m. Suppose that Wc can be represented locally by the manifold v = p(u).
If u=0 is an asymptotically stable equilibrium point of the (n−m)-dimensional system

u̇ = Bu+ f (u,p(u)),
then the origin of

ẋ = Ax + h(x)
is asymptotically stable. �
In other words what happens to the solutions on v = p(u) projected onto W c decides

the asymptotic stability of the origin. More details and proofs are given by Carr (1981) and
Guckenheimer and Holmes (1983).

Problems

12.1 Find the bifurcation points of the linear system ẋ = A(λ)x with x = [x1, x2]T and A(λ) given by

(i) A(λ) =
[−2 1

4−1 λ

]
;

(ii) A(λ) =
[
λ λ− 1
1 λ

]
.

12.2 In a conservative system, the potential is given by V(x, λ) = 1
3x

3 + λx2 + λx (cf. eqn (12.2)). Find the
equilibrium points of the system, and show that it has bifurcation points at λ = 0 and at λ = 1. What
type of bifurcations occur for λ < 0 and λ > 1?
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12.3 Let V(x, λ,µ) = 1
4x

4 − 1
2λx

2 + µx as in eqn (12.4). Draw projections of the bifurcations given by the

cusp surface x3 − λx + µ = 0 on to both the (x, λ)-plane and the (x,µ)-plane. Sketch the projection of
the cusp on to the (µ, λ) plane.

12.4 Discuss the stability and bifurcation of the equilibrium points of the parameter-dependent conservative
system

ẍ = −Vx(x, λ)

where V(x, λ) = 1
4x

4 − 1
2λx

2 + λx.

12.5 Discuss bifurcations of the system ẋ = y2 − λ, ẏ = x + λ.

12.6 Find the bifurcation points of ẋ = y2 − λ, ẏ = x + λ.

12.7 Consider the system ẋ = y, ẏ = x(λ − x2), −∞ < λ < ∞. Investigate the phase diagrams for
λ < 0, λ = 0, and λ > 0. Describe the bifurcation of the system as λ increases through zero.

12.8 Discuss the bifurcations of ẋ = (y2 − λ)y, ẏ = x + λ.

12.9 Investigate the bifurcation of the system

ẋ = x, ẏ = y2 − λ,

at λ = 0. Show that, for λ > 0, the system has an unstable node at (0,
√
λ), and a saddle point at

(0,−√λ). Sketch the phase diagrams for λ < 0, λ = 0. and λ > 0.

12.10 A homoclinic path (Section 3.6) is a phase path which joins an equilibrium point to itself in an
autonomous system. Show that ẋ = y, ẏ = x − x2 has such a path and find its equation. Sketch
the phase paths for the perturbed system

ẋ = y + λx, ẏ = x − x2,

for both λ > 0 and λ < 0. (The homoclinic saddle connection is destroyed by the perturbation; the
system undergoes what is known as a homoclinic bifurcation (Section 3.6) at λ = 0.)

12.11 A heteroclinic path (Section 3.6) is a phase path which joins two different equilibrium points. Find
the heteroclinic saddle connection for the system ẋ = xy, ẏ = 1 − y2. Sketch the phase paths of the
perturbed system ẋ = xy + λ, ẏ = 1− y2 for both λ > 0 and λ < 0.

12.12 Let

ẋ = −µx − y + x/(1+ x2 + y2),

ẏ = x − µy + y/(1+ x2 + y2).

Show that the equations display a Hopf bifurcation as µ > 0 decreases through µ = 1. Find the radius
of the periodic path for 0 < µ < 1.

12.13 Show that the system

ẋ = x − γ y − x(x2 + y2), ẏ = γ x + y − y(x2 + y2)− γ (γ >0),

has a bifurcation point at γ = 1
2 , by investigating the numbers of equilibrium points for γ > 0. Compute

the phase diagram for γ = 1
4 .

12.14 Let ẋ = Ax, where x = [x, y, z]T. Find the eigenvalues and eigenvectors of A in each of the following
cases. Describe the stable and unstable manifolds of the origin.

(a) A =
⎡
⎣1 1 2
1 2 1
2 1 1

⎤
⎦ (b) A =

⎡
⎣3 0 −1
0 1 0
2 0 0

⎤
⎦
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(c) A =
⎡
⎣2 0 0
0 2 2
0 2 −1

⎤
⎦ (d) A =

⎡
⎣6 5 5
5 6 5
5 5 6

⎤
⎦

12.15 Show that ẋ = Ax where x = [x, y, z]T and

A =
⎡
⎣−3 0 −2
−4 −1 −4
3 1 3

⎤
⎦

has two imaginary eigenvalues. Find the equation of the centre manifold of the origin. Is the remaining
manifold stable or unstable?

12.16 Show that the centre manifold of ⎡
⎣ẋẏ
ż

⎤
⎦ =
⎡
⎣−1 0 1

0 1 −2
0 1 −1

⎤
⎦
⎡
⎣xy
z

⎤
⎦ ,

is given by the plane 2x + y − 2z = 0.

12.17 Show that the phase paths of ẋ= y(x+1), ẏ= x(1− y2) are given by

y = ±√[1− Ae−2x(1+ x)2
]
,

with singular solutions x = −1 and y = ±1. Describe the domains in the (x, y) plane of the stable and
unstable manifolds of each of the three equilibrium points of the system.

12.18 Show that the linear approximation at (0, 0, 0) of

ẋ = −y + yz+ (y − x)(x2 + y2),

ẏ = x − xz− (x + y)(x2 + y2),

ż = −z+ (1− 2z)(x2 + y2),

has a centre manifold there. Show that z = x2 + y2 is a solution of this system of equations. To which
manifold of the origin is this surface tangential? Show also that, on this surface, x and y satisfy

ẋ = −y + (2y − x)(x2 + y2), ẏ = x − (2x + y)(x2 + y2),

Using polar coordinates determine the stability of solutions on this surface and the stability of the origin.

12.19 Investigate the stability of the equilibrium points of

ẋ = µx − x2, ẏ = y(µ− 2x)

in terms of the parameter µ. Draw a stability diagram in the (µ, x) plane for y = 0. What type of
bifurcation occurs at µ = 0? Obtain the equations of the phase paths, and sketch the phase diagrams
in the cases µ = −1,µ = 0 and µ = 1.

12.20 Where is the bifurcation point of the parameter dependent-system

ẋ = x2 + y2 − µ, ẏ = 2µ− 5xy?

Discuss how the system changes as µ increases. For µ = 5 find all linear approximations for all
equilibrium points, and classify them.
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12.21 Obtain the polar equations for (r, θ) of

ẋ = y + x[µ− (x2 + y2 − 1)2],
ẏ = −x + y[µ− (x2 + y2 − 1)2],

where |µ| < 1. Show that, for 0 < µ < 1, the system has two limit cycles, one stable and one unstable,
which collide at µ = 0, and disappear for µ < 0. This is an example of a blue sky catastrophe in which
a finite-amplitude stable limit cycle simply disappears as a parameter is changed incrementally.

12.22 Discuss the bifurcations of the equilibrium points of

ẋ = y, ẏ = −x − 2x2 − µx3

for −∞<µ<∞. Sketch the bifurcation diagram in the (µ, x) plane. Confirm that there is a fold
bifurcation at µ=1. What happens at µ = 0?

12.23 Consider the system

ẋ = y − x(x2 + y2 − µ), ẏ = −x − y(x2 + y2 − µ),

where µ is a parameter. Express the equations in polar form in terms of (r, θ). Show that the origin is
a stable spiral for µ<0, and an unstable spiral for µ>0. What type of bifurcation occurs at µ=0?

12.24 In polar form a system is given

ṙ = r(r2 − µr + 1), θ̇ = −1,
where µ is a parameter. Discuss the bifurcations which occur as µ increases through µ = 2.

12.25 The equations of a displaced van der Pol oscillator are given by

ẋ = y − a, ẏ = −x + δ(1− x2)y,

where a >0 and δ >0. If the parameter a= 0 then the usual equations for the van der Pol oscillator
appear. Suppose that a is increased from zero. Show that the system has two equilibrium points one
of which is a saddle point at x ≈ −x1/(aδ), y = a for small a. Compute phase paths for δ = 2, and
a = 0.1, 0.2, 0.4, and observe that the saddle point approaches the stable limit cycle of the van der Pol
equation. Show that at a ≈ 0.31 the saddle point collides with the limit cycle, which then disappears.

12.26 Find the stable and unstable manifolds of the equilibrium points of

ẋ = x2 + µ, ẏ = −y, ż = z,

for µ < 0. What type of bifurcation occurs at µ = 0?

12.27 Consider the system

ẋ = µx − y − x3, ẏ = x + µy − y3.

By putting z = µ− x2, show that any equilibrium points away from the origin are given by solutions of

z4 − µz3 + µz+ 1 = 0.

Plot the graph of µ against z and show that there is only one equilibruim point at the origin if µ<2
√
2,

approximately, and 9 equilibrium points if µ>2
√
2.

Investigate the linear approximation for the equilibrium point at the origin and show that the system
has a Hopf bifurcation there at µ = 0. Compute the phase diagram for µ = 1.5.
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12.28 Show that the system

ẋ = x2 + y + z+ 1, ẏ = z− xy, ż = x − 1

has one equilibrium point at (1,−1,−1). Determine the linear approximation

ẋ′ = Ax′

to the system at this point. Find the eigenvalues and eigenvectors of A, and the equations of the stable
and unstable manifolds Es and Ec of the linear approximation.

12.29 Consider the equation

ż = λz− |z|2z,
where z = x + iy is a complex variable, and λ = α + iβ is a complex constant. Classify the equilibruim
point at the origin, and show that the system has a Hopf bifurcation as α increases through zero for
β 	= 0. How does the system behave if β = 0?.
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13
Poincaré sequences,
homoclinic bifurcation,
and chaos

13.1 Poincaré sequences

Consider the autonomous system

ẋ = X(x, y), ẏ = Y (x, y)

and its phase diagram in the (x, y)-plane. Let � be a curve or cross-section of the plane with
the property that it cuts each phase path transversely in some region of the phase diagram,
that is, it is nowhere tangential to a phase path. It is called a Poincaré section of the phase
diagram. Consider a point A0 : (x0, y0) on the Poincaré section � shown in Fig. 13.1. If we
follow the phase path through A0 in its direction of flow then it next cuts � in the same sense
at A1 : (x1, y1). This point is the first return, or Poincaré map, of the point A0. We are not
implying that such a point must exist, but if it does then it is called a first return. If we continue
on the phase path, then the first return of A1 is A2 : (x2, y2) (see Fig. 13.1). We can represent
this process as a mapping or function by an operator P� which is such that for the particular
� chosen, and for every (x, y) on �,

(x′, y′) = P�(x, y),

where (x′, y′) is the point of first return of the path from (x, y). For successive returns starting
from (x0, y0) we use the notation

(x2, y2) = P�(P�(x0, y0)) = P 2
�(x0, y0); (xn, yn) = Pn

�(x0, y0).

Figure 13.1 First returns associated with a spiral and a limit cycle, and the Poincaré section �; A1,A2, . . . are the
first returns of A0,A1, . . . in the same sense across �, and B is the fixed points which they are approaching.
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The starting time for a sequence of first returns is immaterial since the system is autonomous.
Note that the time lapse between returns is not in general constant.
Figure 13.1 shows a stable limit cycle with interior and exterior phase paths spiralling towards

the cycle. The returns A1,A2, . . . starting at A0 on � approach the point B which is the inter-
section of the limit cycle and �. A similar approach of returns to B occurs if A0 is on �, but
inside the limit cycle. If B is chosen as the initial point on �, then all returns are at B: B is a
fixed point of the map P� . All sequences which start on � but sufficiently close to B approach
B. The behaviour of these returns indicates that B is a stable fixed point. In general we call a
sequence A0,A1,A2, . . . a Poincaré sequence (it need not necessarily be stable).

We can see from Fig. 13.1 that B could have alternative section �, and also that every point
on the limit cycle is a possible fixed point of such a section.

Example 13.1 Obtain the map of first returns P� for the differential equations

ẋ = µx + y − x
√
(x2 + y2),

ẏ = −x + µy − y
√
(x2 + y2),

for the section � given by y=0, x >0 with initial point (x0, 0) (x0<µ).

Since the equations are autonomous the starting time t0 is immaterial—assume that t0 = 0. In polar coordinates
the equations become

ṙ = r(µ− r), θ̇ = −1

with solutions

r = µr0/{r0 + (µ− r0)e
−µt }, θ = −t + θ0,

where r(0) = r0 and θ(0) = θ0. r = µ is a limit cycle, and the approach directions indicated by the sign of ṙ
imply that it is stable. By eliminating t the paths are given by

r = µr0/{r0 + (µ− r0)e
µ(θ−θ0)}.

The section given corresponds to θ0=0, and the required successive returns occur for θ =−2π ,−4π , . . .
(bearing in mind that the representative points move round clockwise); with initial point (r0, 0), so

rn = µr0/{r0 + (µ− r0)e
−µ2nπ }, θn = −2nπ (n = 1, 2, . . .). (13.1)

As n→∞ the sequence of points approaches the fixed point (µ, 0), as shown in Fig. 13.2, corresponding to
the intersection with the limit cycle. �

We can find the difference equation of which (13.1) is the solution. It follows from (13.1)
that

rn+1 = µr0

r0 + (µ− r0)e
−2(n+1)µπ =

µrn

rn(1− e−2µπ)+ µe−2µπ
= f (rn), (13.2)

say, after eliminating r0 and using (13.1) again. Equation (13.2) is a first-order difference
equation for rn. Whilst we know the solution rn, n=0, 1, . . . in this case, it is instructive to
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�

Figure 13.2 First returns approaching (µ, 0) on �: θ0 = 0.

Figure 13.3 Cobweb diagram for the sequence {rn} given by (13.2) with µ = 0.2.

see how we can represent it geometrically (see, Jordan and Smith 1997, Ch. 37). As shown in
Fig. 13.3, plot the curve z = f (r) and the line z = r. The fixed points of the Poincaré section
or map occur where the curve and the line intersect, namely where r satisfies r = f (r). As we
expect, the solution are r =0 and r =µ. The sequence of values of r starting from r = r0 are
also shown in Fig. 13.3, which has been constructed by the cobweb sequence of lines reflected
between z= r and z= f (r). Representatives cobwebs for r0<µ and r0>µ are shown in the
figure. The stability of the fixed point is indicated by the cobwebs converging to the point
(µ,µ). The sequential mapping described by (13.2) corresponds to the operator P� mentioned
at the beginning of Section 13.1.
In this particular case the time lapses between returns are all equal, the interval being 2π ,

but this will not usually be true.



442 13 : Poincaré sequences, homoclinic bifurcation, and chaos

Exercise 13.1
Consider the polar system ṙ = r(1 − r), θ̇ = −1 (as in Example 13.1 with µ = 1) and the
section y = 1

2 (−∞ < y < ∞). Discuss the returns which occur from all initial points on
the line with particular reference to the intersections with the limit cycle. What happens to
the returns if the section is y = 2?

13.2 Poincaré sections for nonautonomous systems

Important features of a system can be revealed by Poincaré maps or sequences. For example, as
we have seen, in autonomous systems periodic solutions may exist when fixed points appear,
so some useful information is retained if the phase paths of Figs 13.2 or 13.3 are deleted and
only the dots of the Poincaré map retained. But for autonomous systems there is no particu-
lar advantage in using the map of first returns since the paths can be plotted (numerically if
necessarily) and the phase diagrams interpreted without difficulty. For nonautonomous sys-
tems, on the other hand, the diagram of solution curves projected on to the (x, y)-plane which
corresponds to the phase diagram in the autonomous case appears as a tangle of intersecting
and self-intersecting curves, since each initial state or point in the plane generates an infinite
number of curves corresponding to the various initial times t0: see, for example, Fig. 7.11(b).
Important features can be totally obscured in such a diagram, but Poincaré maps can be used
to detect underlying structure, such as periodic solutions having the forcing or a subharmonic
frequency.
In this context the investigation of periodic solutions, nearly periodic solutions, and similar

phenomena is to a considerable extent an exploratory matter in which computation plays at
the present time a very significant part. A search for hidden periodicities, such as subharmonic
periods, is best carried out by starting with a period in mind and then looking for solutions
with this period.
In that case a variant of the Poincaré map is usually more profitable—if the solutions sought

are expected to have period T , then we should plot on the x, y plane a sequence of points
calculated at times T , 2T , 3T , . . . along the phase paths starting from various states, and see
whether any of these sequences indicate that we are approaching a periodic solution. This does
not quite fit the definition of a Poincaré map, which does not involve any mention of time
intervals but picks out intersections of a phase path under investigation with another given
curve (the ‘section’). The two procedures can with advantage for the analysis (especially in
multidimensional cases) be brought together in a manner suggested by the following example.
Consider the first-order nonautonomous system of dimension unity:

ẋ = −1
8x + cos t (13.3)

which has the general solution

x = ce−t/8 + 8
65 (cos t + 8 sin t).
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The right-hand side of (13.3) has time period 2π . In fact if t is replaced by t + 2π throughout,
the equation remains unchanged; but this does not mean that all the solutions have period 2π .
If we start with a given initial state and proceed through an interval of length 2π , then the state
arrived at is the initial state for the next interval, but generally this second state will be different
from the first.
By the following artifice, eqn (13.3) can bewritten as an autonomous system of one dimension

higher. We nominate a second variable, θ , to take the place of t , and rewrite the relations as

ẋ = −1
8x + cos θ , (13.4)

θ̇ = 1, (13.5)

(the independent variable is still t). It is also necessary to complete the identification of θ with
t by requiring

θ(0) = 0. (13.6)

The two-dimensional systems (13.4) and (13.5) now has the property that if we substitute
θ + 2nπ for θ , n being an integer, then the system is unchanged. By taking advantage of this
property we can relate a plot of calculated values of x at equal time steps 2π to a Poincaré map
associated with (13.4) and (13.5), not in a plane space (x, y), but on a cylindrical surface. The
space is constructed by picking out the strip

−∞ < x <∞, 0 < θ ≤ 2π

from the (x, y) plane, and wrapping it round a cylinder of circumference 2π , so that the side
θ =0 becomes attached to the side θ =2π . On this space, and for all times, eqns (13.4) and
(13.5) hold good, and the solutions are represented by curves which wrap round the cylinder
and, in the case of periodic solutions whose period is a multiple of 2π , wrap round it more than
once and join up smoothly (see Fig. 13.4). The periodic variable θ is an angle, which explains
the choice of notation.
In a similar way the two-dimensional system

ẋ = X(x, y, t), ẏ = Y (x, y, t),

where X and Y are periodic in with period T in t , is equivalent to the system

ẋ = X(x, y, (2π/T )θ), ẏ = Y (x, t , (2π/T )θ), θ̇ = 2π
T

,

where X and Y are now 2π -periodic in θ . Effectively, the time is rescaled to ensure that t
is still an angular variable. This may be visualized as a ‘toroidal space’ for which the planes
θ = 0, 2π , 4π , . . . (equivalent to t = 0, T , 2T , . . .) are bent round to coincide with θ = 0, which
serves as the section for a Poincaré sequence.
The θ curve in which the values of x and y for θ between 2πn and 2π(n + 1) are mapped

on to θ between 0 and 2π is usually denoted by the symbol S. The toroidal phase space is then
R2 ×S. Mathematically, we say that θ = 2πt/T (mod2π). Generally, a Poincaré sequence for
a section θ = θ0 with an initial starting coordinates x(t0) = x0, y(t0) = y0 would consist of the
sequence of pairs of coordinates (x(t0 + nT ), (y(t0 + nT )) in the (x, y) plane.
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2p

Figure 13.4 Solution of (13.3) mapped on to a cylinder of circumference 2π . On the section y = 0 (which includes
t = 2π , 4π , . . .), the Poincaré map is the sequence A0,A1,A2, . . . with limiting point B on the periodic solution
x = 8

65 (cos t + 8 sin t).

,

S

Figure 13.5 A torus cut open to show the projection S∗ in the (x∗, y∗) plane.

If the phase diagram occupies the whole of the (x, y) plane, then we cannot draw a rep-
resentation of the torus. However, it can be drawn if the (x, y) plane is mapped onto the
diametrical plane (x∗, y∗) using the hemispherical transformation of Section 3.3 (see Fig. 3.13).
The Poincaré map then appears as a cross section S∗ of a torus, which is a disc of unit radius
as shown in Fig. 13.5.
An alternative method of viewing a sequence of Poincaré points taken at a constant time

interval T along a phase path is to let the time t be the third (vertical) axis. Take sections at
t = 0, t = T , t = 2T , . . ., and then project the points for a particular phase path back onto the
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Figure 13.6 First returns obtained from the sections t =0, t = T , t =2T , . . . in the (x, y, t) space.

plane t = 0 as shown in Fig. 13.6. Obviously, any other start time t = t0 with time steps of T
can be chosen as described above.

Example 13.2 Find the Poincaré sequences with T = 2π for the section �: θ =0 for arbitrary initial states,
and locate the corresponding fixed point of the nonautonomous equation

ẍ + 3ẋ + 2x = 10 cos t

in the phase plane for which ẋ = y.

When we introduce a new variable θ = t (in this case period T = 2π ), the system takes the autonomous form

ẋ = y, ẏ = −2x − 3y + 10 cos θ , θ̇ = 1, with θ(0) = 0,

and a Poincaré sequence corresponding to t = 0, 2π , . . . appears as a sequence of points following the phase
path (x(t), y(t), θ(t)) as it intersects θ = 0, or the (x, y) plane. They can be found by referring to the known
solution with initial condition x = x0, y = y0 at t = 0:

x = (−5+ 2x0 + y0)e
−t + (4− x0 − y0)e

−2t + cos t + 3 sin t .

y = −(−5+ 2x0 + y0)e
−t − 2(4− x0 − y0)e

−2t − sin t + 3 cos t .

The sequence starting at (x0, y0) in the plane θ = 0 is given by

xn = (−5+ 2x0 + y0)e
−2nπ + (4− x0 − y0)e

−4nπ + 1,

yn = −(−5+ 2x0 + y0)e
−2nπ − 2(4− x0 − y0)e

−4nπ + 3

for n=1, 2, . . . . As n→∞, (xn, yn)→ (1, 3) irrespective of the initial coordinates (x0, y0). This is the fixed point
of the Poincaré sequence of the limiting periodic solution in which t = 0, 2π , 4π , . . . , as shown in Fig. 13.7. It
would not turn out to be the same point, (1, 3), if we had considered an initial time t = t0 having a different
value from zero or a multiple of 2π , but it might not be necessary to explore all these possibilities since the
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Figure 13.7 Fixed point at (1, 3) of the periodic solution of ẍ+ 3ẋ+ 2x = 10 cos t at t = 0, 2π , . . . . The circle is the
stable limit cycle x = cos t + 3 sin t , y = − sin t + 3 cos t . Starting from (x0, y0), the sequence follows on approaching
spiral path.

existence of a single point, independent of x0, y0, suggests the possibility of either an equilibrium point, or a
closed path of period 2π or an integral multiple of 2π . In the latter case it provides an initial condition for
calculating the whole cycle. �
Example 13.3 Find the Poincaré sequence having constant time interval 2π for the solution of

64ẍ + 16ẋ + 65x = 64 cos t

which starts from x(0) = 0, ẋ(0) = 0. Calculate also the coordinates of the resulting fixed point of the periodic
solution.

The roots of the characteristic equation of the differential equation are p1 = −1
8 + i and p2 = −1

8 − i. To find
the forced periodic response let

x = A cos t + B sin t .

By direct substitution it follows that A = 64/257 and B = 1024/257. The general solution is therefore

x = e−t/8(C cos t +D sin t)+ (64 cos t + 1024 sin t)/257.

The initial conditions imply that C = −64/257 and D = −1032/257. The sequence of first returns of this
solution is given by

xn = A(1− e− 1
4nπ ), yn = B(1− e− 1

4nπ ), n = 1, 2, . . . .

Figure 13.8 shows the sequence of first returns from the origin. As n → ∞ the sequence of dots approaches
the fixed point at (A,B). This is a point on the phase path corresponding to the forced periodic response
A cos t + B sin t . �

Exercise 13.2
Find the general solution of ẍ + 3ẋ + 2x = 10 cos t . If x(0) = ẋ(0) = 0, find the sequence
of 2π returns in the (x, y) plane and the limits of the sequence.
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( (,

Figure 13.8 First returns for 64ẍ + 16ẋ + 65x = 64 cos t , ẋ = y taken at t = 0, 2π , . . . starting at (0, 0).

13.3 Subharmonics and period doubling

As we have seen, the appearance of fixed points is closely connected with periodic solutions.
However, some solutions have fixed points arising from some sections but not others. For
example, a particular solution of

ẍ − x = 2e−t (cos 2t − sin 2t)

is given by

x = e−t sin2 t , y = ẋ = e−t (− sin2 t + 2 sin t cos t).

Then x(t), y(t) are zero at t =0, 2π , . . . , so that x=0, y=0 is a fixed point, but x(t) and y(t)

are not periodic in t , nor is (0, 0) an equilibrium point. The Poincaré sequence will only indicate
a periodic solution with certainty if a fixed point exists for all sections.
When the forcing term has period T , a sequence with interval T may detect possible solutions

of period T , 2T , . . . Some sequences for possible periodic solutions of systems with 2π forcing
period are discussed below and shown in Fig. 13.9. The Poincaré sequences shown on the
phase paths as dots consist of the one or more points with coordinates (x(t), ẋ(t)) taken at
t = 0, 2π , 4π , . . .

The linear equation

ẍ + 1
4x = 3

4 cos t , ẋ = y

has a particular solution x = cos t which has period 2π . The time solution and phase path are
shown in Fig. 13.9(a) with fixed point at (1, 0) in the (x, y) plane. The equation also has the
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solution

x = 0.5 sin 1
2 t − 0.3 cos 1

2 t + cos t ,

which is a subharmonic of period 4π which results in a double-loop phase path, and two fixed
points, at (0.7, 0.25) and (1.3,−0.25), between which the first returns alternate (Fig. 13.9(b)).
The differential equation is undamped so that there can be no converging Poincaré sequences
(all solutions are periodic). The alternating returns will only be revealed if the initial point is
chosen to be one of them. This example, shown in Fig. 13.9(b), displays period doubling or a
period-2 map.
A solution such as

x = −0.4 sin 1
3 t + 0.8 sin t − 0.4 cos t

has a subharmonic of period 6π , which leads to the triple-loop phase path shown in Fig. 13.9(c).
The Poincaré map at interval 2aπ alternates between three fixed points, and is called a period-
3map.

(a)

(b)

(c)

(d)

12p

12p

12p

12p

1

1

1

4
3

2 2

Figure 13.9 Poincaré maps at t = 0, 2π , . . . for a sample of signals. (a) x = cos t which has one fixed point; (b)
x = −0.3 cos 1

2 t+0.5 sin 1
2 t+cos t which has a subharmonic of period 4π resulting in two fixed points, characteristic

of period-2 oscillations; (c) x = −0.4 sin 1
3 t + 0.8 sin t − 0.4 cos t showing the Poincaré map of a period-3 oscillation;

(d) x = cos t + cosπt , which is the sum of two oscillations, with frequency ratio irrational, showing that the returns
(250 displayed) of the Poincaré map accumulate on the ellipse shown separately.
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The solution shown in Fig. 13.9(d) is that for

x = cos(πt)+ cos t ,

which is the sum of two periodic functions, the ratio of whose frequencies is not a rational
number. The phase paths of this quasi-periodic solution fill an oval-shaped region, and the first
returns lie on an ellipse.
When the exact solution to the differential equation is not obtainable, as will be the case in

all instances of significance, computation must take the place of an algebraic derivation of the
Poincaré map. This is fairly easy to compute and display graphically—a step-by-step solution
of the equations is organized to print out a result at the end of every period, and the points are
normally displayed on continuous linking curves with the direction of movement indicated. The
technique is sometimes referred to as the stroboscopic method since the representative point is,
as it were, illuminated once in every cycle (see Minorsky 1962).
In seeking stable periodic solutions via the approach to fixed points of a Poincaré map it is

advantageous to be able to start the calculation at an initial point as close as possible to the
closed cycle in the x, y plane which is sought. This is especially true if the evolution of periodic
solutions as a parameter varies is being traced, as in Section 13.2, since otherwise spurious
connections may be identified. For this purpose any of the approximate methods for finding
periodic solutions described in the earlier chapters may be used. In the following Example we
indicate the use of the van der Pol plane for this purpose.

Example 13.4 Find approximate positions for the fixed points of the Poincaré map of time interval 2π/ω for
the Duffing equation

ẍ + kẋ + x + βx3 = � cosωt (k > 0,β < 0). (13.7)

In Section 7.2 it is shown that there exists a stable oscillation of the approximate form

x(t) = a0 cosωt + b0 sinωt (13.8)

where a0 and b0 are obtained by solving the equations

b{ω2 − 1− 3
4β(a

2 + b2)} + kωa = 0, (13.9)

a{ω2 − 1− 3
4β(a

2 + b2)} − kωb = �. (13.10)

On the phase plane with y = ẋ the approximate solution (13.8) traces out an ellipse with its centre at the
origin. The true path should be a closed curve close to this ellipse. If we solve (13.9), (13.10) for a0 and b0
numerically and substitute the values into (13.8), we may then use any point on the ellipse as a starting point
for an exact Poincaré map—say the point where t =0:

x0 = a0, y0 = ωb0.

This leads comparatively quickly to a good estimate for the position of a fixed point, which will lie somewhere
on the true oscillation and serve as an initial condition for plotting the complete cycle in the (x, y)-plane. Similar
techniques were used to assist in obtaining the later figures in this chapter. �
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Exercise 13.3
Verify that the equation

ẍ − 24δ−3(2− x2 − ẋ2)ẋ + 8
9 ẋ + 1

9x = −16
9 sin t

has the 2π -periodic solution x = cos t+sin t for all δ 	= 0. Show that this solution co-exists
with a subharmonic x = δ cos 1

3 t if δ = −3 or δ = 3(−1 ±√3). Sketch their phase paths
in the (x, y) plane, where y = ẋ, and their fixed points of period 2π .
Using a computer investigation show that if δ=−3, then x= cos t + sin t is unstable, but
it has a neighbouring stable 2π -periodic solution.

13.4 Homoclinic paths, strange attractors and chaos

Studies of computer-generated solutions of forced second-order equations such as Duffing’s
equation and three-dimensional autonomous systems have revealed unexpectedly complex solu-
tion structures arising from what might appear to be relatively simple nonlinear differential
equations. The system

ẋ = a(y − x), ẏ = bx − y − xz, ż = xy − cz (13.11)

(a, b, c constant) was first investigated by Lorenz (1963). The Lorenz equations, as they are now
known, arose in a model for convective motion in the atmosphere. The solutions calculated by
computer display very complex behaviour for a wide range of parameter values. By complex
behaviour we include seemingly random or ‘chaotic’ output from the system although the
solutions remain deterministic in terms of their initial values and there is no ‘random’ input.
These phenomena arise specifically with third- and higher-order equations, or in forced second-
order systems (they have no obvious counterpart in autonomous second-order systems). The
Lorenz equations and similar models have been put forward as explanations of turbulent flow
in fluid mechanics. However, certain aspects of the long-run behaviour of such systems show
systematic characteristics with a degree of independence of initial conditions and parameter
values, which is opening the way to a rational study even of their ‘chaotic’ behaviour.
We shall look in some detail at the Rössler system (see Nicolis 1995)

ẋ = −y − z, ẏ = x + ay, ż = bx − cz+ xz (a, b, c > 0),

which is simpler than the Lorenz equations in that it has just one nonlinear quadratic term.
The system has equilibrium points where

−y − z = 0, x + ay = 0, bx − cz+ xz = 0.

Obviously the origin is always an equilibrium point, and there is a second one at

x = x1 = c − ab, y = y1 = −(c − ab)/a, z = z1 = (c − ab)/a. (13.12)
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In this three-parameter system, we shall look at the special case in which a=0.4 and b=0.3 but
allow the parameter c to vary (the values for a and b were chosen after numerical investigations
indicated domains in the parameter space (a, b, c) where interesting chaotic phenomena might
occur). The two equilibrium points coincide when c = ab: we shall assume that c > ab. For
fixed a and b, the equilibrium points move out on a straight line through the origin, given
parametrically by (13.12), as c increases from the value ab. The linear approximation of the
Rössler system near the origin is ẋ = Ax, where

A =
⎡
⎣0 −1 −1
1 a 0
b 0 −c

⎤
⎦ .

The eigenvalues of A satisfy the cubic

λ3 + (c − a)λ2 + (b + 1− ac)λ+ c − ab = 0

or, with a = 0.4 and b = 0.3,

f (λ, c) ≡ λ3 + (c − 0.4)λ2 − (0.4c − 1.3)λ+ (c − 0.12) = 0.

It follows that f (0, c) = c − 0.12 > 0 for c > ab = 0.12. Since f (λ, c) → ±∞ as λ → ±∞,
there is at least one real negative eigenvalue. The other eigenvalues are complex with positive
real part. This equilibrium point is called a saddle-spiral.
In the neighbourhood of the other equilibrium point, at (x1, y1, z1) say, let x = x1 + x′, y =

y1 + y′, z = z1 + z′. Then the linear approximation at (x1, y1, z1) is ẋ
′ = Bx′ where

B =
⎡
⎣ 0 −1 −1

1 a 0
b + z1 0 −c + x1

⎤
⎦ .

The eigenvalues of B satisfy (with a = 0.4, b = 0.3)

g(λ, c) ≡ λ3 − 0.28λ2 + (0.952+ 2.5c)λ− (c − 0.12) = 0.

The derivative with respect to λ is

∂g(λ, c)
∂λ

= 3λ2 − 0.56λ+ (0.952+ 2.5c).

For c >ab=0.12, one root of g(λ, c) = 0 is real and positive (since g(0, c)<0), and two
roots are complex (since ∂g(λ, c)/∂λ=0 has no real solutions for λ) with negative real part
if c <1.287 and positive real part if c >1.287 approximately. Again the equilibrium point is
always unstable. Hence for all c >0.12, both equilibrium points are unstable.
There exist homoclinic paths which spiral out from the origin lying approximately on the

plane unstable manifold associated with the linear approximation at the origin. The direction
of the normal to this plane will be determined by the two complex eigenvalues at the origin.
Eventually the solution starts to turn in the z direction as the nonlinear term begins to take
effect. It is then possible for this path to return to into the origin along its stable manifold. There
also exist near-homoclinic orbits as shown in Fig. 13.10 for a = 0.4, b = 0.3 and c = 4.449.
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Figure 13.10 A near-homoclinic path for the Rössler attractor ẋ = −y− z, ẏ = x+ay, ż = bx− cz+xz for a = 0.4,
b = 0.3, c = 4.449.

Figure 13.11 The Rössler attractor ẋ = −y − z, ẏ = x + ay, ż = bx − cz + xz for a = 0.4, b = 0.3, c = 4.449; a
long-time solution.

Such paths are drawn towards O by the stabilizing effect of the stable manifold, and then
spun out again by the influence of the unstable manifold. The result is a solution which seems
to wander in a non-repeating manner in some bounded attracting set in R

3: see Fig. 13.11
which shows a long-time solution for the same parameter values of a, b, and c. How could this
have arisen?
Whilst there are no stable equilibrium points for this Rössler system, it is possible that there

could exist a stable limit cycle which could attract all solutions. For c=1.4, a simple numer-
ical search reveals a stable periodic solution which is shown in Fig. 13.12(a). If c increases
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Figure 13.12 Rössler attractor ẋ = −y − z, ẏ = x + ay, ż = bx − cz + xz for a = 0.4, b = 0.3 and (a) c = 1.4;
(b) c = 2, period-2 solution; (c) c = 2.63, period-4 solution.

to c=2, this solution bifurcates at an intermediate value of c into a solution which circuits
the origin twice when its phase path is projected onto the (x, y) plane (see Fig. 13.12(b)). A
further increase to c=2.63 shows that a further bifurcation has taken place which results in
a projected path which circuits the origin four times, giving a period-4 solution as shown in
Fig. 13.12(c). The process continues with further period doubling to 8, 16, 32, . . . circuits.
The parameter sequence converges to a value of c beyond which all these periods are present,
and we have a chaotic attracting set as shown in Fig. 13.11 for c=4.449. This is known as
a strange attractor which has developed parametrically through a process of period doubling.
At each (pitchfork) bifurcation, an unstable periodic orbit will always remain so that the final
attractor must include an unbounded set of unstable limit cycles.
Of course this description does not really indicate why these limit cycles become unstable

and bifurcate. If we look at the period doubling development from c=1.4 (Fig. 13.12(a)), the
closed curve is close to the tangent plane to the unstable mainifold of the origin. As c increases
parts of path become closer to the origin whilst a loop grows in the z direction. In other words
the periodic solution becomes closer to the destablizing effect of the homoclinic paths which
appear as c increases.

13.5 The Duffing oscillator

Phenomena such as period doubling and chaos cannot arise from plane autonomous systems:
autonomous systems must be nonlinear and of third-order or above for the possibility of such
behaviour, as with the Rössler oscillator in the previous section. However, forced plane systems
can show chaotic responses. Such a system can be viewed as a third-order system simply by
introducing a new variable z. Thus the forced system

ẋ = X(x, y, t), ẏ = Y (x, y, t)

could be replaced by the third-order autonomous system

ẋ = X(x, y, z), ẏ = Y (x, y, z), ż = 1, z(0) = 0.
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In most practical applications the forcing is periodic in time, and the main interest is in har-
monic and subharmonic responses. For such systems it is convenient to compute the Poincaré
sequence at the periodic times of the forcing period to detect period doubling and chaos
as we explained in Section 13.1. We shall pursue this approach rather than the third-order
autonomous analogy.
An equation whose solutions can exhibit some of these interesting phenomena is the Duffing

equation

ẍ + kẋ − x + x3 = � cosωt . (13.13)

Note that this version has negative linear and positive cubic restoring terms. The corresponding
autonomous system (� = 0) has equilibrium points at x = ±1, (stable spirals when 0 < k <

2
√
2; stable nodes when k > 2

√
2), and at x = 0 (a saddle point). As � increases from zero we

might expect stable forced periodic solutions to develop from x = ±1 rather than from x = 0
as was the case in Section 7.2.
With this in view we shall look for shifted 2π/ω-periodic solutions of the form

x = c(t)+ a(t) cosωt + b(t) sinωt . (13.14)

Aswith earlier applications of harmonic balancewe assume that the amplitudes a(t) and b(t) are
‘slowly varying’, so that in the subsequent working their second derivatives can be neglected
(it will shortly be found that this approximation would not be appropriate for c(t)). Also,
harmonics of order higher than the first will be neglected in the approximations as before.
With these assumptions, when (13.14) is substituted into (13.13) and the coefficients of cosωt
and sinωt , and the constant term, are matched on either side of (13.13) we find that

c̈ + kċ = −c
(
c2 − 1+ 3

2r
2
)
, (13.15)

kȧ + 2ωḃ = −a
(
−1− ω2 + 3c2 + 3

4r
2
)
− kωb + �, (13.16)

−2ωȧ + kḃ = −b
(
−1− ω2 + 3c2 + 3

4r
2
)
+ kωa, (13.17)

where r2 = a2 + b2. If we further put

ċ = d, (13.18)

then (13.15) becomes

ḋ = −c
(
c2 − 1+ 3

2r
2
)
− kd. (13.19)

Paths defined by the system (13.16)–(13.19) lie in a van der Pol 4-space (a, b, c, d).
The equilibrium points of the system, which correspond to steady oscillations, are obtained

by equating the right-hand sides of (13.16) to (13.19) to zero.
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It follows that d = 0 and

c
(
c2 − 1+ 3

2r
2
)
= 0, (13.20)

a
(
−1− ω2 + 3c2 + 3

4r
2
)
+ kωb = �, (13.21)

b
(
−1− ω2 + 3c2 + 3

4r
2
)
− kωa = 0. (13.22)

By squaring and adding (13.21) and (13.22) we find that r2 satisfies the cubic equation

r2
[(
−1− ω2 + 3c2 + 3

4r
2
)2 + k2ω2

]
= �2. (13.23)

There are two sets of solutions of (13.23) to be considered:

TYPE I c = 0, r2
[(
−1− ω2 + 3

4r
2
)2 + k2ω2

]
= �2; (13.24)

TYPE II For r ≤ √(2/3) only:

c2 = 1− 3
2r

2, r2
[(

2− ω2 − 15
4 r2
)2 + k2ω2

]
= �2. (13.25)

Figure 13.13 shows plots of r against |�| using (13.24) (the curve C1) and (13.25) (the curve
C2). The results are plotted for the case k = 0.3, ω = 1.2, these values being chosen to display
particularly interesting properties of the solutions. The best choice for the parameters is a
matter of experiment with computed solutions and graphic displays, but for this value of k, the

C

C

C

Figure 13.13 Curves showing the response amplitude r in terms of the forcing amplitude �, for k=0.3 and ω=1.2,
plotted from eqns (13.24) and (13.25). Type I solution is shown as C1, and Type II solution is shown as C2. Linear
analysis indicates the stability or instability of the periodic solutions. Remember that whilst C2 shows the response
amplitude, the oscillation, limit cycle is centred about x = c.
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damping coefficient, the phenomena to be discussed occur over a wide range of frequency ω

and amplitude �.

TYPE I (eqn (13.24)) Let a = a0, b = b0, c = 0, d = 0 be an equilibrium point of (13.16)–
(13.19). Let a = a0+ξ , b = b0+η. Then for small |ξ |, |η|, |c|, |d|, the linearized approximations
of (13.16)–(13.19) are

kξ̇ + 2ωη̇ + Aξ + Bη = 0, (13.26)

−2ωξ̇ + kη̇ + Cξ +Dη = 0; (13.27)

ċ = d (13.28)

ḋ = c(1− 3
2r

2
0 )− kd (13.29)

where r20 = a20 + b20 and

A = −1− ω2 + 9
4a

2
0 + 3

4b
2
0, B = kω + 3

2a0b0, (13.30)

C = −kω + 3
2a0b0, D = −1− ω2 + 3

4a
2
0 + 9

4b
2
0. (13.31)

The equations for ξ , η, c, d uncouple, with ξ , η determined by (13.26) and (13.27), and c and
d by (13.28) and (13.29).
Given that k > 0, (13.28) and (13.29) have asymptotically stable solutions if and only if

r20 > 2
3 .

(13.26) and (13.27) can be written in the form

ξ̇ = Pξ ,
where ξ = [ξ , η]T and

P = 1
k2 + 4ω2

[−Ak + 2ωC −Bk + 2ωD
−Ck − 2ωA −Dk − 2ωB

]
.

The eigenvalues of P have negative real part, which implies asymptotic stability, if in the usual
notation, (see (2.62))

p = 2ω(C − B)− k(A+D) < 0, (13.32)

and

q = (−Ak + 2ωC)(−Dk − 2ωB)− (−Bk + 2ωD)(−Ck − 2ωA)

= −(4ω2 + k2)(BC − AD) > 0 (13.33)

(see Fig. 2.8). Using (13.30) and (13.31), inequalities (13.32) and (13.33) become

p = k(2− 2ω2 − 3r20 ) < 0 or r20 > max[23 (1− ω2)], (13.34)
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and

q = 1
16 (4ω

2 + k2)[27r40 − 48(1+ ω2)r20 + 16(1+ ω2)2] > 0,

or

[r20 − 24
27 (1+ ω2)]2 + 16

81 [3k2ω2 − (1+ ω2)2] > 0. (13.35)

These conditions are necessary and sufficient for asymptotic stability. For the case of Fig. 13.13,
where k = 0.3, ω = 1.2, conditions (13.34) and (13.35) are satisfied if any d only if

r0 > 1.794 or 0.816 < r0 < 1.058.

The boundaries are shown in Fig. 13.13. It can also be shown that these critical values occur
where the (�, r0)-curve turns over and a sudden change happens.

TYPE II (eqn (13.25)) The centre of oscillation is not at the origin, which complicates the
analysis.
The steps in the stability calculation are as follows. With c2 = 1− 3

2r
2 and a selected value

for �, we solve (13.21) and (13.32) numerically for a0 and b0. Equations (13.16)–(13.19) are
linearized in the neighbourhood of

a = a0, b = b0, c = c0 = √[1− 3
2 (a

2
0 + b20)], d = d0 = 0. (13.36)

Let their perturbations be respectively a′, b′, c′ and d ′. After some algebra, it can be shown that
they satisfy

u̇ =Qu,
where u = [a′, b′, c′, d ′],

Q =

⎡
⎢⎢⎣

q11 q12 q13 0
q21 q22 q23 0
0 0 0 1

−3a0c0 −3b0c0 −2c20 −k

⎤
⎥⎥⎦ , (13.37)

and

q11 = [(−2− ω2 + 15
4 r20 − 3

2a
2
0)k + 3a0b0ω]/(k2 + 4ω2)

q12 = [(4− k2 − 2ω2 − 15
2 r20 + 3b20)ω − 3

2a0b0k]/(k2 + 4ω2)

q13 = 6c0(2ωb0 − a0k)/(k
2 + 4ω2)

q21 = [(−4+ k2 + 2ω2 + 15
2 r20 − 3a20)ω − 3

2a0b0k]/(k2 + 4ω2)

q22 = [(−2− ω2 + 15
4 r20 − 3

2b
2
0)k − 3a0b0ω]/(k2 + 4ω2)

q23 = 6c0(−2ωa0 − b0k)/(k
2 + 4ω2).

The eigenvalues ofQ can be computed as follows. The parameters ω, k and r0 are specified;
� (assumed positive) is then calculated from (13.25); a0, b0 and c0 are then given by (13.36);
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finally the eigenvalues of Q, of which there will be four, can be computed. Stability can then
be determined by the signs of the real parts of the eigenvalues. Boundaries of stability occur
where the eigenvalues where two eigenvalues have zero real parts and two have negative real
parts. This can be achieved numerically by trying a sequence of trial values for r0 (for the same
ω and k) until zeros are approximated to within an acceptable error.
For comparison with Fig. 13.13, we select the same parameter values k=0.3 and ω=1.2 in

the calculation of eigenvalues. For r0≈0.526, computations give

� ≈ 0.314, a0 ≈ −0.419, b0 ≈ 0.317,

and the eigenvalues of Q (all complex)

{−0.276± 0.58i, 0± 0.527}

to 3 decimal places. For γ < 0.314, approximately, at least one eigenvalue has positive real
part, which indicates instability on the curve C2 shown in Fig. 13.13.
The remaining solutions on C2 for r0<

√
2
3 are unstable according to this method. However

at �≈0.65, a stable solution of amplitude r0≈1.79 appears on the curve C2 in Fig. 13.13. This
analysis using the van der Pol space indicates stable 2π -periodic solutions for 0<�<0.314,
and for �>0.65, approximately for the specified k and ω. Behaviour in the ‘stability gap’ is
complicated as we shall illustrate below.
A numerical search of the Duffing equation (13.13) for periodic solutions confirms the exis-

tence of stable 2π/ω-periodic solutions for 0<�<0.27 approximately, compared with the
theoretical estimate of �≈0.31 just obtained. A computed solution for � = 0.2 for k=0.3 and
ω=1.2 is shown in Fig. 13.14(a) together with its phase path and the corresponding Poincaré
map for the times t =0, 2π , . . . . For �=0.28, in the unstable interval, a stable subharmonic
of period 4π/ω exists and is shown in Fig. l3.14(b). The two-point Poincaré map is shown on
the right. A further increase in � to 0.29 reveals a stable periodic subharmonic of period 8π/ω,
a period-4 solution (see Fig. 13.14(c)). This period doubling cascade is a rapidly accelerating
sequence of bifurcations which by �=0.3, approximately, has doubled to infinity leaving an
‘oscillation’ without any obvious periodic behaviour. The solution is bounded but not periodic.
The Poincaré map becomes a bounded set of returns without any obvious repetitions, and is
another example of a strange attractor. A sample solution and corresponding phase diagram
are shown in Fig. 13.15. Any initial transient behaviour was eliminated before the solution
was plotted.
Between �=0.3 and 0.36 no obvious regularity is observable: the solution plots reveal wan-

dering solutions of an irregularly oscillating type without any uniform pattern. Such solutions
are said to display chaotic behaviour. Close to �=0.37, however, stable solutions of period 5
appear (see Fig. 13.16(a))—these are centred on x=0. Another chaotic regime follows between
�=0.37 and about 0.65 (a segment of a solution plot is shown in Fig. 13.15 for �=0.5). In
an interval around �=0.65 more stable period-2 solution appear, centred somewhere close
to x=0 but of a very unsymmetrical type. At �≈0.73 (theory predicts �≈0.65), a stable
period-2 solution is now available as shown in Fig. 13.16(c) (see also the stability diagram,
Fig. 13.13).
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(b)

(c)
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Figure 13.14 Time solutions, phase paths, and Poincaré maps of the Duffing oscillator for k=0.3 and ω=1.2:
(a) �=0.20 (period-1); (b) �=0.28 (period-2); (c) �=0.29 (period-4).

60p

� 0.51.5

–1.5

Figure 13.15 Sample chaotic response for k = 0.3,ω = 1.2 and � = 0.5: the bounded time solution and
corresponding phase path are shown.

The search for periodicities can be assisted by plotting Poincaré maps appropriate to the
period being looked for: 2π/ω for the forcing frequency, 4π/ω for period doubling, and so
on. Periodic solutions of period 2π/ω produce maps in the (x, y)-plane having a single fixed
point, period doubling two fixed points, etc. (see Fig. 13.9). If we apply the same procedure
to the ‘chaotic’ output, say for �=0.5, we find that after all there does appear to be some
degree of underlying structure. Figure 13.17 shows a Poincaré map for this case. The sequence
shown is for t = 2πn (n = 0, 1, 2, . . .) and nearly 2000 points are displayed. Not all the
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� 0.37

� 0.65

� 0.73

20p�v

20p�v

20p�v

Figure 13.16 Time solutions and phase diagrams for Duffing’s equation (13.8) for k = 0.3 and ω = 1.2 in the cases:
(a) � = 0.37, a large amplitude, period-5 response; (b) � = 0.65, a large amplitude, period-2 response, on of a
symmetric pair; (c) � = 0.73, a large amplitude, period-1 response. The Poincaré sections for t = 0, 2π , . . . are shown
by the dots.

O

Figure 13.17 Poincaré returns for Duffing’s equation (13.8) for k=0.3, ω=1.2 and �=0.5: 2000 returns are shown
for the section t =0, 2π/ω, 4π/ω, . . . .
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points calculated are plotted—working from a given initial condition the earlier points are
subject to a form of transient behaviour, and not until they find their way into the set dis-
played are they recorded. There are no fixed points observed in the chaotic regime: instead
the set plays a similar role. The set is to a large extent independent of the initial values,
and has the property that any point once in the set generates a sequence of first returns all
of which lie in the set: it is another example of a strange attractor. Computer studies point
also to the fact that, given any point in the attracting set, some future first return will come
arbitrarily close to it. The shape of the strange attractor depends upon which sections are
chosen: for example the returns for the sections t = (2n + 1)π/ω (n = 0, 1, 2, . . .) will fill
a differently shaped region when projected on to the (x, y) plane. In the x, y, t space the
solutions (after the disappearance of ‘transients’ as above) will remain in a tube in the direction
of the t axis. Alternatively, periodicity of the forcing term can used to design a space in which
the t axis is turned so that the points x=0, y=0, and t =2nπ/ω coincide with the origin (0,
0, 0) to give a toroidal space looking like that shown in Fig. 13.5. The Poincaré sequence then
becomes simply a cross section of the torus. The three-dimensional diagram is difficult to draw
unless some projection such as that given in Section 3.3 is used.
In the Duffing oscillator, as � increases from zero to about 0.27 (for the parameter values

k=0.3, ω=1.2), the amplitude of the response increases, tending to carry the representative
point in the phase plane into the neighbourhood of the unstable limit cycle growing from the
origin (Type I above). It seems to be this interaction between the growing incursion of the stable
limit cycle into the domain of the unstable limit cycle which destroys the stability of the former
which shows itself as period doubling.
As we shall see in Section 13.6, homoclinic bifurcation is also a destabilizing influence for

this Duffing oscillator.
The period-doubling sequence of bifurcations of the periodic solution emerging from the

equilibrium point (1,0) as � increases from zero, can be represented by Poincaré fixed points
in the (x, y) plane. Figure 13.18(a) shows a schematic view of these returns (not to scale).
At �≈0.27 a pitchfork bifurcation occurs resulting in a stable period-2 subharmonic, whilst
the original harmonic becomes unstable. The Poincaré map reveals the pitchfork structure. At
�≈0.28 this subharmonic suffers a further pitchfork bifurcation to a period-4 solution, and

S

1 2 3

Figure 13.18 Track of the fixed points of the periodic solution in x >0 as� increases from zero. (a) The first pitchfork
bifurcation takes place at �≈0.27. The diagram is a representation and not an accurate figure near the bifurcations.
(b) Scheme showing a period doubling cascade through a sequence of pitchfork bifurcations.
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so on. If these period doubling bifurcations occur at �=�1,�2,�3, . . . , then it is known the
progression of this sequence obeys a universal law

lim
k→∞

�k − �k−1
�k+1 − �k

= δ = 4.66292 . . . .

The constant δ is a universal constant for period doubling sequences, and is known as the
Feigenbaum constant (see Nicolis 1995 and Addison 1997 for more details).
A representation of a sequence of pitchfork bifurcations is shown in Fig. 13.18(b). The

period doubling cascade arises from bifurcations of a discrete system consisting of Poincaré
first returns. A simple model of a discrete system which exhibits a period doubling cascade is
the logistic map which will be described in the next section.

13.6 A discrete system: the logistic difference equation

Probably the simplest nonlinear difference equation is the logistic equation defined by

un+1 = αun(1− un).

or, by putting f (u) = αu(1− u),

un+1 = f (un), n = 0, 1, 2, . . .

Fixed points of a difference equation occur where un= u say, for all n, that is, where
f (u) = u, or

u = αu(1− u) (α > 0)

for the logistic equation. Thus there are two fixed points, at u=0 and at u= (α−1)/α. Let
v= f (u). Then in the (u, v) plane equilibrium occurs at (0, 0) and ((α−1)/α, (α−1)/α), at
the intersections of the line v= u and the parabola v= f (u)=αu(1− u), namely the origin and
the point P in Fig. 13.19. This figure is drawn in the case α=2.8. A cobweb construction can

v v

v ( (

Figure 13.19 Cobweb construction showing the stability of the fixed point P for α = 2.8.
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indicate the stability of P . Suppose that u= u0 initially. Then u1=αu0(1− u0), and value of
u1 can be constructed by drawing a line vertically to meet v= f (u), and then a horizontal line
to v= u as shown in Fig. 13.19. The value of u there is u1. The process can be repeated to find
u1, u2, . . . . It seems evident graphically that P will be stable since the cobweb converges to P ,
where u= (α−1)/α=9/14 for α=2.8.

The stability of P depends critically on the slope of the tangent to v= f (u) at P . Its slope
there is

f ′((α − 1)/α) = 2− α.

It can be proved that if this slope is greater than −1, then the solution is stable, and
un → (α − 1)/α as n → ∞. If the slope is less than −1 then the cobweb will spiral away
from the fixed point. The critical slope separating stability and instability is

f ′((α − 1)/α) = 2− α = −1, that is, where α = 3.

If α >3 (the unstable interval), what happens to the iterations of the logistic equation?
Consider the curve

v = f (f (u)) = α[αu(1− u)] [1− αu(1− u)] = α2u(1− u)[1− αu(1− u)].
The line v = u intersects this curve where

u = α2u(1− u)[1− αu(1− u)].
Hence the fixed points of v = f (f (u)) occur where

u = 0, or [αu2 − (α − 1)] [α2u2 − α(1+ α)u+ (1+ α)] = 0.

Note that the equation u= f (f (u)) automatically includes the solutions of u= f (u). Hence the
second equation always has the solution u= (α−1)/α, and two further real solutions if α >3.
Figure 13.20(a) shows the curve v= f (f (u)) for the critical case α=3 and for α=3.4. For
α=3.4 let the points of intersection with the line v= u beO, A, B, C as shown in Fig. 13.20(b).
Since

uA = f (f (uA)), uB = f (f (uB)),

it is possible to insert a square with diagonal AC such that its other corners lie on v = f (u).
This follows since the pair of equations above always has the solution

uB = f (uA), uA = f (uB).

The existence of the square indicates the presence of a period-2 solution of the logistic
equation such that un alternates between uA and uB , where uA and uB are the roots of

α2u2 − α(1+ α)u+ (1+ α) = 0
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Figure 13.20 (a) Graph of v = f (f (u)) for the critical case α = 3. (b) Graph of v = f (f (u)) for α = 3.4 showing
the period-2 cycle between A and B.

for α > 3. At α = 3.4, the period-2 solution is stable since the slopes at uA and uB to the curve
u = f (f (u)) both exceed −1. The value of α at which the critical slope of −1 occurs can be
found as follows. The slope is −1 if

d
du

f (f (u)) = α2 − 2α2(1+ α)u+ 6α3u2 − 4α3u3 = −1, (13.38)

where u satisfies

α2u2 − α(1+ α)u+ (1+ α) = 0. (13.39)

Multiply (13.39) by 4αu and eliminate u3 in (13.38), which results in

u2 − α + 1
α

u+ α2 + 1
2α2(α − 2)

= 0, (13.40)

whilst (13.39) can be written as

u2 − α + 1
α

u+ α + 1
α2 = 0. (13.41)

Finally, eliminate u between (13.40) and (13.41) so that α must satisfy

α2 − 2α − 5 = 0.

Since α > 3, the required root is α = 1+√6 = 3.449 . . . . Hence there exists a stable period-2
solution for 3 < α < 1+√6. Beyond this value we must look at the curve v = f (f (f (f (u)))).
Its graph for α = 3.54 is shown in Fig. 13.21: there are now 8 fixed points on v = u. The
only stable solution on this curve is a period-4 one. The next doubling occurs at α ≈ 3.544.
The interval between period doubling rapidly decreases until a limit is reached at α ≈ 3.570,
beyond which irregular chaotic behaviour occurs.
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v v

f( f( f( f(u))))v

v f(u)

Figure 13.21 The eight fixed points of v= f (f (f (f (u)))) for α=3.54 lying on the intersection with the line v= u.
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Figure 13.22 Period doubling for the logistic equation as α increases from α = 2.8 to α = 4: chaotic intersections
occur beyond α ≈ 3.57.

The development of the attractor is shown in Fig. 13.22 for 2.8 < α < 4. Each bifurcation
is of pitchfork type (Fig. 13.23) in which a doubled stable cycle is created leaving behind an
unstable cycle.

Exercise 13.4
Find the fixed points of the difference equation un+1=αun(1− u3n). Find the value of α for
which the non-zero fixed point becomes unstable.
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a

Figure 13.23 First pitchfork bifurcation for the logistic equation at α = 3.

13.7 Liapunov exponents and difference equations

Whilst Fig. 13.22 indicates numerically period doubling and chaotic behaviour, how can we
identify domains of the parameter α where such phenomena occur? This analysis refers to
difference equations but it gives clues to chaotic behaviour in differential equations which will
be considered later. Consider the difference equation

un+1 = f (un).

Suppose that the initial value is A0: (0, u0) with subsequent iterations A1:(1, u1) where
u1= f (u0), A2:(2, u2) where u2= f (u1), and so on. The sequence of iterates denoted by
A0,A1,A2 . . . , is shown in Fig. 13.24. Consider another initial value M0: (0, u0+ ε) which
is close to u0 assuming that |ε| is small. This maps into M1: (1, f (u0+ ε)). Approximately

f (u0 + ε) ≈ f (u0)+ f ′(u0)ε = u1 + f ′(u0)ε

using the Taylor expansion.
The distance between the initial values (at n=0) is |ε|, and the distance betweenA1 andM1 at

n=1 is approximately |f ′(u0)||ε|. Chaotic behaviour is associated with exponential divergence
of neighbouring solutions. In the expectation of exponential divergence the distances can be
converted to linear growth by taking their logarithms. Thus the increase in the logarithmic
distance between n=0 and n=1 is

ln(|f ′(u0)| |ε|)− ln |ε| = ln |f ′(u0)|.
We should continue this process between successive steps but the exponential growth is numer-
ically unsustainable from a computing position, so instead restart the process at N1: (1, u1+ ε)

(see Fig. 13.24). Also, although the divergence can be locally exponential the system can still
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Figure 13.24 The exact iterated sequence is A0,A1,A2, . . . , where un takes the values u0, u1, u2 . . . . The
approximating sequence is M0M1; N1N2; P2P3: . . . , where A0M0=A1N1=A2P2= · · · ε.

be bounded. The point N1 maps into N2 (say), where

f (u1 + ε) ≈ f (u1)+ f ′(u1)ε = u2 + f ′(u1)ε.

The increase over this step is ln |f ′(u1)|. We now repeat restart this process over each step. The
average of the total growth over N steps is therefore

1
N

N∑
k=0

ln |f ′(uk)|.

The limit of this sum as N → ∞ is known as the Liapunov exponent � of this difference
equation, namely

� = lim
N→∞

1
N

N∑
k=0

ln |f ′(uk)|. (13.42)

which is, incidently, independent of ε. Chaos occurs if the Liapunov exponent � is positive.
Further discussion and examples are given by Moon (1987).
Consider again the logistic equation

un+1 = αun(1− un) (13.43)

discussed in the previous section. In this case f (x) = αx(1− x). Hence eqn (13.42) becomes

�(α) = lim
N→∞

1
N

N∑
k=0

ln |α(1− 2uk)|, (13.44)

in terms of the parameter α. The distribution of Liapunov exponents in terms of the param-
eter α is shown in Fig. 13.25 for 3.3<α<3.9. The positive values indicate chaotic output.
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Figure 13.25 � has been computed from (13.44) for about 1100 values of α between α = 3.3 and α = 3.9 with
N = 250: convergence is slow and the diagram gives the general shape of the Liapunov exponents. For greater
accuracy for a particular value of α, a larger value of N should be chosen.

This figure should be compared with Fig. 13.22. In Fig. 13.25, there are visible ‘negative’
spikes which indicate windows of periodic (non-chaotic) solutions, which are also just visible in
Fig. 13.22.

Example 13.5 Verify that un= sin2(2n) is a solution of un+1=4un(1− un). Find the Liapunov exponent of
this solution. Is the solution chaotic?

Using a simple identity

4un(1− un) = 4 sin2(2n)(1− sin2(2n))

= 4 sin2(2n) cos2(2n) = sin2(2n+1) = un+1,

which verifies the solution.
Using (13.42) with f (u)=4u(1− u), the Liapunov exponent of the solution is

� = lim
N→∞

1
N

N∑
k=0

ln |f ′(uk)| = lim
N→∞

1
N

N∑
k=0

ln |4− 8uk |

= lim
N→∞

1
N

N∑
k=0

ln |4− 8 sin2(2k)|

= lim
N→∞

1
N

N∑
k=0

ln |4 cos(2k+1)|.

Whilst this is the exact formula for the Liapunov exponent, there are computational problems which arise from
the exponential growth of 2k as k increases. It is easier to calculate � by computing the sequence {uk} from an
appropriate initial value u0, and then using (13.44). Thus, if u0 = 0.9, then

u1 = 4u0(1− u0) = 0.36, u2 = 4u1(1− u1) = 0.9216, . . . ,
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which are easy to compute compared with the trigonometric function cos(2k). From (13.44), it follows that
�=0.693 . . . , which is positive indicating chaotic behaviour.

Note that even though the solution un = sin2(2n) is bounded it can still be chaotic: chaos does not necessarily
imply unboundedness. �

13.8 Homoclinic bifurcation for forced systems

We have referred earlier in this chapter (Section 13.3) to the significance of homoclinic bifur-
cation as a possible trigger for chaotic output in certain third-order systems such as the Rössler
attractor. For the autonomous Rössler system homoclinic paths are associated with an equi-
librium point, but they may equally occur for a limit cycle. We shall specifically discuss such
behaviour for systems of the form

ẋ = y, ẏ = f (x, y, t), (13.45)

where f (x, y, t + (2π/ω))= f (x, y, t) for all t : this is a 2π/ω-periodically forced system. Sup-
pose that the system has an unstable limit cyclewith the same period 2π/ω as the forcing period.
Suppose also that, associated with the limit cycle, there are two families of solutions, an attract-
ing one which approaches the limit cycle as t→∞, and a repelling one which approaches
the limit cycle as t→−∞. We take Poincaré sequences with time-steps equal to the forcing
period, namely 2π/ω, since the differential equation (13.45) is unaffected by time translations
t→ t +2πn/ω for any integer n. Consider Poincaré sequences which start from time t =0. Since
the limit cycle has period 2π/ω, the point on it for which t =0 will be fixed point.

Now consider the set of initial points (x(0), y(0)) from which solutions approach the limit
cycle, but only record the points (x(2nπ/ω), y(2nπ/ω)) on the phase paths for n = 1, 2, . . . ,
rather like a series of periodic snapshots. On the (x, y) phase plane the accumulation of these
points appears as a curve which approaches the fixed point on the limit cycle. This resulting
curve of Poincaré sequences is known as a stable manifold (with reference time t = 0) of the
fixed point of the limit cycle. We could start with a different initial time, say, t = t0 which
would lead to a different stable manifold with a different fixed point but still on the limit cycle.
Similarly we can consider an alternative set of initial values (x0, y0) for which the backward

Poincaré sequences (x(2πn/ω), y(2πn/ω)), n=−1,−2, . . . approaches the fixed point on the
limit cycle. This is known as the unstable manifoldwith reference to the initial time t = 0. There
is a strong similarity with saddle points of equilibrium points in the plane for autonomous
systems. The two manifolds appear as two pairs of incoming and outgoing accumulations of
sequences.
Homoclinic bifurcation occurs if the stable and unstable manifolds intersect, since through

any such point of intersection there is a solution which approaches the limit cycle as t → ∞
and as t →−∞. Such solutions are said to be homoclinic to the limit cycle.
Generally for nonlinear systems it is difficult to create examples in which explicit solutions

can be found for the manifolds, but, for some linear systems, it is possible to generate them
which is helpful in understanding their construction.
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Consider the linear equation

ẍ + ẋ − 2x = 10 cos t , ẋ = y. (13.46)

This equation has the general solution

x(t) = Aet + Be−2t − 3 cos t + sin t .

This equation has been chosen so that the characteristic equation has real solutions of different
signs. If x(0) = x0 and y(0) = y0 then, in terms of the initial values,

x(t) = 1
3 (2x0 + y0 + 5)et + 1

3 (x0 − y0 + 4)e−2t − 3 cos t + sin t . (13.47)

The differential equation has an isolated, 2π -periodic solution

x(t) = −3 cos t + sin t ,

with phase path x2+ y2=10, corresponding to the caseA=B =0 in the general solution. From
(13.47) we see that this solution is selected if the initial condition (x0, y0) at t =0 lies on the
intersection of the two straight lines L1 and L2

L1: 2x0 + y0 + 5 = 0, L2: x0 − y0 + 4 = 0,

shown in Fig. 13.26. This is the point Q : (−3, 1) and it is a fixed point on the limit cycle for
the Poincaré sequence t = 0, 2π , 4π , . . .
From (13.47), all solutions starting on L1: (2x0 + y0 + 5 = 0) approach the limit cycle as

t →+∞ (these include solutions starting from both inside and outside the limit cycle). This is
the attracting family of solutions.

B2 A2

A1

B1

8

4 x 0
– y 0

+ 4=0

y

(–3, 1)

Limit cycle

Stable manifold

Unstable manifold

O

–4

–8

–8 –4 4 8

F

2x
0 +

y
0 –

5=
0

Figure 13.26 Stable and unstable manifolds of the fixed point at (−3, 1), from the Poincaré sequences derived from
initial values at t = 0, of ẍ + ẋ − 2x = 10 cos t , ẋ = y.
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Take any point (x0, y0) on L1, the attracting time-solution selected being denoted by
X(t), and consider the Poincaré sequence (xn, yn) for t =0, 2π , 4π , . . . . The first return
(x1, y1)= (X(2π),X′(2π)), is also selected from X(t), and (x1, y1) serves as the initial condi-
tions for subsequent steps. But the differential equation is of the form (13.45) and is unaffected
by the time translation t→ t +2π due to the 2π-periodicity of the forcing term, so eqn (13.47),
with (x1, y1) in place (x0, y0), together with the requirement 2x1+ y1+5=0, also hold good.
Therefore (x1, y1) lies on L1, and similarly for all subsequent members (xn, yn) of the sequence,
so the Poincaré sequence with steps 2π converges to Q. The line L1 is called a stable manifold.
Similarly, the set of points L2: (x0 − y0 + 4 = 0), consisting of initial values of the solutions

that do not approach the limit cycle, andwhose Poincaré sequences (xn, yn) for t = 0, 2π , 4π , . . .
therefore diverge from Q as n→∞, is called the unstable manifold at Q of the limit cycle.
For initial times differing from t = 0 a similar construction leads to fixed points other than

Q on the limit cycle, since (13.47) takes a different form in such cases. Therefore each point on
the limit cycle has a stable and an unstable manifold associated with it.
The stable and unstable manifolds are straight lines, and intersections between them away

from the fixed point are not possible. Homoclinic bifurcation cannot occur for forced linear
systems.

The Duffing oscillator

We shall now look at the stable and unstable manifolds for the model Duffing oscillator.
This a continuation of the analysis started in Section 13.3. Inevitably, the approach is mainly
numerical. For nonlinear systems we need to estimate the position of a fixed point of a limit
cycle, and the local directions of the manifolds at the fixed point. Consider again the Duffing
equation with small damping and forcing

ẍ + εkẋ − x + x3 = εγ cosωt , ẋ = y, 0 < ε  1. (13.48)

We are now interested in the unstable limit cycle about the origin in the phase plane, and the
stable and unstable manifolds associated with points on it. For small |x|, x satisfies

ẍ + εkẋ − x = εγ cosωt . (13.49)

The periodic solution of this equation is

xp = C cosωt +D sinωt ,

where

C = −εγ (1+ ω2)

(1+ ω2)2 + ε2κ2ω2 =
−εγ

1+ ω2 +O(ε3),

D = ε2γ κω

(1+ ω2)2 + ε2κ2ω2 =
ε2γ κω

(1+ ω2)2
+O(ε3),
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which has the fixed point (
−εγ

1+ ω2 ,
ε2γ κω2

(1+ ω2)2

)
,

to order ε3.
The characteristic equation of (13.49) has roots

m1,m2 = 1
2 [−εκ ±

√
(ε2κ2 + 4)],

so that the general solution is

x = Aem1t + Bem2t + xp.

If x(0) = x0 and y(0) = y0, then

A = [(C − x0)m2 − (Dω − y0]/(m2 −m1),

B = [−(C − x0)m2 − (Dω − y0)]/(m2 −m1).

Since m1 > 0 and m2 < 0 for small ε > 0, the local directions of the stable and unstable
manifolds are given by the straight lines

(C − x)m2 − (Dω − y) = 0, −(C − x)m1 − (Dω − y) = 0,

respectively. Hence the slopes of these lines through the fixed point are m2 for the stable
manifold and m1 for the unstable manifold, where

m1,m2 = 1
2 [−εκ ±

√
(ε2κ2 + 4)] ≈ ±1− 1

2εκ,

for small ε. Thus m1 and m2 give the local directions of the stable and unstable manifolds in a
similar manner to that shown in Fig. 13.26.
It is fairly easy to compute the manifolds for the fixed point of the Duffing equation (13.48).

As in the previous work on period doubling we shall assume the parameter values k= εκ =0.3
and ω=1.2 for comparison purposes. As we saw in Section 13.3, period doubling for these
parameter values first starts for increasing amplitude � at �= εκ ≈0.27. However before this
happens homoclinic bifurcation has occurred. We can show just how it develops by computing
the manifolds for selected values of �. Practically this is done by locating the approximate
position of the fixed point and the directions of the manifolds there by the method outlined
above. Let (xc, yc) be the coordinates of the fixed point. Then consider solutions which start
at (xc ± δ, yc ± m1δ) at t =0 where δ is a small positive parameter. The first returns can then
be computed at t = 2π/ω, 4π/ω, . . . . This process is repeated for a selection of incremental
increases in δ, to cover one cycle of the forcing period. This is partly a trial and error method,
but it is helped by the stability of adjacent manifolds. Interpolation of the points generated
by this computation results in the manifold. For the stable manifolds we consider solutions
which start at (xc ± δ, yc ±m2δ) at t =0, but reverse time. This procedure was used to plot the
manifolds shown in Fig. 13.27. These and later figures were first computed by Holmes (1979).
Figure 13.27(a) shows the manifolds for �=0.2: for this value they do not intersect. At

�≈0.256, the manifolds touch at A0 in Fig. 13.27(b). From the periodicity of the Duffing
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(a)

(b)

(c)

,

Figure 13.27 Stable and unstable manifolds for Duffing’s equation with k=0.3, ω=1.2 and (a) �=0.20; (b)
�=0.256; (c) �=0.28.

equation in t , if the manifolds touch at t =0, then they must inevitably touch at t =2nπ/ω
where n= . . . ,−2,−1, 0, 1, 2, . . . , that is, periodically both forward and backward in time.
For example, at t =2π/ω the next tangential contact occurs at A1 shown in Fig. 13.27(b).
Further future contacts will all be in the gap on the stable manifold between the A1 and the
fixed point. The solution which passes through A0 will look something like the curve shown in
Fig. 13.28(a) becoming periodic as t→±∞. Its phase diagram is illustrated in Fig. 13.28(b).
This solution is highly unstable, and the diagrams in Fig. 13.28 are not exact.
For �>0.256 transverse intersections of the manifolds occur: the case �=0.28 is shown in

Fig. 13.27(c). The two transverse intersection pointsA0, B0 return after time 2π/ω to the points
A1, B1, and so on. Part of the complexity which arises can be seen in the further intersection
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Figure 13.28 Representative time solution (a), and phase diagram (b) for the critical case of tangency between the
manifolds.

s

u

Figure 13.29 Scheme of transverse intersections of stable and unstable manifolds.

of the stable manifold with an interior loop of the unstable manifold which will also generate
return points.
The transverse intersections of the manifolds and their returns are difficult to see for the

Duffing oscillator because of the crowding of intersections near the fixed point. Figure 13.29
shows the homoclinic intersections in an expanded representation with the stable and unstable
manifolds denoted by W s and Wu. Consider an intersection at A0. Let the first return forward
in time be A1. By the uniqueness of solutions the point A1 must lie on both Wu and W s.
If this were not the case, there would exist two distinct solutions starting from A0 at time
t =0. The intersections are also ‘orientation preserving’ in the sense that Wu crosses W s in
the same direction at A0 and A1, implying, by continuity, that there must be at least one
further intersection between Wu and W s between A0 and A1. As t → ∞ there must be an
infinite sequence of crossings A1,A2, . . . into the fixed point. Similarly, there must be an infinite
sequence of crossings A−1,A−2, . . . in the reverse direction as shown in Fig. 13.29.
In the shaded region in Fig. 13.29 near the fixed point, the manifolds intersect each other in

further points. To understand the implications of these further transverse intesections, consider
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Figure 13.30 First returns of a strip S along the stable manifold.

a set of initial values S, shaded in Fig. 13.30, and track their successive returns. The region S

contains two transverse intersections of Wu and W s which will remain in successive returns of
S. As S approaches the fixed point it will be compressed alongWu but stretched in the direction
of W s. Consider an initial point P0 in S and on Wu, but not on W s (see Fig. 13.30). Suppose
that this particular point returns at P1 and P2, and also at P3 where it lies on both Wu and W s

as shown. Since P3 is also on W s it must reappear again on W s at P4, and so on. Hence the
‘amplitude’ of the oscillations ofWu must increase as the fixed point is approached. The shaded
images of S will be stretched thinly along Wu, and reappear within S eventually. The process
will be repeated for a subset of points within S. Hence initial points in S become scattered along
a strip close to the unstable manifold. The same thing happens in reverse close to the stable
manifold. This illustrates the chaotic churning effect of homoclinic bifurcation.
The development of the strip in Fig. 13.31which is a magnification of the strip S in Fig. 13.30.

If the strip is further compressed and stretched in Fig. 13.30, then the point P7 in the sequence
must lie on both manifolds as shown in Fig. 13.31(a). The further returns of P0 will then
progress along the stable manifold in a progressively thinner strip as shown in Fig. 13.31(b).
In a similar manner a loop of the stable manifold from prior returns must pass through P0.
Points initially close to P0 but not on a manifold will lie on a strip which is repeatedly subject
to compression and stretching. The points in the heavily shaded common region rejoin S, and
thus a portion of S goes through the same process again. A subset of this domain will again
cover part of the heavily shaded regions. It is possible for a later return of a pointQ to coincide
with Q. If this occurs at the r-th return then a period-r solution exists. In fact in the attractor
generated by this process, period-r solutions exist for all r.
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Figure 13.31 Further detail of Fig. 13.30 near P0: (a) shows the appearance of P7 and (b) shows further development
of the strip close to Wu.

13.9 The horseshoe map

The precise details of the mechanism which creates the attracting set of the strange attractor are
difficult to put together for Duffing’s equation, but the phenomenon can be accounted for in a
general way by analysing the iterated effect of the Smale horseshoe map. By using assumptions
similar to those involved in discussing the convolutions of the unstable manifold it can be shown
that there does exist a set of points having the attracting property, as follows.
Assume for simplicity that homoclinic bifurcation causes a square ABCD (Fig. 13.32) to

be mapped in a particular manner, which will be specified, into a horseshoe A′B ′C′D′. The
mapping is assumed to be carried out in this way: the square is stretched in the direction
AD, compressed in the direction AB, bent through 180◦, and placed back over the square
(Fig. 13.32). Suppose the mapping is repeated for such points as still lie in the square, and that
this process is iterated. Figure 13.33 shows the first two iterations. The horizontal shaded strips
in the square are chosen so as to map onto the vertical parts of the horseshoe. These two vertical
strips nowmap onto the pair of thinner horseshoes. We are interested, at each stage, in the parts
of the mapped regions which are shared by the regions from which they are mapped—for the
first two stages, shown in Fig. 13.33; these are shown as the hatched regions. After two iterations
there are points remaining in 16 ‘squares’; after the third iteration there will be 64 ‘squares’,
and so on. The limit set as the number of iterations tends to infinity turns out to be very much
like a Cantor set. In one-dimensional terms a Cantor set can be formed as follows. Consider the
interval [0, 1]. Delete the open interval

(1
3 ,

2
3

)
. Now delete the middle thirds

(1
9 ,

2
9

)
and
(7
9 ,

8
9

)
of the remaining intervals, and carry on deleting middle thirds. The limit set of this process is a
Cantor set, and the set is uncountable. The limit set of the horseshoe map has a similar, but two-
dimensional, structure. The implication is that there exists an uncountable number of points in
the initial square which, when treated as initial states at t = 0 for iterated first returns, lead ulti-
mately to endlessly repeated scans of a certain set of points—the limit set—which constitutes the
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Figure 13.32 The horseshoe map.

Figure 13.33 Successive horseshoe maps showing generation of the Cantor set.

strange attractor. The associated oscillations will include periodic motions and bounded nonpe-
riodicmotions. The elements of this set are distributed on the unstablemanifold since horseshoes
can be constructed for each loop across the stable manifold. An extensive account of homoclinic
bifurcations and horseshoe maps can be found in Guckenheimer and Holmes (1983).

13.10 Melnikov’s method for detecting homoclinic bifurcation

We have seen in Section 13.7 how homoclinic bifurcation for the Duffing oscillator leads to
homoclinic tangles and chaos. The aim of this section is to explain Melnikov’s method for
detecting homoclinic bifurcation. This is a global perturbation method applicable to systems
which have a known homoclinic path in an underlying autonomous system. This system is
then perturbed usually by damping and forcing terms, and conditions for which homoclinic
manifolds intersect are determined to leading order.
There are various versions of the theory of increasing generality, but here we shall consider

systems of the form

ẋ = y, ẏ + f (x) = εh(x, y, t), (13.50)
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where h(x, y, t) is T -periodic in t , and |ε| is a small parameter. The unperturbed system is

ẋ = y, ẏ + f (x) = 0.

It is assumed that f (0) = 0, and that the origin is a simple saddle with a known homoclinic
path x = x0(t − t0), y = y0(t − t0). Consider the loop from the origin lying in the half-plane
x ≥ 0. Since the system is autonomous we can include an arbitrary time translation t0, which
will be significant in Melnikov’s method.
It is assumed that f (x) and h(x, y, t) have continous partial derivatives in each argument up

to any required order, with a Taylor series in x and y in a neighbourhood of the origin, namely,

f (x) = f ′(0)x + · · ·
h(x, y, t) = h(0, 0, t)+ [hx(0, 0, t)x + hy(0, 0, t)y] + · · · ,

with f ′(0) < 0 (to guarantee a saddle) and hx(0, 0, t) 	= 0,hy(0, 0, t) 	= 0, except possibly for
isolated values of t .
As ε increases from zero, an unstable limit cycle emerges from the origin with solution

x= xε(t), y= yε(t), say. We take as usual the Poincaré sequence starting with t =0 and having
period T , and let the fixed point of the limit cycle be Pε: (xε(0), yε(0)) (see Fig. 13.34). Remem-
ber that any sequence can be used: if homoclinic tangency occurs for the sequence starting
with t =0, it will occur for any other starting time. Associated with Pε there will be stable and
unstable manifolds W s

ε and Wu
ε : if these manifolds intersect, then homoclinic bifurcation takes

place. Melnikov’s method investigates the distance between the manifolds at a point on the
unperturbed homoclinic path where t = 0, that is, at P0(x0(−t0), y0(−t0)).
To approximate to the stable manifold W s

ε we apply the regular perturbation

xsε(t , t0) = x0(t − t0)+ εxs1(t , t0)+O(ε2),

ysε(t , t0) = y0(t − t0)+ εys1(t , t0)+O(ε2)

	

d

n

))

Figure 13.34 Distance function D(t0) between the manifold Wu
ε and W s

ε at the point P0 on the unperturbed
autonomous homoclinic path.
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to (13.50) for t ≥ 0. To ensure that W s
ε approaches Pε we require

xsε(t , t0)− xε(t)→ 0, ysε(t , t0)− yε(t)→ 0

as t →∞.
Substitute the expansions of xsε(t , t0) and ysε(t , t0) into (13.50). Then equate the coefficients

of ε to zero, using also

f [xsε(t , t0)] = f [x0(t − t0)] + εf ′[x0(t − t0)] xs1(t , t0)+O(ε2).

It follows that xs1(t , t0) and ys1(t , t0) satisfy.

ẏs1(t , t0)+ f ′[x0(t − t0)] xs1(t , t0) = h[x0(t − t0), y0(t − t0), t],
ys1(t , t0) = ẋs1(t , t0).

(13.51)

In a similar manner, for the unstable manifold Wu
ε the perturbation series for xuε is

xuε (t , t0) = x0(t − t0)+ εxu1(t , t0)+O(ε2),

yuε (t , t0) = ẏ0(t − t0)+ εyu1(t , t0)+O(ε2)

for t ≤ 0, where

xuε (t , t0)− xε(t)→ 0, yuε (t , t0)− yε(t)→ 0

as t →−∞. Thus xu1(t , t0) and yu1(t , t0) satisfy

ẏu1(t , t0)+ f ′[x0(t − t0)] xu1(t , t0) = h[x0(t − t0), y0(t − t0), t],
yu1(t , t0) = ẋu1(t , t0).

(13.52)

Note that the stable manifold W s
ε is defined by the set of points (xsε(0, t0), y

s
ε(0, t0)) for all t0,

whilst the unstable manifold Wu
ε is defined by (xuε (0, t0), y

u
ε (0, t0)).

If

xu,sε (t , t0) = [xu,sε (t , t0), yu,sε (t , t0)]T,
then the displacement vector at t = 0 can be defined as

d(t0) = xuε (0, t0)− xsε(0, t0)
= ε[xu1(0, t0)− xs1(0, t0)] +O(ε2),

where

x
u,s
1 = [xu,s1 , yu,s1 ]T.

If n(0, t0) is the unit outward normal vector at P0 (see Fig. 13.34), then the points
P

u,s
ε : (xu,sε (0, t0), y

u,s
ε (0, t0)) will not lie exactly on the normal but will be displaced as indi-

cated in Fig. 13.34. We use a distance function D(t0) which is obtained by projecting the
displacement vector d(t0) onto the unit normal n. Thus D(t0) = d(0, t0) · n(0, t0)+O(ε2).
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The tangent vector to the unperturbed homoclinic path at t = 0 is

{ẋ0(−t0), ẏ0(−t0)} = {ẏ0(−t0), f [x0(−t0)]}.
Therefore the unit outward normal vector is

n(0, t0) = {f [x0(−t0)], y0(−t0)}√{f [x0(−t0)]2 + y0(−t0)2} .

Hence

D(t0) = d(t0) · n(t0)

= ε[{xu1(−t0)− xs1(−t0)}f [x0(−t0)] + {yu1(−t0)− ys1(−t0)}y0(−t0)]√[f [x0(−t0)]2 + y0(−t0)2] +O(ε2).

When D(t0)=0 homoclinic bifurcation must occur since the distance between the manifolds
vanishes to O(ε2). However, D(t0), as it stands, requires xu1 and xs1 but as we shall show, D(t0)

surprisingly does not need these solutions of (13.51) and (13.52). Let


u,s(t , t0) = x
u,s
1 (t , t0)f [x0(t − t0)] + y

u,s
1 (t , t0)y0(t − t0).

Note that

D(t0) = ε[(
u(0, t0)−
s(0, t0)]√{f [x0(0, t0)]2 + [y0(0, t0)]2} +O(ε2). (13.53)

We now show that 
s(t , t0) and 
u(t , t0) do not require xs1(t , t0) and xu1(t , t0). Differentiate

s(t , t0) with respect to t :

d
s(t , t0)
dt

= ẋs1(t , t0)f [x0(t − t0)] + xs1(t , t0)f
′[x0(t − t0)]ẋ0(t−t0)

+ ẏs1(t , t0)y0(t − t0)+ ys1(t , t0)ẏ0(t − t0),

= ys1(t , t0)f [x0(t − t0)] + xs1(t , t0)f
′[x0(t − t0)]ẋ0(t − t0)

+ y0(t − t0)[−f ′[x0(t − t0)]xs1(t − t0)

+ h[x0(t − t0), y0(t − t0), t]] − ys1(t , t0)f [x0(t − t0)],
= y0(t − t0)h[x0(t − t0), y0(t − t0), t], (13.54)

using (13.51) and (13.52). Now integrate (13.54) between 0 and ∞ with respect to t , noting
that, since y0(t − t0)→ 0 and f [x0(t − t0)] → 0 as t →∞, then 
s(t , t0)→ 0 also. Hence


s(0, t0) = −
∫ ∞
0

y0(t − t0)h[x0(t − t0), y0(t − t0), t]dt .

In a similar manner it can be shown that


u(0, t0) =
∫ 0

−∞
y0(t − t0)h[x0(t − t0), y0(t − t0), t]dt .
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The numerator of the coefficients of ε in (13.53) controls homoclinic bifurcation. Let

M(t0) = 
u(0, t0)−
s(0, t0)

=
∫ ∞
−∞

y0(t − t0)h[x0(t − t0), y0(t − t0), t]dt . (13.55)

The functionM(t0) is known as theMelnikov function associated with the origin of this system.
If M(t0) = 0 has simple zeros for t0, then there must exist, to order O(ε2), transverse inter-
sections of the manifolds for these particular values of t0. The points (there will generally be
two transverse intersections) P0 on the unperturbed homoclinic path where these intersections
occur have the approximate coordinates (x0(−t0), y0(−t0)).
More general versions of Melnikov’s method applicable to periodically perturbed systems of

the form

ẋ = F (x)+ εH (x, t)

are given by Guckenheimer and Holmes (1983) and Drazin (1992).

Example 13.6 Find the Melnikov function for the perturbed Duffing equation

ẍ + εκẋ − x + x3 = εγ cosωt .

Find the relation between the parameters κ, γ and ω for tangency to occur between the manifolds to order
O(ε2).

In eqn (13.50) we put

f (x) = −x + x3, h(x, y, t) = −κy + γ cos ωt ,

so that T = 2π/ω. We require the homoclinic solution for the origin of the underlying autonomous system

ẍ − x + x3 = 0.

In x > 0 this is x0(t) = √2 sech t (see Example 3.9). Hence

M(t0) =
∫ ∞
−∞

ẋ0(t − t0)[−κẋ0(t − t0)+ γ cosωt]dt

= −2κ
∫ ∞
−∞

sech2(t − t0) tanh
2(t − t0)dt

− γ
√
2
∫ ∞
−∞

sech(t − t0) tanh(t − t0) cosωt dt ,

= −2κ
∫ ∞
−∞

sech2u tanh2 udu

+ γ
√
2 sinωt0

∫ ∞
−∞

sechu tanh u sinωudu, (13.56)
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putting u = t − t0 and deleting the odd integrand in the second integral. The integrals can be evaluated using
residue theory (an example is given in Appendix D). Gradshteyn and Ryzhik (1994) is also a useful source for
integrals which arise in Melnikov’s methods. We quote the integrals

∫ ∞
−∞

sech2u tanh2 udu = 2
3
,

∫ ∞
−∞

sechu tanh u sinωudu = πω sech
(
1
2
ωπ

)
.

Hence, from (13.54)

M(t0) = −4
3κ +

√
2ωπγ sech(12ωπ) sinωt0.

For given κ, γ , and ω, M(t0) will vanish if a real solution can be found for t0. Assuming that κ, γ > 0, this
condition will be met if | sinωt0| ≤ 1, that is, if

2
√
2κ

3πγω
cosh
(
1
2
ωπ

)
≤ 1.

Put another way, if κ and ω are fixed, then homoclinic tangency will first occur for increasing forcing amplitude
when

γ = γc = 2
√
2κ

3πω
cosh
(
1
2
ωπ

)
, (13.57)

and homoclinic tangles will be present if γ exceeds this value. For our representative values of ω=1.2 and
εκ =0.3 (see Section 13.5), the critical forcing amplitude given by (13.57) is �c = εγc =0.253 which compares
well with the numerically computed value of �=0.256 (see also Fig. 13.27(b)). Melnikov’s method is a per-
turbation procedure so that it will retain validity if the right-hand side of (13.57) is O(1) as ε → 0, that is,
never too large nor too small.

At the critical value γ = γc, sinωt0=1, and we can choose the solution t0=π/(2ω). Hence the tangency
between the manifolds will occur approximately at the corresponding point on the autonomous unperturbed
homoclinic path at

(√
2 sech

(
− π

2ω

)
,−√2 sech2

(
− π

2ω

)
sinh
(
− π

2ω

))
= (0.712, 0.615)

in the section t =0 still for ω=1.2. This may be compared with the tangency point shown in
Fig. 13.27(b). �

Exercise 13.5
Find the Melnikov function for the equation

ẍ + εκ sgn(ẋ)− x + x3 = εγ cosωt , κ > 0, γ > 0.

For what conditions on the parameters do homoclinic paths exist?



13.11 Liapunov exponents and differential equations 483

13.11 Liapunov exponents and differential equations

In Section 13.5 the Liapunov exponent was introduced for first-order difference equations as
a method of explaining chaos through the exponential divergence of neighbouring solutions.
In this section we extend this method to nonlinear differential equations, in particular to the
forced Duffing equation of Section 13.3, which has been a theme of this and earlier chapters.
The equation is

ẍ + kẋ − x + x3 = � cosωt . (13.58)

It was shown numerically (in Section 13.5) that this equation exhibits period doubling leading
to chaotic behaviour for certain values of the parameters k, � and ω. The hypothesis behind
Liapunov exponents is that there are parameter domains in which the distance between neigh-
bouring solutions exhibits exponential growth in certain directions and exponential decay in
other directions. This is the notion of sensitivity to initial conditions.

The first step is to express (13.58) as a third-order autonomous system in the form

ẋ = y, ẏ = −ky + x − x3 + � cos z, ż = ω. (13.59)

but with the restriction z = ωt . An autonomous systemmust be of order three or more for chaos
to appear: chaos is not possible in first order or plane autonomous systems. We will return to
this conclusion later. Let x∗(t) = [x∗(t), y∗(t), z∗(t)]T, which satisfies the initial condition
x∗(t0) = [x∗0, y∗0, z∗0]T , be the particular solution to be investigated. Consider now a solution
x(t) = x∗(t)+ η(t) which starts near to the initial value of x∗(t): thus |η(t0)| is assumed to be
small.
Before we apply the method to Duffing’s equation, we consider the general autonomous

system

ẋ = f (x). (13.60)

of any order. Substitute x = x∗ + η into (13.60) so that, using a Taylor expansion,

ẋ∗ + η̇ = f (x∗ + η) ≈ f (x∗)+A(x∗)η (13.61)

for as long as |η(t)| is small, where

A(x∗) = [∇f ] =
⎡
⎣fx fy fz
gx gy gz
hx hy hz

⎤
⎦

is the matrix of partial derivatives of f =[f , g,h]T. It follows that, approximately,
η=[η1, η2, η3]T satisfies the linear vector equation

η̇ = A(x∗)η (13.62)

The evolution of η will depend on its initial value: both exponential growth and exponential
decay can occur. Liapunov exponents measure this growth and decay. The computation of
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exponential growth over long time scales is generally not an option for numerical reasons such
as output overflow. Also, there is little hope that any equations can be solved analytically (at
least for third order and above), so the numerical procedure which averages growth over shorter
time intervals as follows is adopted.

Computing procedure

• (i) choose parameters and initial condition x∗(t0) (after any transience has been eliminated)
in a domain (usually bounded) where a chaotic solution is suspected, and solve (13.60)
numerically to find x∗(t) over a time interval t0 ≤ t ≤ t1;
• (ii) compute A(x∗) over t0 ≤ t ≤ t1 at suitable time steps;
• (iii) since (13.62) is linear and homogeneous we can normalize the initial values so that
|η(t0)| = 1; choose n initial orthonormal vectors, say

η
(0)
1 (t0) = [1, 0, 0, , 0], η

(0)
2 (t0) = [0, 1, 0, . . . , 0], . . . , η(0)n (t0) = [0, 0, 0, . . . , 1],

(or some other orthonormal set such as the eigenvectors of A(x∗(t0))); solve (13.62) numeri-
cally for each η(0)i (t) and compute η(0)i (t1) (the time t1 is chosen to avoid |η(0)i (t1)| becoming
computationally too large);
• (iv) the set of vectors {η(0)i (t1)} will generally not be orthonormal, but a set of orthonormal
vectors {η(1)i (t1)} can be constructed at t1 using the Gram-Schmidt procedure (see Nayfeh
and Balachandran (1995, Section 7.3) for more details);
• (v) repeat the procedure (i) to (iv) at times t = t1, t2, . . . , tN to generate the vectors {η(j−1)i (tj )}

(j = 2, 3, . . . ,N): renormalization takes place at each time;
• (vi) the first approximation to the ith Liapunov exponent is

�
(1)
i =

1
t1 − t0

ln |η(0)i (t1)|;

the second approximation is the average

�
(2)
i =

1
t2 − t0

{ln |η(0)i (t1)| + ln |η(1)i (t2)|},

and so on; the N th approximation is

�
(N)
i = 1

tN − t0

N∑
k=1

ln |η(k−1)i (tk)|. (13.63)

If the limits exist, the Liapunov exponents {�i} are defined by

�i = lim
N→∞�

(N)
i = lim

tN→∞
1

tN − t0

N∑
k=1

ln[|η(k−1)i (tk)|].

The length dik = |η(k−1)i (tk)| is the distance between the vectors x∗(tk) + η(k−1)i (tk) and x∗(tk).
The steps in the scheme for one component of η are indicated in Fig. 13.35. A positive Liapunov
exponent � indicates that chaos might be present: it is a necessary condition but not sufficient.
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x*(t2)
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(0)
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(1)

Figure 13.35 The figures shows a solution x = x∗(t). A typical perturbation components η(0)i (t0), η
(1)
i (t1), . . . of the

orthonormal sets at each time step. There will be n such components at each step. The dashed curves represent the
perturbed solutions.

There are a number of imponderables in the iterative process which can affect its accuracy.
These include the choice of parameters, the time steps t1, t2, . . ., and the numberN of iterations.
Generally trial and error are required to produce confidence in results.
It is possible to see the thinking behind this definition of the Liapunov exponent if we assume,

in a simplistic manner by way of an explanation, that |ηi (tk)| ∼ eµi(tk−tk−1). Then, from (13.63),

�
(N)
i ∼ 1

tN − t0

N∑
k=1

ln[eµi(tk−tk−1)] = 1
tN − t0

(tN − t0)µi = µi .

Hence a positive µ (exponential growth) implies a positive Liapunov exponential with a
corresponding result for µ < 0 (exponential decay).
At first sight it seems to be a contradiction that solutions can diverge exponentially but still

be bounded. However, in plane autonomous systems it is possible to have a saddle point inside
a closed path (see, e.g., Fig. 2.13). Exponential divergence can be associated with the saddle
point but the time solutions will be bounded.
If A is a constant matrix, then the analysis is straightforward and can be illustrated by an

example which provides an interpretation of Liapunov exponents.

Example 13.7 Find the Liapunov exponents of the linear system

ẋ =
⎡
⎣ ẋ

ẏ

ż

⎤
⎦ =
⎡
⎣ 1 2 1
2 1 1
1 1 2

⎤
⎦
⎡
⎣ x

y

z

⎤
⎦ = Ax.

This differential equationwas discussed in Example 12.6, where it was shown that its eigenvalues are 4, 1,−1
so that its general solution is

x = αr1e
4t + βr2e

t + γ r3e
−t ,
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where orthonormal eigenvectors are given by

r1 = 1√
3
[1, 1, 1]T, r2 = 1

6 [−1, −1, 2]T, r3 = 1√
2
[1, −1, 0]T.

Since A is constant, the perturbation η satisfies the same equation as x, that is,

η̇ = Aη.
Hence

η = α1r1e
4t + β1r2e

t + γ1r3e
−t .

Let t0=0. Since the solution is exact there is no need to iterate: we can choose 0≤ t <∞ as the first interval.
An orthonormal set can be constructed if ηi (0)= r i . Thus for η1 we put α1=1, β1 = γ1=1 so that η1= r1e4t .
It follows that

�1 = lim
t→∞

1
t
ln |η1(t)| = lim

t→∞
1
t
ln(e4t ) = 4.

Similarly the other two Liapunov exponents are �2 = 1, �3 = −1. For a constant matrix A, the Liapunov
exponents are simply the eigenvalues ofA, which confirms the view that Liapunov exponents are generalizations
of eigenvalues. This system has two positive exponents but linear systems can never be chaotic. �

For nonlinear systems, in which the average is taken over N time intervals, the computation
is complicated by the need to create a new orthonormal initial vector at each time step. Since
the signs of the largest and smallest Liapunov exponents are the main indicators of chaos, it is
possible to use a simplified procedure to determine these signs. The discussion will be restricted
to three dimensions. In the computing procedure above replace (iii), (iv), (v), and (vi) by

• (iii)∗ on a unit sphere centred at x∗(t0) select initial values, say, η(t0) =
[cos i sin j , sin i sin j , cos j ]T, where i and j , respectively are chosen as suitable step val-
ues over the intervals (0, 2π) and (0,π) so that the sphere is covered by grid of points; note
the maximum and minimum vales of |η(t1)| over the values of i and j ; denote the lengths by
d
(max)
1 and d

(min)
1 . Accuracy will be improved by increasing the number of grid points;

• (iv)∗ repeat (iii)∗ with a unit spheres centred at x∗(t1), x∗(t2), . . . , and note the lengths d(max)
k

and d
(min)
k (k = 2, 3, . . .).

• (v)∗ compute the averages

�
(N)

max =
1

tN − t0

N∑
k=1

ln d(max)
k , �

(N)

min =
1

tN − t0

N∑
k=1

ln d(min)
k .

The numbers �
(N)

max and �
(N)

min are the largest and smallest Liapunov exponents and their signs
can indicate exponential growth or decay.
Before we apply this procedure to Duffing’s equation we can often deduce one Liapunov

exponent if the chaotic regime is bounded as seems to be the case for Duffing equation and
the Lorenz equations (Problem 13.21). Returning to the general system ẋ = f (x), consider the
two neighbouring points x∗(t0) and x∗(t0 + h) on a solution. For all t0 these points will follow
the same phase path (since the system is autonomous). It follows that

η = x∗(t + h)− x∗(t) ≈ ẋ∗(t)h = f (x∗(t))h:
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this is the tangent approximation to the phase path. In this case there is no need to iterate over
time steps since the corresponding Liapunov exponent is given by

� = lim
t→∞

1
t
ln |η(t)| = lim

t→∞
1
t
ln |f (x∗(t))h|.

If the path defined by x = x∗ is bounded, then f (x) will also be bounded so that λ = 0 in the
limit. Hence, for such bounded chaotic regions one Liapunov exponent will be zero.

Chaos and the Duffing oscillator

We return now to Duffing’s equation in the version (13.59). We assume that t0 = 0 and that
tk = kT (k = 1, 2, . . . ,N) (that is, we choose equal time steps). It follows from (13.61) that

A(x∗) =
⎡
⎣ 0 1 0
1− 3x∗2 −k −� sinωt

0 0 0

⎤
⎦ . (13.64)

The chosen parameter values are k = 0.3, ω = 1.2 and � = 0.5, which are the same as those in
the example shown in Fig. 13.15, which is useful for comparisons. Periodically forced systems
have a natural time step given by the forced period. Whilst this is not required, we use these
steps in which ti − ti−1 = 2π/ω = T for all i, say (sometimes fast growth will demand smaller
time steps).
The components of η = [η1, η2, η3]T satisfy

η̇1 = η2, η̇2 = (1− 3x∗2)η1 − kη2 − �η3 sin z∗, η̇3 = 0. (13.65)

but since z= z∗ =ωt , it follows that η3=0. Effectively, we need only solve the plane system

[
η̇1
η̇2

]
=
[

0 1
1− 3x∗2 −k

] [
η1
η2

]
(13.66)

for η1 and η2.
These equations are solved using the procedure outlined above for the maximum and mini-

mum values of |η|, noting that one Liapunov exponent is zero for the reasons explained above.
An interpolated solution x∗ is obtained numerically, and then eqns (13.65) are solved over
each time interval tk < t < tk+1(k=0, 1, 2, . . .), subject to initial conditions for η = [η1, η2]
(since η3 = 0) over 40 sample points on the circumference of a unit circle centred successively
at x∗(tk). At each step the distances d

(max)
k are d

(min)
k over the sample points are computed.

Finally

�
(N)

max =
1

NT

N∑
k=1

ln d(max)
k , �

(N)

min =
1

NT

N∑
k=1

ln d(min)
k
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Figure 13.36 The sign of one non-zero Liapunov exponent is positive and the other is negative for Duffing’s equation
given by (13.58) with k = 0.3, ω = 1.2 and � = 0.5. The computation was started with initial conditions x(0) =
−1.30039, y(0) = −0.08222, and computed over 200 steps with T = 0.2 which corresponds to a time of 200T = 40.
After 200 steps the maximum and minimum values of � are approximately 0.61 to −0.90.

are computed. The evolutions of the limits are shown in Fig. 13.36 over 200 steps of length
T = 0.2 or, equivalently, for a time t = 40. The limits are approximately 0.61 and −0.90, but
the significance is that one is negative and one positive, which indicates the possibility of chaos.
Figure 13.37 (not to scale) shows how a typical circle |ηtk | = 1 centred at (x∗(tk), y∗(tk)) is

distorted over a time step T into the closed curve shown centred at (x∗(tk+1), y∗(tk+1)). The
curve is approximately elliptic which has been flattened in one direction, corresponding to
exponential decay, and extended in another direction indicating exponential growth. These are
very similar to the principal directions of an ellipse. These exponential changes are shown by
the averaging method in Fig. 2.
If the Duffing’s equation has a stable limit cycle then the non-zero Liapunov exponents will

be both be negative. Consider the case k = 0.3, ω = 1.2, � = 0.2 (see Fig 13.14(a)), for which
the equation has a limit cycle in x > 0. This case illustrates how the step length can vary T .
Consider a typical value x∗ = 1 on the path in Fig. 13.14(a). Then the matrix in (13.66) takes
the value

[
0 1

1− 3x∗2 −k
]
=
[

0 1
−2 −0.3

]
,

and its eigenvalues are−0.150±1.406i approximately. The real part indicates slow exponential
decay so that we must choose a larger T : in this case T =4π/ω (twice the forcing period) could
be chosen, or another value of this order. Note that the eigenvalues have a positive real part
over parts of the limit cycle (near to x∗ =0.4), but the negative real part dominates on average.
The evolution of the two Liapunov exponents is shown in Fig. 13.38. Generally, the Liapunov
exponents are not of much interest in stable cases since we can compute η1 and η2 over any
reasonable time step.
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Figure 13.37 This shows the distortion a unit circle centred at Pk : x∗(tk) when it reaches Pk+1 : x∗(tk+1) (not to
scale). It becomes flattened with some paths becoming closer to x∗tk+1 and some diverging from x∗tk+1.
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Figure 13.38 Evolution of the Liapunov exponents for Duffing’s equation with k = 0.3, ω = 1.2, � = 0.2 for which
it is known that the equation has a stable limit cycle in x > 0. Note the smoother evolution for the stable case. The
exponents are approximately −0.127 and −0.173.

More details of this approach can be found in Moon (1987, Section 5.4). Further details of
the computation of Liapunov exponents are given also by Rasband (1990, Section 9.2).

The Lorenz equations

The Lorenz equations are given by

ẋ = a(y − x), ẏ = bx − y − xz, ż = xy − cz

(see Problems 8.26 and 13.21). In the latter problem it was shown numerically that chaotic
motion is extremely likely. Here we apply the numerical procedure to find the largest and
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Figure 13.39 Maximum and minimum Liapunov exponents for the Lorenz equations with parameters a = 10,
b = 27, c = 2.65 and step length T = 0.5, and initial values x(0) = 0.966944, y(0) = −5.25624, z(0) = 28.3037.

smallest Liapunov exponents using (iii)∗, (iv)∗ and (v)∗ above. Unlike the forced Duffing equa-
tion, this is a genuine autonomous system so that the initial values at each step have to be
reset on to a unit sphere; also the time tk can be reset to zero. The parameters are the same as
those chosen in Fig. 13.42 (Problem 13.21), namely a=10, b=27, c=2.65. The initial values
x(0)=0.966944, y(0)= − 5.25624, z(0)=28.3037 and a time step of T =0.5 were chosen
for x∗(t). In (iii)* in the procedure 200 grid points over the sphere were chosen. The evolu-
tion of the maximum and minimum values of approximately 3.80 and −6.61 of � are shown
in Fig 13.39. The significant feature is that the exponents are of opposite signs which point
strongly to chaotic motion. The Liapunov exponents are independent of the initial conditions
provided that they are within the bounded chaotic region.
The Lorenz equations display one form of chaos since they exhibit all the following features:

• phase paths starting from a certain region do not approach fixed points, periodic orbits, or
quasi-periodic orbits (as illustrated in Fig. 13.9(d)) but remain bounded (the exception can
be initial points which start on unstable equilibrium points, or unstable periodic orbits): this
is known as aperiodic behaviour;
• the equations are autonomous and deterministic and contain no random inputs;
• some nearby paths diverge exponentially and others converge exponentially for almost all
paths which start in the region as indicated by the Liapunov exponents: as remarked earlier
the paths exhibit sensitive dependence to initial conditions.

More detailed discussion and explanation can be found in Strogatz (1994, Chapter 9)
An alternative approach uses the notion of exponential dichotomies explained by Coppel

(1978). The theory of exponential dichotomies gives conditions on the matrixA(t) in the linear
equation η̇ = Aη in order that solutions can be divided into ones with exponential growth and
ones with exponential decay, which accounts for the term dichotomy.
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Exercise 13.6
Find the general solution of ẋ = A(x)x, where

A(x) =
⎡
⎣ 0 1 0
1 0 0
y x −3

⎤
⎦ .

Hence determine the Liapunov exponents of the system. (Whilst this nonlinear system has
positive and negative Liapunov exponents, the system is not chaotic since paths can escape
to infinity: they do not have the bounded property of the Lorenz equations.)

13.12 Power spectra

The numerical solution of an ordinary differential equation

ẍ = f (x, ẋ, t)

generates a sequence of values of x at discrete values of t . The ‘solution’ x is then plotted against
t by interpolation through the data using a computer package. The original series of values is
known as a time series, and could equally well arise from experimental observations. The
output from a system might appear random or noisy but might contain significant harmonics
at certain frequencies. For example, we know in Fig. 13.14(b) that the period-2 output will
have two frequencies, ω and 1

2ω, but the frequency structure of the output in Fig. 13.15 is not
clear.
Dominant frequencies in time series can be investigated by looking at the Fourier transform

of the data. Suppose that we take a sample of N equally spaced values from a time series, say
x = x0, x1, . . . , xN . The discrete Fourier transform of this sample is defined by

Xk = 1√
N

N∑
m=0

xme−2π ikm/N (k = 0, 1, 2, . . . ,N − 1)

(there are other definitions of the Fourier transform: care should be taken in comparing results
using different computer codes). The original data can be recovered from {Xk} by the inverse
Fourier transform

xj = 1√
N

N∑
k=0

Xke2π ikj/N (j = 0, 1, 2, . . . ,N − 1).

Generally, Xk is a complex number. We identify the frequency structure of the output by
looking at its power spectrum P(ωk) defined by

P(ωk) = XkX̄k = |Xk|2.
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Figure 13.40 Power spectrum of Duffing’s equation with k = 0.3, ω = 1.2, � = 0.5. The graph is a loglinear plot
of P(ωj ) versus ωj .

Any dominant frequencies in {ωk}will be revealed by sharp peaks in the graph of P(ωk) against
ωk. If, for example, the harmonic function x = cos 3t is sampled, say, by a 1000 points over
an interval of length 100, then the power spectrum will have a graph with a single sharp peak
at the angular frequency 3.
We can look at the numerical output from numerical solutions of Duffing’s equation, and

take its power spectrum to search for any ‘hidden’ frequencies. This is done by constructing
an interpolation function through the numerical output, and then by sampling this function.
Figure 13.40 shows the power spectrum for a solution of Duffing’s equation

ẍ + kẋ − x + x3 = � cosωt ,

for the chaotic case k = 0.3, ω = 1.2, � = 0.5 shown in Fig. 13.15. The figure shows that
a large number of frequencies are present, being particularly strong at low values. Also note
that some structure is identifiable. The forcing frequency ω is prominent as is a subharmonic
of frequency ω/3 and one of its superharmonics at 5ω/3.
More information on the analysis of time series can be found in the book by Nayfeh and

Balachandran (1995).

13.13 Some further features of chaotic oscillations

There have been various attempts to define chaos and what characterizes a chaotic solution
of a differential equation. In Section 13.11 it has been explained how exponential divergence
of solutions using Liapunov exponents can be an indicator of chaotic output. However, there
seems to be, at present, no universally acceptable definition which covers all instances of what
we might recognize as a chaotic response.



13.13 Some further features of chaotic oscillations 493

It has been shown by Brown and Chua (1996, 1998) using examples and counterexamples
that there are features which chaos might be expected to have, but which are not all present
in any one case. We conclude with a list of some characteristics of chaos described informally.
Not all are included in this book, and the list is by no means exhaustive.

Period doubling

As a parameter changes, the periodic oscillation goes through a infinite sequence of pitchfork
bifurcations in which the period of the oscillation doubles at each bifurcation. We have already
discussed this in relation to the logistic difference equation (Section 13.4) and the Duffing
oscillator (Section 13.3).

Smale horseshoes

The horseshoe map is described in Section 13.9, and it is an indicator of the presence of
chaos. It arises in homoclinic bifurcation in the Duffing oscillator, and Melnikov’s method
(Section 13.10) can be used to detect homoclinic bifurcation for periodically forced systems.

Sensitive dependence on initial conditions

In this test of chaos, ‘small’ changes in initial conditions lead to rapid divergence of solutions.
This type of sensitivity is associated with loss of information in systems, and the breaking
of links between the past and the future. This dependence has implications for the numerical
solutions of equations and the growth of errors. Such solutions which arise under these sensitive
conditions should be treated with caution. However, there is a phenomenon called shadowing
which enhances the usefulness of computed ‘orbits’ of chaotic systems. Roughly, the shadowing
lemma (Guckenheimer and Holmes (1983)) states, perhaps surprisingly, that, under suitable
conditions, any computed orbit is an approximation to some true orbit of the system.

Autocorrelation function

In this approach the long time average over t of the product of x(t) and x(t + τ) in a time series
is computed. For a periodic response, the autocorrelation function will detect this periodicity.
On the other hand for a chaotic response, in which we expect no correlation between x(t) and
x(t + τ), the autocorrelation function will tend to zero as τ →∞.

Intermittency

For autonomous systems in three or more dimensions intermittency usually arises from a bifur-
cation in the neighbourhood of a limit cycle. For a given value of a parameter the system can
have a stable limit cycle. For a neighbouring value of a parameter intermittency occurs if the sys-
tem appears to remain periodic for long stretches but is subject to seemingly random outbursts
at irregular intervals. In between these outbursts the system resumes its periodic behaviour.
Even though the system drifts away from the periodic orbit, it is quickly re-injected into it, in a
similar manner to the near-homoclinic paths of the Rössler attractor (Section 13.4). Some data
for intermittency in the Lorenz attractor is given in Problem 13.37.
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Problems

13.1 Obtain the solutions for the usual polar coordinates r and θ in terms of t , for the system

ẋ = x + y − x(x2 + y2), ẏ = −x + y − y(x2 + y2).

Let � be the section θ = 0, r > 0. Find the difference equation for the Poincaré sequence in this section.

13.2 Find the map of 2π first returns on the section �: t = 0 for

ẍ + 2ẋ + 2x = 2 sin t

in the usual phase plane. Find also the coordinates of the fixed point of the map and discuss its stability.
Where is the fixed point of the map if the section is t = 1

2π?

13.3 Let x1 satisfy

ẍ1 + 1
4ω

2x1 = � cosωt .

Obtain the solutions for x1 and x2 = ẋ1 given that x1(0) = x10 and x2(0) = x20. Let � be the section
t = 0 and find the first returns of period 2π/ω. Show that the mapping is

P�(x10, x20) =
(
−x10 − 8�

3ω2
,−x20

)
,

and that

P 2
�(x10, x20) = (x10, x20).

Deduce that the system exhibits period doubling for all initial values except one. Find the coordinates of
this fixed point.

13.4 (a) Let

ẋ = y, ẏ = −3y − 2x + 10 cos t ,

and assume the initial conditions x(0)=4, y(0)=−1. Consider the associated three-dimensional system
with ż=1. Assuming that z(0) = 0, plot the solution in the (x, y, z) space, and indicate the 2π -periodic
returns which occur at t =0, t = 2π , t = 4π , . . . .
(b) Sketch some typical period 1 Poincaré maps in the (x, y, z) space

ẋ = λx, ẏ = λy, ż = 1

for each of the cases λ < 0, λ = 0, λ > 0. Discuss the nature of any fixed points in each case. Assume that
x(0) = x0, y(0) = y0, z(0) = 0 and show that

xn+1 = eλxn, yn+1 = eλyn, n = 0, 1, 2, . . . .

13.5 Two rings can slide on two fixed horizontal wires which lie in the same vertical plane with separation a.
The two rings are connected by a spring of unstretched length l and stiffness µ. The upper ring is forced
to move with displacement φ(t) from a fixed point O as shown in Fig. 13.41. The resistance on the lower
ring which has mass m is assumed to be mk × (speed). Let y be the relative displacement between the
rings. Show that the equation of motion of the lower ring is given by

ÿ + kẏ − µ

ma
(l − a)y + µl

2ma3
y3 = −φ̈ − kφ̇

to order y3 for small |y|. (If l > a then a Duffing equation of the type discussed in Section 12.6 can be
obtained. This could be a model for a strange attractor for the appropriate parameter values. Cosine
forcing can be reproduced by putting −φ̈− kφ̇=� cosωt .)
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f( (

Figure 13.41

13.6 Search for period doubling in the undamped Duffing equation ẍ − x + x3 = � cosωt using the form
x = c + a1 cosωt + a2 cos

1
2ωt , where c, a1, and a2 are constants. If frequencies 3ω/2 and above are

neglected, show that the shift and amplitudes satisfy

c[−1+ c2 + 3
2 (a

2
1 + a22)] + 3

4a
2
2a1 = 0,

a1(−ω2 − 1+ 3c2 + 3
4a

2
1 + 3

2a
2
2)+ 3

2a
2
2c = �,

a2(−1
4ω

2 − 1+ 3c2 + 3
2a

2
1 + 3ca1 + 3

4a
2
2) = 0.

Deduce that for harmonic solutions (a2 = 0), c and a1 are given by solutions of
(i) c = 0, a1(−ω2 − 1+ 3

4a
2
1) = �,

or

(ii) c2 = 1− 3
2a

2
1, a1(−ω2 + 2− 15

4 a21) = �.
Sketch the amplitude |a1|–amplitude |�| curves corresponding to Fig. 13.13 for ω = 1.2.

13.7 Design a computer program to plot 2π/ω first returns for the system

ẋ = X(x, y, t), ẏ = Y (x, y, t)

where X(x, y, t) and Y (x, y, t) are 2π/ω-periodic functions of t . Apply the program to the following
system:

X(x, y, t) = y, Y (x, y, t) = −ky + x − x3 + � cosωt

for k = 0.3, ω = 1.2, and � taking a selection of values between 0 and 0.8. Let the initial section be
t = 0.

13.8 Find the equations of the stable and unstable manifolds in the (x, y)-plane of

ẍ + ẋ − 2x = 10 cos t , ẋ = y

for Poincaré maps of period 2π and initial time t = 0.

13.9 Apply Melnikov’s method to

ẍ + εκẋ − x + x3 = εγ (1− x2) cosωt , κ > 0, ε > 0, γ > 0

and show that homoclinic bifurcation occurs if, for ω2  2,

|γ | ≥ 2
√
2κ

πω(2− ω2)
cosh
(
1
2
ωπ

)
.
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13.10 The Duffing oscillator with equation

ẍ + εκẋ − x + x3 = εf (t),

is driven by an even T -periodic function f (t) with mean value zero. Assuming that f (t) can be
represented by the Fourier series

∞∑
n=1

an cos nωt , ω = 2π/T ,

find the Melnikov function for the oscillator.
Let

f (t) =
{
γ , −1

2 < t < 1
2 ,

−γ , 1
2 < t < 3

2 ,

where f (t) is a function of period 2. Show that the Melnikov function vanishes if

κ

γ
= − 3π

2
√
2

∞∑
r=1

(−1)r sech
[
1
2
π2(2r − 1)

]
sin[(2r − 1)πt0].

Plot the Fourier series as a function of t0 for 0 ≤ t0 ≤ 2, and estimate the value of κ/γ at which
homoclinic tangency occurs.

13.11 Melnikov’s method can be applied also to autonomous systems. The manifolds become the separatrices
of the saddle. Let

ẍ + εκẋ − εαx2ẋ − x + x3 = 0.

Show that the homoclinic path exists to order O(ε2) if κ = 4α/5. [ The following integrals are required:∫ ∞
−∞

sech4s ds = 4
3
;
∫ ∞
−∞

sech6s ds = 16
15

.
]

13.12 Show that x = 3
1
4
√
(sech 2t) is a homoclinic solution of

ẍ + ε(κ − αx2)ẋ − x + x5 = 0,

when ε = 0. Use Melnikov’s method to show that homoclinic bifurcation occurs when κ = 4
√
3α/(3π).

13.13 Apply Melnikov’s method to the perturbed system

ẍ + εκẋ − x + x3 = εγ x cosωt ,

which has an equilibrium point at x = 0 for all t . Show that the manifolds of the origin intersect if

γ ≥ 4κ

3ω2π
sinh
(
1
2
ωπ

)
.

[Hint: ∫ ∞
−∞

sech2u cosωudu = πω

sinh(12ωπ)
.

]

13.14 Show that the logistic difference equation

un+1 = λun(1− un)
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has the general solution un= sin2(2nCπ) if λ=4, whereC is an arbitrary constant (without lossC can be
restricted to 0≤C ≤1). Show that the solution is 2q -periodic (q any positive integer) if C=1/(2q −1).
The presence of all these period doubling solutions indicates chaos. (See the article by Brown and Chua
(1996) for further exact solutions of nonlinear difference equations relevant to this and some succeeding
problems.)

13.15 Show that the difference equation

un+1 = 2u2n − 1

has the exact solution un= cos(2nCπ) where C is any constant satisfying 0 ≤ C ≤ 1. For what values
of C do q-periodic solutions exist?

13.16 Using a trigonometric identity for cos 3t , find a first-order difference equation satisfied by un =
cos(3nCπ).

13.17 A large number of phase diagrams have been computed and analyzed for the two-parameter Duffing
equation

ẍ + kẋ + x3 = � cos t , ẋ = y,

revealing a complex pattern of periodic, subharmonic and chaotic oscillations (see Ueda (1980), and
also Problem 7.32). Using a suitable computer package plot phase diagrams and time solutions in each
of the following cases for the initial data given, and discuss the type of solutions generated:

(a) k=0.08, �=0.2; x(0)=−0.205, y(0)=0.0171; x(0)=1.050, y(0)=0.780.

(b) k=0.2, �=5.5; x(0)=2.958, y(0)= 2.958; x(0)=2.029, y(0)=−0.632.
(c) k=0.2, �=10; x(0)=3.064, y(0)=4.936.

(d) k=0.1, �=12; x(0)= 0.892, y(0)=−1.292.
(e) k=0.1, �=12; x(0)=3, y(0)=1.2.

13.18 Consider the Hamiltonian system

ṗi = −∂H

∂qi
, q̇i = ∂H

∂pi
(i = 1, 2),

where H = 1
2ω1(p

2
1 + q21 )+ 1

2ω2(p
2
2 + q22 ). Show that q1, q2 satisfy the uncoupled system

q̈i + ω2
i qi = 0 (i = 1, 2).

Explainwhy the ellipsoids 1
2ω1(p

2
1 + q21 )+ 1

2ω2(p
2
2 + q22 )= constant are invariantmanifolds in the four-

dimensional space (p1,p2, q1, q2). What condition on ω1/ω2 guarantees that all solutions are periodic?
Consider the phase path which satisfies p1=0, q1=0, p2=1, q2=0. Describe the Poincaré section
p1=0 of the phase path projected on to the (q1,p2, q2) subspace.

13.19 Consider the system ẋ=−ryz, ẏ= rxz, ż=−z+ cos t − sin t , where r =√(x2+ y2). Show that, pro-
jected on to the (x, y) plane, the phase paths have the same phase diagram as a plane centre. Show also
that the general solution is given by

x = x0 cosω(t)− y0 sinω(t),

y = y0 cosω(t)− x0 sinω(t),

z = z0e
−t + sin t ,

where

ω(t) = r0[1− cos t + z0(1− e−t )],
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and x0 = x(0), y0 = y(0), z0 = z(0) and r0 = √(x20+y20 ). Confirm that, as t →∞, all solutions become
periodic.

13.20 A common characteristic feature of chaotic oscillators is sensitive dependence on initial conditions,
in which bounded solutions which start very close together ultimately diverge: such solutions locally
diverge exponentially. Investigate time-solutions of Duffing’s equation

ẍ + kẋ − x + x3 = � cosωt

for k=0.3, �=0.5, ω=1.2, which is in the chaotic parameter region (see Fig. 13.15), for the initial val-
ues (a) x(0)=0.9, y(0)=0.42; (b) y(0)=0.42 but with a very small increase in x(0) to, say 0.90000001.
Divergence between the solutions occurs at about 40 cycles. Care must be execised in computing solu-
tions in chatotic domains where sensitive dependence on initial values and computation errors can be
comparable in effect.]

13.21 The Lorenz equations are given by (see Problem 8.26 and Section 13.2)

ẋ = a(y − x), ẏ = bx − y − xz, ż = xy − cz.

Compute solutions of these equation in (x, y, z) phase space. Chaotic solutions appear near parameter
values a = 10, b = 27, c = 2.65: a possible initial state is x(0) = −11.720, y(0) = −17.249,
z(0) = 22.870. A sample solution for these parameter and initial values is shown in Fig. 13.42.

Figure 13.42 A chaotic phase path for the Lorenz attractor.

13.22 Show that the system

ẋ = −y + � sin t , ẏ = −x + 2x3 + � cos t , � > 0,

has a limit cycle x = 0, y = � sin t . Find also the time-solutions for x and y of the paths which are
homoclinic to this limit cycle. Sketch the phase paths of the limit cycle and the homoclinic paths for
� = 1.

13.23 For each of the following functions and solutions plot the Poincaré sequence in the x, y = ẋ plane,
starting with the given initial time t0 and given period T .

(a) x = 2 cos t ; t0 = 0, T = 2π .

(b) x = 3 cos 1
2 t ; t0 = 1

2π , T = 2π .
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(c) x = sin t + sinπt ; t0 = 1
2π , T = 2π .

(d) The periodic solution of ẍ − (x2 + ẋ2)ẋ + x = cos t , where t0 = 0, T = 2π .

13.24 Show that

ẋ + k(1− x2 − ẋ2)2ẋ − x = −2 cos t
has a limit cycle whose solution is x0 = cos t . By looking at perturbations x = x0+x′ where |x′| is small
show that the limit cycle has Poincaré fixed points which are saddles.

13.25 Consider the system

ẋ = y, ẏ = [e−2x − e−2] + ε cos t .

For ε = 0, show that the equation of its phase paths is given by

y2 = 2e−x − e−2x + C.

Show that the system has closed paths about the origin if −1 < C < 0 with a bounding separatrix given
by y2 = 2e−x − e−2x . What happens to paths for C > 0? Sketch the phase diagram.

Suppose that the system is moving along the separatrix path, and at some instant the forcing is
introduced. Describe what you expect the behaviour of the system to be after the introduction of the
forcing. Compute a Poincaré sequence and a time-solution for ε=0.5 and for the initial conditions,
x(0)=−ln 2, y(0)=0.

13.26 Apply the change of variable z = u+ a + b to the Lorenz system

ẋ = a(y − x), ẏ = bx − y − xz, ż = xy − cz,

where a, b, c > 0. If s = √[x2 + y2 + z2], show that

1
2 s

ds
dt
= −ax2 − y2 − c

[
u+ 1

2 (a + b)
]2 + 1

4 c(a + b)2.

What is the sign of ds/dt on the ellipsoid

ax2 + y2 + c[u+ 1
2 (a + b)]2 = ρ, (∗)

where ρ > 1
4 c(a + b)2?

Show that all equilibrium points are unstable in the case a = 4, b = 34, c = 1
2 . If this condition is

satisfied, what can you say about the attracting set inside the ellipsoid (∗) if ρ is sufficiently large?

13.27 A plane autonomous system is governed by the equations ẋ=X(x, y), ẏ=Y (x, y). Consider a set of
solutions x(t , x0, y0), y(t , x0, y0) which start at time t = t0 at (x0, y0), where (x0, y0) is any point in a
region D(t0) bounded by a smooth simple closed curve C. At time t ,D(t0) becomes D(t). The area of
D(t) is

A(t) =
∫∫

D(t)
dx dy =

∫∫
D(t0)

J (t)dx0 dy0

when expressed in terms of the original region. In this integral, the Jacobian

J (t) = det(�(t)),

where

�(t) =
⎡
⎢⎣

∂x

∂x0

∂x

∂y0
∂y

∂x0

∂y

∂y0

⎤
⎥⎦ .
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Show that �(t) satisfies the linear equation

�̇(t) = B(t)�(t),

(note that �(t) is a fundamental matrix of this equation) where

B(t) =
⎡
⎢⎣
∂X

∂x

∂X

∂y
∂Y

∂x

∂Y

∂y

⎤
⎥⎦ .

Using Theorem 9.4 (on a property of the Wronskian), show that

J (t) = J (t0) exp
[∫ t

t0

(
∂X

∂x
+ ∂Y

∂y

)
ds
]
.

If the system is Hamiltonian deduce that J (t)= J (t0). What can you say about the area of D(t)? (A(t)
is an example of an integral invariant and the result is known as Liouville’s theorem).

For an autonomous system in n variables ẋ = X(x), what would you expect the corresponding
condition for a volume-preserving phase diagram to be?

13.28 For the more general version of Liouville’s theorem (see Problem 13.27) applied to the case n=3 with
ẋ=X(x, y, z), ẏ=Y (x, y, z), ż=Z(x, y, z), the volume of a region D(t) which follows the phase paths
is given by

W(t) =
∫∫∫

D(t)
dx dy dz =

∫∫∫
D(t0)

J (t)dx0 dy0 dz0,

where the Jacobian J (t) = det[�(t)]. As in the previous problem

J (t) = J (t0) exp
[∫ t

t0

(
∂X

∂x
+ ∂Y

∂y
+ ∂Z

∂z

)
ds
]
.

Show that dJ (t)/dt → 0 as t →∞ for the Lorenz system

ẋ = a(y − x), ẏ = bx − y − xz, ż = xy − cz,

where a, b, c > 0. What can be said about the volume of any region following phase paths of the Lorenz
attractor as time progresses?

13.29 Show that ẍ(1+ ẋ)− xẋ− x=−2γ (ẋ+1) cos t , γ >0, has the exact solution x=Aet +Be−t + γ cos t .
What can you say about the stability of the limit cycle? Find the Poincaré sequences of the stable and
unstable manifolds associated with t =0 and period 2π . Write down their equations and sketch the
limit cycle, its fixed Poincaré point and the stable and unstable manifolds.

13.30 Search for 2π -periodic solutions of

ẍ + kẋ − x + (x2 + ẋ2)x = � cos t ,

using x = c + a cos t + b sin t , and retaining only first harmonics. Show that c, γ satisfy

c(c2 − 1+ 2r2) = 0,

(r2 + 3c2 − 2)2 + k2r2 = �2,

and that the formula is exact for the limit cycle about the origin. Plot a response amplitude (r) against
forcing amplitude (�) figure as in Fig. 13.13 for k = 0.25.
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13.31 A nonlinear oscillator has the equation

ẍ + ε(ẋ2 − x2 + 1
2x

4)ẋ − x + x3 = 0, 0 < ε  1.

Show that the system has one saddle and two unstable spiral equilibrium points. Confirm that the saddle
point has two associated homoclinic paths given by x = ±√2 sech t . If u = ẋ2 − x2 + 1

2x
4 show that u

satisfies the equation

u̇+ 2εẋ2u = 0.

What can you say about the stability of the homoclinic paths from the sign of u̇? Plot a phase diagram
showing the homoclinic and neighbouring paths.

The system is subject to small forcing εγ cosωt on the right-hand side of the differential equation.
Explain, in general terms, how you expect the system to behave if it is started initially from x(0)=0,
ẋ(0)=0. Plot the phase diagram over a long time interval, say t ∼150, for ε=0.25, ω=1, γ =0.2.

13.32 Show, for α >3, that the logistic difference equation un+1=αun(1− un) has a period two solution
which alternates between the two values

1
2α [1+ α −√(α2 − 2α − 3)] and 1

2α [1+ α +√(α2 − 2α − 3)].
Show that it is stable for 3 < α < 1+√6.

13.33 The Shimizu–Morioka equations are given by the two-parameter system

ẋ = y, ẏ = x(1− z)− ay, ż = −bz+ x2, a > 0.

Show that there are three equilibrium points for b > 0, and one for b ≤ 0. Show that the origin is a saddle
point for all a and b 	= 0. Obtain the linear approximation for the other equilibrium points assuming
that b = 1. Find the eigenvalues of the linear approximation at a = 1.2, a = 1 and at a = 0.844. What
occurs at a = 1? For a = 1.2 and a = 0.844 compute the unstable manifolds of the origin by using
initial values close to the origin in the direction of its eigenvector, and plot their projections on to the
(x, z) plane (see Fig. 13.43). Confirm that two homoclinic paths occur for a ≈ 0.844. What happens
to the stability of the equilibrium points away from the origin as a decreases through 1? What type of
bifurcation occurs at a= 1? Justify any conjecture by plotting phase diagrams for 0.844<a<1.

13.34 Compute some Poincaré sections given by the plane �: z = constant of the Rössler system

ẋ = −y − z, ẏ = x + ay, ż = bx − cz+ xz (a, b, c > 0)

where a=0.4, b= 0.3 and c takes various values. The choice of the constant for z in� is important: if it
is too large then the section might not intersect phase paths at all. Remember that the Poincaré sequence

Figure 13.43 The Shimizu–Morioka attractor: (a) unstable manifolds of the origin projected on to the (x, z) plane
for a = 1.2, b = 1 (b) homoclinic paths of the origin for a ≈ 0.844, b = 1. For obvious shape and symmetry reasons,
these phase projections are often referred to as butterflies.
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z

Figure 13.44 (a) The Poincaré section z=2 for the period-2 Rössler attractor with a=0.4, b=0.3, c=2. The
Poincaré returns must cross the section in the same sense. (b) The section z=4 for the Rössler attractor with a=0.4,
b=0.3, c=4.449. The returns in the half-plane A on the right of the line L (corresponding to ż=0) occur where
ż is increasing on those on the left in half plane B occur where ż is decreasing. Each could be a strange attractor
of the system. (c) A typical phase path in (b) showing its intersection with the section z=4 (see also Figs 13.11
and 13.12).

arises from intersections which occur as the phase paths cut � in the same sense. The period-2 solution
(Fig. 13.12(b)), with Poincaré section z=2 should appear as two dots as shown in Fig. 13.44(a) after
transient behaviour as died down. Figures 13.44(a), (b) show a section of chaotic behaviour at c=4.449
at z=4.

13.35 For the Duffing oscillator

ẍ + kẋ − x + x3 = � cosωt

it was shown in Section 13.3, that the displacement c and the response amplitude r were related to the
other parameters by

c2 = 1− 3
2 r

2, r2[(2− ω2 − 15
4 r2)2 + k2ω2] = �2

for Type II oscillations (eqn (13.25)). By investigating the roots of d(�2)/d(r2) = 0, show that a fold
develops in this equation for

ω < 1
2 [4+ 3k2 − k

√
(24+ 9k2)].

Hence there are three response amplitudes for these forcing frequencies. Design a computer program to
plot the amplitude (�) -amplitude curves (r); C1 and C2 as in Fig. 13.13. Figure 13.45 shows the two
folds in C1 and C2 for k = 0.3 and ω = 0.9.
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0

C

C

C

Figure 13.45

13.36 It was shown in Section 13.3 for the Duffing equation

ẍ + kẋ − x + x3 = � cosωt ,

that the perturbation a′ = [a′, b′, c′, d ′]T from the translation c0 = √[1− 3
2 (a

2
0+b20)] and the amplitudes

a0 and b0 of the harmonic approximation

x = c0 + a0 cosωt + b0 sinωt ,

satisfy ȧ′ = Aa′ where

A =

⎡
⎢⎢⎣
R(P − 3

2 ka
2
0 + 3a0b0ω) −R(Q− 3

2 ka0b0 + 3b20ω) R(−6a0c0k + 12b0c0ω) 0
R(Q− 3a20ω − 3

2 ka0b0) R(P − 3a0b0ω − 3
2b

2
0k) R(−12a0c0k) 0

0 0 0 1
−3a0c0 −3b0c0 −(2− 3r20 ) −k

⎤
⎥⎥⎦

where

R = 1/(k2 + 4ω2), P = −k(2+ ω2 − 15
4 r20 ),

Q = ω(4− 2ω2 − k2 − 15
4 r20 ),

(see eqn (13.37)). The constants a0 and b0 are obtained by solving eqns (13.21) and (13.22). Devise a
computer program to find the eigenvalues of the matrix A for k = 0.3 and ω = 1.2 as in the main text.
By tuning the forcing amplitude �, find, approximately, the value of � for which one of the eigenvalues
changes sign so that the linear system ȧ′ = Aa′ becomes unstable. Investigate numerically how this
critical value of � varies with the parameters k and ω.

13.37 Compute solutions for the Lorenz system

ẋ = a(y − x), ẏ = bx − y − xz, ż = xy − cz,

for the parameter section a = 10, c = 8/3 and various values of b: this is the section frequently chosen to
illustrate oscillatory features of the Lorenz attractor. In particular try b = 100.5 and show numerically
that there is a periodic attractor as shown in Fig. 13.46(a). Why will this limit cycle be one of a pair?

Show also that at b = 166, the system has a periodic solution as shown in Fig. 13.46(b), but at 166.1
(Fig. 13.46(c)) the periodic solution is regular for long periods but is then subject to irregular bursts at
irregular intervals before resuming its oscillation again. This type of chaos is known as intermittency.
(For discussion of intermittent chaos and references see Nayfeh and Balachandran (1995); for a detailed
discussion of the Lorenz system see Sparrow (1982).)
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y

Figure 13.46 (a) Phase diagram for the Lorenz system showing limit cycle at a = 10, b = 100.5, c = 8/3; (b)
Periodic time solution for x at a = 10, b = 166, c = 8/3: (c) Time solution in (b) being disturbed intermittently as b
is increased from 166 to 166.1.

13.38 The damped pendulum with periodic forcing of the pivot leads to the equation (Bogoliubov and
Mitropolski 1961)

ẍ + sin x = ε(γ sin t sin x − κẋ),

where 0<ε1. Apply Melnikov’s method and show that heteroclinic bifurcation occurs if
γ ≥4κ sinh 1

2π .
[You will need the integral∫ ∞

−∞
sin s sech2s tanh s ds = 1

2π/ sinh(
1
2π)

]
.

13.39 An alternative method of visualizing the structure of solutions of difference and differential equations
is to plot return maps of un−1 versus un. For example, a sequence of solutions of the logistic difference
equation

un+1 = αun(1− un),

the ordinate would be un−1 and the abscissa un. The return map should be plotted after any initial
transient returns have died out. If α=2.8 (see Section 13.4), how will the long-term return map appear?
Find the return map for α=3.4 also. An exact (chaotic) solution of the logistic equation is

un = sin2(2n)

(see Problem 13.14). Plot the points (un, un−1) for n = 1, 2, . . . , 200, say. What structure is revealed?
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Using a computer program generate a time-series (numerical solution) for the Duffing equation

ẍ + kẋ − x + x3 = � cosωt

for k = 0.3, ω = 1.2 and selected values of �, say �=0.2, 0.28, 0.29, 0.37, 0.5 (see Figs 13.14, 13.15,
13.16). Plot transient-free return maps for the interpolated pairs (x(2πn/ω, x(2π(n − 1)/ω)). For the
chaotic case �=0.5, take the time series over an interval 0≤ t ≤5000, say. These return diagrams show
that structure is recognizable in chaotic outputs: the returns are not uniformly distributed.
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Answers to the exercises

Chapter 1

1.1 Separatrices are given by y2 = 2(1− sin x).

1.2 Elapsed time is 2tanh−1(1/
√
3).

1.3 V(x) = 1
2x

2 − 1
3x

3.

1.4 Unstable spiral.

1.5 Every circuit occurs in the time π [(1− ε)− 1
2 + (1+ ε)− 1

2 ].
1.6 The limit cycle is the ellipse x2 + 1

4y
2 = 1; period is π .

1.7 Period is 4π
√
(a/g).

1.8 No equilibrium points if λ<−1; one unstable equilibrium point if λ=0 or λ=−1; one stable equilibrium
point if x= λ

√
(1+ λ), (λ>−1, λ 	=0); one unstable equilibrium point if x=−λ√(1+ λ), (λ>−1, λ 	=0).

1.9 (i) stable spiral; (ii) unstable spiral.

Chapter 2

2.1 Phase paths are given by cos x + sin y = constant.

2.2 There are four equilibrium points: (0, 3) and (3, 0) are stable nodes.

2.3 Linear approximation is ẋ = x + 2y, ẏ = x + 3y.

2.4 Eigenvalues are −2 and −3.
2.5 (a) saddle point; (c) unstable node.

2.6 There are three equilibrium points (0, 0), (1, 1) and (−1,−1); (0, 0) is a saddle and (1, 1), (−1,−1) are
unstable nodes.

2.7 (a) (1, 1) is an unstable spiral; (−1, 1) is a saddle. (b) (
√
8, 3) and (−√3,−√2) are saddles; (−√8, 3) is a

stable spiral; (
√
3,−√2) is an unstable spiral.

2.8 The phase diagram has six saddle points and two centres.

Chapter 3

3.2 Index is −2.
3.3 I∞ = 4.

3.4 Equilibrium points at infinity are at the six points (0, 1), (0,−1), (±
√
3
2 ,±1

2 ).

3.5 In polar coordinates the equations are ṙ = r(r2 − 1), θ̇ = −1.
3.6 (b) Use Bendixson’s negative criterion.

Chapter 4

4.1 Limit cycle with amplitude a = 2
√
2 is stable; the one with amplitude a = √6 is unstable.
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4.2 Approximate amplitude is a0 = 2.

4.3 The limit cycle has amplitude a = 32/(9π).

4.4 The limit cycle has amplitude a0 = 2/
√
7, and the polar equation of the spiral paths is given by a2 =

4/[7 − eε(θ−θ1)] where θ1 is a constant.

4.5 Approximately the frequency ω = 1 and the amplitude a = 1
2 (15π)

1
3 .

4.6 The frequency-amplitude approximation derived from the equivalent linear equation is given by ω2 =
3a2/(4−a2). The exact equation for the phase paths is y2 = 1−x2+Ce−x2 . One path is x2+y2 = 1 (C = 0)
which corresponds to ω = a = 1 in the approximation.

Chapter 5

5.1 The equations for x0 and x3 are

x′′0 +�2x0 = � cos τ , x′′3 +�2x3 = x2f
′(x0)+ 1

2x
2
1f
′′(x0),

5.2 max |�| = 0.294.

5.3 Substitute x0 and x1 into (5.32c), and show (using computer software) that the coefficients of cos τ and
sin τ in the right-hand side of (5.32c) are linear in a1 and b1.

5.4 For the leading approximation x = a0 cos τ , a0 satisfies 3a30 − 8a0 + 5 = 0 (see Appendix E on cubic
equations).

5.5 Leading approximation is x = a0 sin τ , where 3a30 − 4βa0 + 4γ = 0.

5.6 a1 = 5γ 3/(6β4); b1 = 0.

5.7 ω = 1− 1
16 (6+ 5a20)a

2
0ε +O(ε2).

5.8 One solution is given by r20 = 4, in which case a0 = −γ /(2ω1), b0 = 0.

Chapter 6

6.1 x = cos τ + 1
32ε[− cos τ + cos 3τ ] +O(ε2) where t = τ + 1

8ετ +O(ε2).

6.2 x = e−t /t2.
6.3 x = a

√[4a2−(4a2−1)e− 1
2 εt ]

cos τ .

6.4 yO = 1, yI = 1− e−x/ε.
6.5 xO = 2tan−1[et/k tan(2α/k)], xI = α(1− e−kt/ε)/k.

Chapter 7

7.2 γ = 2
9
√[2(1− ω2)3 + 18k2ω2(1− ω2)].

Chapter 8

8.2 Solutions are given by x = AeCt , where A and C are constants.

8.3 General solution is

[
x

y

]
= A

[
0
1

]
e−t + B

[
1
1

]
e−2t +

[1
6
1
3

]
et .
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8.4 �(t) =
[

t2 t3

2t − t2 3t2 − t3

]
.

8.5 x(t) = 1
4

⎡
⎣ 2et − 2e− t

−(1+ 2t)+ 9e2t

2et + 2e−t

⎤
⎦

8.7 �(t) =
⎡
⎣2e−t ie(1+i)t −ie(1−i)t
−e−t 2ie(1+i)t −2ie(1−i)t
e−t e(1+i)t e(1−i)t

⎤
⎦.

8.9 Straight line paths occur on x1= x2= x3; x1= x2, x3=0; x1=−x2=−x3.

Chapter 9

9.2 E =
[
e2π 0
0 1

]
, µ1 = e2π , µ2 = 1.

9.3 G1(α,β) = 0 implies β2 = 4(α − 1
4 )

2.

G2(α,β) = 0 implies

4β2 + (8α − 18)β − 16α2 + 40α − 9 = 0, or,

4β2 − (8α − 18)β − 16α2 + 40α − 9 = 0.

Chapter 10

10.1 Stable spiral.

10.2 (b) r = (1− 3
4e
−2t )−1, θ = −t .

10.3 Possibility is V (x, y) = x4 + 2y2.

10.6 Use the function U(x, y) = x2 − y2.

10.7 K = 1
2

[
6 7
7 1

]
.

10.9 K = 1
6

[
2 1
1 2

]
.

Chapter 11

11.2 Phase paths are given by y − ln |1+ y| = 1
2e
−x2 + C.

Chapter 12

12.1 Bifurcations occur at λ = 1 and λ = 9.

12.4 There no limit cycles for µ > 9
4 or µ < −√2; two for −√2 < µ <

√
2: four for

√
2 < µ < 9

4 .

12.6 No limit cycles if µ > 1 or µ < 0, and two if 0 < µ < 1. If 0 < µ < 1, let

r1 =
√
1+√(1− µ) r2 =

√
1−√(1− µ).

Then r1 is stable and r2 is unstable.
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Chapter 13

13.2 The limit is (1, 3).

13.4 Instability occurs for α > 4
3 .

13.5 κ cosh(12ωπ) ≤ ωγπ .

13.7 The Liapunov exponents are 4, 1, −1.
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A Existence and uniqueness theorems

We state, without proof, certain theorems of frequent application in the text.

Theorem A1 For the nth-order system

ẋ = f (x, t) (A1)

suppose that f is continuous and that ∂fj/∂xi , i, j =1, 2, . . . , n are continuous for x ∈ D, t ∈ I ,
whereD is a domain and I is an open interval. Then if x0 ∈ D and t0 ∈ I , there exists a solution
x∗(t), defined uniquely in some neighbourhood of (x0, t0), which satisfies x∗(t0) = x0. �

We call such a system regular on D × I (the set (x, t) where x ∈ D and t ∈ I ). For brevity,
we refer in the text to a system regular on −∞ < xi < ∞, i = 1, 2, . . . , n, −∞ < t < ∞ as
being a regular system. Points at which the conditions of the theorem apply are called ordinary
points.
The theorem states only that the initial-value problem has a unique solution on some suf-

ficiently small interval about t0, a limitation arising from the method of proof. A question of
importance is how far the solution actually extends. It need not extend through the whole of
I , and some possibilities are shown in the following example.

Example A1 ẋ1 = x2, ẋ2 = −x1, x1(0) = 0, x2(0) = 1.

D is the domain −∞ < x1 <∞, −∞ < x2 <∞, and I is −∞ < t <∞. The solution is x∗1(t) = sin t , x∗2(t) =
cos t . This solution is defined and is unique on −∞ < t <∞. �
Example A2 The one-dimensional equation ẋ = 3x2t2, x(0) = 1.

D is −∞ < x <∞, and I is −∞ < t <∞. But

x∗(t) = (1− t3)−1,

so the solution is only valid in −∞ < t < 1, since x∗(t) approaches infinity as t → 1−. �
Example A3 The one-dimensional equation ẋ = 2|x|1/2, x(0) = 1.

A family of solutions is x(t) = (t + c)2, t > −c (so that ẋ > 0); there also exists the solution x(t) ≡ 0. The
required solution is shown in Fig. A1, made up from the appropriate parabolic arc together with part of the
zero solution (the derivative is continuous at A). Here, D is the domain x > 0, I is −∞ < t <∞. The solution
in fact leaves the open region D × I at the point A. �
Example A4 The one-dimensional equation ẋ = x/t , x(1) = 1.

D is −∞ < x < ∞, and I is t > 0. The general solution is x = ct , and the required solution is x = t . The
solution leaves D× I at (0, 0). Despite the singularity at t = 0, the solution continues uniquely in this case into
−∞ < t <∞. �
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×D

Figure A1

×D

Figure A2

Example A5 The one-dimensional equation ẋ = 2x/t , x(1) = 1.

D is −∞<x <∞, and I is t >0. The general solution is x= ct2, and the required solution is x= t2, t >0
(t remaining within I ). However, as Fig. A2 shows, there are many continuations of the solution (having a
continuous derivative), but uniqueness breaks down at t =0. �

For a regular system we shall define Imax (the maximal interval of existence of the solution
in Theorem A1) as the largest interval of existence of a unique solution x∗. Imax can be shown
to be an open interval.

Theorem A2 Under the conditions of Theorem A1, either (x∗(t), t) approaches the boundary
of D × I , or x∗(t) becomes unbounded as t varies within I . (For example, the possibility that
as t →∞, x∗(t) approaches a value in the interior of D is excluded.) �
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In Example A2, Imax is −∞< t <1, and as t→1−, x∗(t) becomes unbounded. In Example
A3, x∗(t)∈D only for −1< t <∞, and the solution approaches the boundary of D× I as
t→ − 1+, at the point (−1, 0). In Example A5, the boundary at (0, 0) is approached.

The following theorem shows that linear systems have particularly predictable behaviour.

Theorem A3 Let ẋ=A(t)x+h(t), x(t0)= x0, where A and h are continuous on I: t1< t < t2
(t1 may be −∞, and t2 may be∞). Then I ⊆ Imax for all t0 ∈ I , and for all x0. �

In this case the unique continuation of the solutions is guaranteed at least throughout the
greatest interval in which A, h are continuous.

B Topographic systems

Theorem B1 The topographic system of Definition 10.1 has the following properties:

(i) V (x, y) < α in the interior of the topographic curve Tα when 0<α<µ.

(ii) There is a topographic curve through every point in the interior of Tα when 0 < α < µ

(i.e., Nµ is a connected neighbourhood of the origin).

(iii) If 0 < α1 < α2 < µ, then Tα1 is interior to Tα2 , and conversely.

(iv) As α→ 0 monotonically the topographic curves Tα close upon the origin.

Proof Choose any α, 0 < α < µ. Let P be any point in Iα, the interior of Tα, and A be any
point on Tα. Join OPA by a smooth curve lying in Iα. Along OPA, V (x, y) is continuous, and
OPA is a closed set. Suppose that VP ≥ α. Since VO = 0 there is a point B on OP such that
VB = α. But, since B does not lie on Tα, this contradicts the uniqueness requirement (iii) of
Definition 10.1. Therefore V < α < µ at every point interior to Tα.

The properties (ii) and (iii) follow easily from the property just proved.
To prove (iv): choose any ε > 0 and let Cε be the circle x2 + y2 = ε2. V is continuous on

Cε, so V attains its minimum value m > 0 at some point on Cε; therefore V (x, y) ≥ m > 0
on Cε. Choose any α < m, and construct Tα. No part of Tα can be exterior to Cε since, by (i),
V (x, y) ≤ α < m on Tα and in its interior. Therefore, there exists Tα interior to Cε for arbitrarily
small ε. By (iii), the approach to the origin is monotonic. �

Theorem B2 In some neighbourhood N of the origin let V (x, y) be continuous, and ∂V/∂x,
∂V/∂y be continuous except possibly at the origin. Suppose that, in N ,V (x, y) takes the form,
in polar coordinates,

V (x, y) = rqf (θ)+ E(r, θ),

where

(i) V (0, 0) = 0;

(ii) q > 0;

(iii) f (θ) and f ′(θ) are continuous for all values of θ ;
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(iv) f (θ) > 0, and has period 2π ;

(v) lim
r→0

r−q+1∂E/∂r = 0 for all θ .

Then there exists µ > 0 such that

V (x, y) = α, 0 < α < µ

defines a topographic system covering a neighbourhood of the origin Nµ, where Nµ lies in N .

Proof Note that the conditions imply that E(0, 0) = 0, and that E is continuously differen-
tiable except possibly at the origin. Condition (v) together with (i) can be used to show that E
is of lower order than rqf (θ) (the dominant term, as r→0). (v) states that the same is true for
the derivatives with respect to r.

We have

∂V

∂r
= qrq−1f (θ)+ ∂E

∂r
. (B1)

From conditions (iii) and (iv), f attains its minimum valuem > 0 on the closed set 0 ≤ θ ≤ 2π :

m = min
[0,2π ]

f (θ) > 0. (B2)

Condition (iv) implies that given any ε > 0 these exists δ > 0 such that in a region Rδ lying in
N and defined by 0 < r ≤ δ, 0 ≤ θ ≤ 2π ,∣∣∣∣∂E∂r

∣∣∣∣ < εrq−1.

Put ε = 1
2qm, and remove the modulus sign to obtain

∂E

∂r
> −εrq−1 = −1

2
qmrq−1 on Rδ. (B3)

From (B1) and (B3): on Rδ

∂V

∂r
> qrq−1m− 1

2
qmrq−1 = 1

2
mqrq−1,

so

∂V

∂r
> 0 on 0 < r ≤ δ, 0 ≤ θ ≤ 2π . (B4)

Therefore, from (B4) and the continuity of V at the origin where V = 0, it follows that V > 0
on Rδ.
In Fig. B1, denote by Cδ the circle r = δ. Cδ is a closed set and V is continuous on Cδ, so V

attains its minimum value µ at some point on Cδ, and it is positive at this point:

µ = min
Cδ

V (x, y) > 0. (B5)



Appendices 515

a

�
C

N

Figure B1

Let P be any point on Cδ and OP a radial straight line. OP is a closed set and V is continuous
on OP. By (B4), V is strictly increasing from its zero value at the origin to its value V (xP , yP )
at P , where, by (B5),

V (xP , yP ) ≥ µ > 0. (B6)

Choose any value of α in the range

0 < α < µ.

By the Intermediate Value theorem there is a unique point (since V is strictly increasing)
A:(xA, yA), on OP such that

V (xA, yA) = α.

The continuity of V ensures that as P moves around Cδ, the corresponding points A lie on
a continuous closed curve Tα, and the Inverse Function theorem ensures that the curve Tα is
smooth.
Clearly, as α→ 0 monotonically, the curves Tα close steadily on to the origin. They therefore

form a topographic system in a neighbourhood Nµ of the origin defined as the set of points
V (x, y) < µ. �

C Norms for vectors and matrices

The norm of a vector or matrix is a positive number which serves as a measure of its size in
certain contexts. It is indicated by double vertical lines, ‖x‖ when x is a vector and ‖A‖ for a
matrix A. In this book we use the Euclidean norms, defined as follows.
For a real or complex vector x of dimension n with components x1, x2, . . . , xn we define

‖x‖ =
(

n∑
i=1
|xi |2
)1/2

, (C1)
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where |xi | signifies the modulus of xi in cases where it is complex. If x is a real vector, ‖x‖ is
the usual measure of its length or magnitude: the modulus signs in (C1) may be omitted. For
real vectors in two or three dimensions, the equation ‖x‖<c, where c >0, defines a circular or
spherical neighbourhood of the origin.
The vector norm ‖x‖ has the following properties ((i) to (iv) constitute the axioms for a

norm):

(i) ‖x‖ ≥ 0 for all x.

(ii) ‖x‖ = 0 if, and only if, x = 0.

(iii) ‖αx‖ = |α|‖x‖, α a real or complex number.

(iv) ‖x + y‖ ≤ ‖x‖ + ‖y‖. This is the triangle inequality. If x and y are real and three-
dimensional, then it states that one side of any triangle is of length less than or equal to the
sum of the lengths of the other two sides. The inequality can be extended, step by step; for
example

‖x + y + z‖ ≤ ‖x‖ + ‖y‖ + ‖z‖.

(v) If x is a function of a real variable t , and t2 ≥ t1, then∥∥∥∥
∫ t2

t1

x(t)dt
∥∥∥∥ ≤
∫ t2

t1

‖x(t)‖dt

(proved by interpreting the integral as a sum and using (iv)).
For an n× n matrix A with elements aij we define the matrix norm

‖A‖ =
⎛
⎝ n∑

i=1

n∑
j=1
|aij |2
⎞
⎠

1/2

, (C2)

in which the elements may be real or complex. ‖A‖ has the same properties, (i) to (v)
above, as does ‖x‖.

The vector and matrix norms are compatible with the frequently needed inequality:

(vi) ‖Ax‖ ≤ ‖A‖‖x‖.
The reader should be aware that other norms are in general use, devised in order to

simplify the analysis for which they are used; for example (Cesari 1971) the following
norms:

‖x‖ =
n∑

i=1
|xi |, ‖A‖ =

n∑
i=1

n∑
j=1
|aij |,

have all the properties (i) to (iv) above. In two dimensions the equation ‖x‖<c (c>0)
defines a diamond-shaped neighbourhood of the origin.
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D A contour integral

The following integral arose in Melnikov’s method (Section 13.7), and is a typical example of
infinite integrals in this context:

I =
∫ ∞
−∞

f (u)du,

where f (u)= sech u tanh u sinωu. Generally these integrals can be evaluated using contour
integration and residue theory. Considered as a function of the complex variable z= u+ iv, the
integrand f (z)= sech z tanh z sinωz has poles of order 2 where cosh z=0, that is, where

e2z = −1 = e(2n+1)iπ .

These poles are located at z= (n+ 1
2 )iπ , (n=0,±1,±2, . . .). We use residue theory to evaluate

I by choosing the rectangular contour C shown in Fig. D1. The rectangle has corners at
z= ± R and z= ± R+ iπ . One pole at P : z= 1

2 iπ lies inside the contour.
By Cauchy’s residue theorem (Osborne 1998), the contour integral around C taken

counterclockwise is given by∫
C
f (z)dz = 2π i (residue at z = z0),

where z0 = 1
2 iπ . The residue at z0 = 1

2 iπ is the coefficient of 1/(z−z0) in the Laurent expansion
of f (z) about z = z0. In this case

f (z) = sinh(12πω)

(z− 1
2 iπ)

2
− iω cosh(12πω)

(z− 1
2 iπ)

+O(1)

as z→ 1
2 iπ . Hence∫

C
sechz tanh z sinωz dz = −2iπ [iω cosh(12πω)] = 2πω cosh(12πω).

We now separate the integral around C into integrals along each edge, and then let R→∞.
It can be shown that the integrals along BC and DA tend to zero as R→∞, whilst the integral

i i� �

i�1
2

C

Figure D1
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along AB approaches the required infinite integral I . Along CD, z= u+ iπ so that∫
C
f (z)dz =

∫ −R
R

sech(u+ iπ) tanh(u+ iπ) sin(u+ iπ)du

= −
∫ R

−R
(−sech u)(tanh u)[sin(ωu) cos(iωπ)

+ cos(ωu) sin(iωπ)]du

=
∫ R

−R
sech u tanh u sinωudu · coshωπ

→ I coshωπ ,

as R→∞. The exponential behaviour of the integrand as u→ ±∞ guarantees covergence.
Hence

(1+ coshωπ)I = 2πω cosh(12πω)

from which it follows that

I =
∫ ∞
−∞

sech u tanh u sinωudu = 2πω cosh(12πω)

1+ coshωπ
= ωπ sech

(
1
2ωπ
)
.

E Useful results

E1 Trigonometric identities

cos2 ωt = 1
2 (1+ cos 2ωt); sin2 ωt = 1

2 (1− cos 2ωt)

cos3 ωt = 3
4 cosωt + 1

4 cos 3ωt ; sin3 ωt = 3
4 sinωt − 1

4 sin 3ωt

cos5 ωt = 5
8 cosωt + 5

16 cos 3ωt + 1
16 cos 5ωt

sin5 ωt = 5
8 sinωt − 5

16 sin 3ωt + 1
16 sin 5ωt

(a cosωt + b sinωt)2 = 1
2 (a

2 + b2)+ 1
2 (b

2 − a2) cos 2ωt + ab sin 2ωt

(a cosωt + b sinωt)3 = 3
4a(a

2 + b2) cosωt + 3
4b(a

2 + b2) sinωt

+1
4a(a

2 − 3b2) cos 3ωt + 1
4b(3a

2 − b2) sin 3ωt

(c + a cosωt + b sinωt)2 = 1
2 (a

2 + b2 + 2c2)+ 2ac cosωt + 2bc sinωt

+1
2 (a

2 − b2) cos 2ωt + ab sin 3ωt

(c + a cosωt + b sinωt)3 = 1
2c[3(a2 + b2)+ 2c2] + 1

4a[3(a2 + b2)+ 12c2]
× cosωt + 1

4b[3(a2 + b2)+ 12c2] sinωt
+ 3

2c(a
2 − b2) cos 2ωt + 3abc sin 2ωt

+ 1
4a(a

2 − 3b2) cos 3ωt + 1
4b(3a

2 − b2) sin 3ωt
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E2 Taylor series

The Taylor series of f (x) about x = a is given by

f (a + h) = f (a)+ f ′(a)h+ 1
2!f
′′(a)h2 + · · · + 1

n!f
(n)(a)hn + · · ·.

Particular series are

cos t = 1− 1
2! t

2 + 1
4! t

4 − · · · for all t .
sin t = t − 1

3! t
3 + 1

5! t
5 − · · · for all t .

et = 1+ t + 1
2! t

2 + 1
3! t

3 + · · · for all t .
(1+ t)α = 1+ αt + α(α−1)

2! t2 + α(α−1)(α−2)
3! t3 + · · · for |t | < 1 unless α is positive integer.

E3 Fourier series

Let f (t) be a periodic function of period 2π/ω for all t . Then its Fourier series is given by

f (t) = 1
2
a0 +

∞∑
n=1

(an cos nωt + bn sinωt),

where

an = ω

π

∫ π/ω

−π/ω
f (t) cos nωt dt , (n = 0, 1, 2, . . .), bn = ω

π

∫ π/ω

−π/ω
f (t) sin nωt dt , (n = 1, 2, . . .).

E4 Integrals (mainly used in Melnikov’s method)

∫ ∞
−∞

sech2u tanh2udu = 2
3

∫ ∞
−∞

sech4udu = 16
15

∫ ∞
−∞

sech u tanh u sinωudu = πω sech
(
1
2ωπ
)
(see Appendix D).

∫ ∞
−∞

sech u cosωudu = π sech
(
1
2ωπ
)

∫ ∞
−∞

sech2u cosωudu = πω

sinh(12ωπ)∫ ∞
−∞

sech3u cosωudu = 1
2π(1+ ω2) sech

(
1
2ωπ
)
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E5 Cubic equations

In the cubic equation

a0x
3 + 3a1x2 + 3a2x + a3 = 0,

let a0x = z− a1. The equation reduces to the form

z3 + 3Hz+G = 0.

Then, if the equation has real coefficients,

(a) G2 + 4H 3 > 0, one root is real and two are complex;

(b) G2 + 4H 3 = 0, the roots are real and two are equal;

(c) G2 + 4H 3 < 0, the roots are all real and different.
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amplitude 4
slowly-varying 136, 226

Aperiodic behaviour 490
applications

brake 34
Brusselator 88
circuits 21, 85, 86, 387
clock 35
competing species 87
conductor–oscillator 114
Coulomb friction 32, 120, 122
economic 83
Einstein correction 82
epidemic 55, 84
gas flow 81
host–parasite 80
magnetic liquid flow 218
magnetic pendulum 46
pendulum, friction-driven 43, 152
Pendulum, impact 42
pendulum, inverted 48, 331
pendulum, vertically forced 307
planetary orbit 181, 218
population 53, 81, 119, 301, 333
predator–prey 53, 84
relativistic oscillator 45, 144
rotating wire 38
rumour 81
satellite 48, 84
spinning body 378
three-body problem, restricted 82, 303
tidal bore 120, 220
top 82
transverse oscillator 45, 331
Volterra’s model 53, 88

attractor 71
strange 453, 458, 461

autonomous systems 5
Liapunov method (for stability) 351
Lindstedt’s method 169
linear approximation 57
reduction to 443
time-scaling 192

autocorrelation function 493
autoperiodic response 224
averaging methods 125–138

amplitude equation 126, 127
amplitude-frequency estimation 130
energy-balance method 125

equivalent linear equation 140–143
harmonic balance 138,
period and frequency estimate 132
polar coordinate method 130
slowly-varying amplitude 134
spiral phase paths 134
stability of limit cycle 129

beats 230
Bendixson negative criterion 105, 117
Bessel function 142, 147, 179
bifurcation 405–421

flip 414
heteroclinic 113,
homoclinic 113, 175, 469–482
Hopf 416–421
horseshoe 476, 493
Melnikov’s method 469–482
parameter 405
pitchfork 39, 414, 466
point 38, 39, 411
saddle-node (fold) 412
symmetry breaking 415
transcritical 412

Blasius equation 87
blue sky catastrophe 436
boundary layer 207, 221

inner–inner layer 221
Brusselator 88
Burgers’ equation 47
butterfly (phase projection) 501

Cantor set 476
catastrophe 232, 407

blue sky 436
cusp 409, 410
fold 232, 408
manifold 409
map 410

centre 10, 18, 68, 71, 77
existence 390
index 95
linear approximation 58
orthogonal trajectories 80

centre manifold 427–433, 456
theorem 433

chaos 453–454, 467–469, 477–493, 497, 503
attracting set 453
autocorrelation function 493
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chaos (Cont.)
horseshoes 476, 493
intermittency 493
Liapunov exponent 466, 483
Lorenz equations 489
period doubling 493
sensitive dependence on initial conditions 490, 515
strange attractor 453, 458, 461

characteristic equation 22, 64, 285, 291
characteristic expononent 311
characteristic multipliers 310
characteristic numbers 310
clock, pendulum 35
cobweb 441, 462, 484
combination tones 255
composite solution 214
conservative system 14, 17

mechanical analogy 14
kinetic energy 16
parameter-dependent 37
work 15

contour integration (Melnikov) 517
coordinate perturbation 185–190
Coulomb friction 32, 46, 120, 122
cubic equation, roots 529
cusp (equilibrium point) 18

catastrophe 409, 410
jump phenomenon 232

damping 21–32
critical 24
linear 21
negative 24
nonlinear 25
strong 22
weak 23

deadbeat 22
determinant

Hill 318
infinite 318, 328, 329
tridiagonal 318

detuning 235
diametrical plane 101
difference equation 440

cobweb 441, 462, 484
fixed point 441, 461, 462
logistic 462–466, 468, 496, 504
period doubling 464

differential equations
existence 511
regular system 511
uniqueness 511

differential equations (linear)
exponential matrix solution 365
n dimensional 279–289
periodic coefficients 308–330
phase paths 6–10, 49–53
second-order linear, forced 150
second-order linear, homogeneous 63–71

differential equations (names and general forms) see
also separate listings

Blasius 87
Brusselator 88
Burgers 47
Duffing (cubic approximation) 157
Duffing (forced pendulum) 152
Emden–Fowler 87
Hill 308
Lagrange 31
Liénard 388
Lighthill 188
Lorenz 450
Mathieu 315
Meissner 333
Poisson–Boltzmann 142
Rayleigh 133
Rössler 450
Shimuzu–Morioka 501
Ueda 257
van der Pol (autonomous) 110
van der Pol (forced) 234
Volterra 88

discriminant 22, 62
distance function (Melnikov’s method) 479
distance function (metric) 268
domain of asymptotic stability 349

subharmonic 251
domain of attraction 349, 363
dry friction 31, 46, 120, 122
Duffing’s equation 152, 153, 165, 180, 223, 453–462,

471, 483
amplitude response 455, 455, 503
and coordinate perturbation 185
and Mathieu equation 315, 325
chaotic output 487
harmonic response 225
homoclinic bifurcation 469–482
Liapunov exponents 487
mechanical model 494
period doubling 448
Poincaré diagram 459
power spectrum 492
slowly-varying amplitude 226
stability 225
stable and unstable manifolds 473
subharmonic response 242–251, 458
transients 225
superharmonics 492
transients 226
van der Pol plane 227

Dulac’s test 106, 116
dynamical system 5

eigenvalues 61, 285, 360
eigenvectors 62, 285
Einstein correction 82
elapsed time 7
Emden-Fowler equation 87
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energy
change over cycle 126
conservation of 2
equation 2, 17
kinetic 2, 16
levels 31, 338
potential 2, 16
total 26
transformation 1

energy-balance method 125–130
entrainment 239–242,
epidemics 55, 84
equilibrium points 4, 6, 50 see also centre, node,

saddle, spiral
attractor 71
classification 70, 71
degenerate cases 71
hyperbolic 71, 428
index 89
linear approximation 57
linear approximation, n variables 289
of linear systems 57–71
repellor 71
saddle-spiral 451
stability see stability, Liapunov stability, Poincare

stability
equivalent linearization 140–143
Euclidean norm 515
Euler’s method 107
Euler’s theorem 376
excitation

hard 171
parametric 308
soft 172

existence
centre 390
limit cycle 394
periodic solutions 383–403
solutions 511

exponential dichotomy 490
exponential function of a matrix , see matrix,

exponential

feedback 224
Feigenbaum constant 462
Fibonacci sequence 403
first return 439, 445
fixed point (equilibrium point) 50

difference equations 441, 461, 462
of a map 440

flip bifurcation 414
Floquet theorem 309
Floquet theory 308–315

characteristic exponent 311
characteristic multipliers 310
characteristic numbers 310
Hill determinant 318
normal solution 311
transition curves 317

focus see spiral
fold catastrophe 232, 408
forced oscillations 149–175, 223–251

autoperiodic response 224
far from resonance 155
feedback 224
homoclinic bifurcation 469–475
near resonance 156
near resonance, weak excitation 157
nonlinear resonance 1566
solution perturbation 305
stability 225, 234, 305
subharmonics 247

Fourier transform, discrete 491
inverse 491

frequency
entrainment 239
estimate (by averaging) 130

fundamental matrix (definition) 277

generalized coordinates 31
Gram-Schmidt procedure 484
Green’s theorem 92
Gronwall’s lemma 294

half-path 260
Hamiltonian function 76, 257, 375

centre 76
contours 76
level curves 76
saddle 76

Hamiltonian system 75, 375, 497
equilibrium point types 75

hard excitation 171
far from resonance 171

harmonic balance 138
equivalent linear equation 140
general plane system 146
pendulum equation 138
van der Pol equation 140

harmonic response see perturbation methods, Duffing’s
equation, van der Pol’s equation

hemispherical projection 109
diametrical plane 101
horizon 102

heteroclinic bifurcation 1133
heteroclinic path 111
Hill’s equation 308, 333
Hill determinant 318
Hill’s equation 308, 333
homoclinic bifurcation 113, 175, 469–482

Melnikov’s method 477–483
homoclinic path 111, 175, 450
Hopf bifurcation 416–421
horseshoe map (Smale) 476, 493
hyperbolic equilibrium point 71, 111, 428

index 89–100
at infinity 97
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index (Cont.)
centre 95
integral formula 91
node 95
of a closed curve 91
of equilibrium points 93, 95
saddle point 95
spiral 95
sum of 99

inner approximation 206
inner–inner approximation 221
instability, Liapunov test 356 ?
integral invariant 500
intermittency 493, 504
invariant manifold see manifold
inversion transformation (index) 97
inverted pendulum 48, 331
isochronous oscillation 11
isocline 50

Jacobian matrix 290, 422
jump phenomenon 164, 231–233

cusp 232

kinetic energy 2, 16

Lagrange equation 31, 308
Liapunov exponent 466–469, 483–491

chaos 467
computing procedure 484–487
difference equations 466
differential equations 483–491

Liapunov function 346–364
linear systems 357
quadratic systems 373
strong 347
test function 343
weak 346, 349

Liapunov method (for zero solution) 337–377
asymptotic stability 346, 349, 353
autonomous systems 351
Hamiltonian dynamics 374
instability test 360, 361
Lienard equation 376
linear approximation 367
negative (semi) definite function 352
quadratic system 373
positive (semi) definite function 352
uniform stability 345, 347

Liapunov (solution) stability 267–274
asymptotic 271, 346, 353
autonomous system 351
by solution perturbation 305–330
constant coefficient system 284
definition 268
linear systems 271, 273, 367
uniform 271
zero solution 273, 342

Liénard equation 388, 388

Liénard plane 147, 395
Lighthill’s equation 188
Lighthill’s method 190
limit cycle 25–30, 111 see also Duffing equation, van

der Pol equation, averaging methods,
perturbation methods

amplitude estimate 130
averaging methods 134
clock 36
computation of 109
energy balance method 125
existence of 394
fixed point 469
homoclinic to 469
index of 104
negative criterion 111
period estimate 132
polar equation for 29, 130
semi-stable 109
stability of 127

linear approximation 57, 58, see also linear
autonomous system

linear autonomous system, plane 58–71
asymptotes 65
centre 69
characteristic equation 61
classification 71
eigenvalues 61,
eigenvectors 62
fundamental solution 61
matrix form 60
node 65
phase paths 63
saddle 66
scaling 72
spiral 69

linear dependence 58, 275
linear manifolds 429
Linear oscillator 150
linear systems 57–71, 274–297 see also linear

autonomous system
boundedness 283
Floquet theory 308–315
general solution 58–71, 280
general theory of n-dimensional 293
homogeneous 274
inhomogeneous 279
periodic coefficients 308–330
stability 283, 284, 288

Linstedt’s method 169
Liouville’s theorem 500
logistic difference equation 462–466, 468, 496, 504

cobweb 462
fixed points 462
Liapunov exponent 467
period-2 solution 463
period doubling 465
pitchfork bifurcation 465
return map 504
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Lorenz equations 302, 450, 486, 489, 498, 499, 503
Liapunov exponents 486

Mandelstam and Papalexi method (subharmonics) 247
manifolds 405, 422–433, see linear manifolds

catastrophe 409
centre 427–433, 456
higher-order systems 422
intersection of 469–490
invariant 423
notations 425
span 430
stable 425–427, 469
unstable 425–427, 469

matching approximations 206,
Mathieu’s equation 315

damped 325–330
perturbation method 322–324
stability diagram 320, 330
stable parameter region 316
transition curves 322

matrix
block diagonal 371, 432
diagonalisation 366
exponential 365–367, 382
fundamental 277
Jacobian 290, 422
norm 515
trace 313
transpose (notation) 259

Meissner’s equation 333
Melnikov function 481
Melnikov’s method 477–483, 496

contour integral 517
distance function 479
integrals 519

metric 268
triangle inequality 268, 516

modulation 230
multiple scales method 199–206

node 23, 65, 65,
index 95
multiple scale method 199
stable 23, 65
unstable 25, 65

nonautonomous system 5, 149
stability 267, 293

norm 268, 515–516
Euclidean 515
matrix 268, 515
triangle inequality 268, 516
vector 268, 515

normal solution (Floquet theory) 311

ordinary point 50, 511
orbital stability, see Poincaré stability
oscillation see also periodic solution, limit cycle

quasi-periodic 449

relaxation 402
self-excited 37
transverse 45

oscillator
damped linear 21
forced 149–175
relativistic 45
restoring force 15
self-excited 37
simple harmonic 9

outer approximation 207

parameter-dependent conservative system 37
parametric excitation 308
pendulum see also Duffing’s equation

amplitude–phase perturbation 167
forced 149
frequency–amplitude relation 138
friction-driven 43, 152
impact 42
inverted 48, 331
Lindstedt’s method 169
period 46
phase diagrams 3, 119
response diagram 163–166
simple 1
undamped, amplitude equation 163
van der Pol plane 228
vertical forcing 307

period-2 map 448
period-3 map (example) 448
period doubling 448, 453, 465, 493,
periodic solution 9, see also limit cycle

and closed paths 9, 53
averaging methods 125–133
existence of 394
forced 223
harmonic balance 138
Lindstedt’s method 169
restoring force 15

perturbation methods 149–179, 183–217
amplitude equation 159, 163
amplitude–phase expansion 167
autonomous equations 169
direct method 153
forced oscillations 149–173
Fourier series 173
generating solution 154
Linstedt’s method 169
resonance, 155–159
secular terms 158
singular see singular perturbation methods
solution 305
transition curves, Mathieu’s equation 322

phase diagram 3, 50
computation of 107
infinity 100
projections 100–104
scaling 72
volume-preserving 500
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phase paths 3, 6, 49
at infinity 100–104
closed 7, 9
computation of 107
differential equation 9, 50
direction of 3, 9, 50
graphical representation 40
heteroclinic 111
homoclinic 111
isocline 52
linear autonomous system 63
representative point 7
saddle connection 111
separatrix 13
stability 260
transit time 7, 53

phase plane 2, 6, 49
at infinity 100–104
graphical representation 40

pitchfork bifurcation 39, 414, 466
plane autonomous systems 5, 49–79

geometrical aspects 89–113
plane linear systems, see linear autonomous system and

linear systems
Poincaré–Bendixson theorem 341, 383, 387
Poincaré map 439, 448, 458, 459

torus 444
Poincaré section 439

fixed point 441
nonautonomous system 442

Poincaré sequence 439–447, 469
difference equation 440
first returns 441, 445
fixed point of 440
manifolds 469
period-2 map 448
period-3 map 448
quasi-periodic example 449
subharmonic 448

Poincaré (orbital) stability 260–264
definition 261
equilibrium points 263
half-path 260
limit cycle 262
standard path 260

Poisson–Boltzmann equation 142
polar coordinates 29, 130
potential energy 2, 16
power spectrum 491

Fourier transform, discrete 491
time series 491

projections of phase diagrams 100–104
diametrical plane 101, 102
hemispherical 103
horizon 102

quadratic systems 373
quasi-periodic oscillation 449

Rayleigh’s equation 85, 133, 197
regular sysyem 511
relaxation oscillation 402
repellor 71
representative point 7
resonance (forced oscillations) 155–159

far from 155
near 156
nonlinear 156

restoring force 15
return map 504
Rössler attractor 450–452, 501

saddle connections 111
saddle point 10, 12, 66

higher order 423
index 95
multiple scale method 199

saddle-node bifurcation 412
saddle-spiral connection 111
secular terms 158
sensitive dependence on initial conditions 490, 493
separatrix 12, 13
sequence, Poincaré, see Poincaré sequence
Shimuzu-Morioka equations 501
singular perturbation methods 183–217

boundary layer 207, 221
boundary-value problems 206
common region 210
composite solution 214
coordinate perturbation 185–190
inner approximation 208
inner–inner approximation 221
inner region 208
Lighthill’s equation 188
Lighthill’s method 190
matching approximations 206, 211
multiple scales 199–206
non-uniform approximation 183–185
outer approximation 207
outer region 208
overlap region 213,
Poincaré’s method 186
Rayleigh’s equation 197
secular terms 196
slow time 194, 199
strained coordinate 186
stretched variable 207
time-scaling 192
uniform approximation 184
van Dyke’s matching rule 216, 222

singular point 50
slow time 194, 199
soft excitation 172

far from resonance 172
near resonance 172

solution perturbation 305
span (of a vector space) 430
spectrum, power see power spectrum
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spiral 24, 69
index 95
plotting 109
stable 24, 69
unstable 25, 69

spring 15
hard 164
soft 164

stability 4, 259–300 see also Liapunov stability,
Poincaré (orbital) stability

asymptotic (definition) 271
asymptotic, domain of 349
asymptotic, global 349
attraction, domain of 349
centre 273
equilibrium point 4, 273, 337–367
limit cycle 127
nearly linear systems 298
node 273
nonautonomous linear 293–298
parameter-dependent system 37
saddle 273
solution perturbation 305-
spiral 273
subharmonics 247
uniform (definition) 271

state 3, 50,
initial conditions 3, 49

stick-slip oscillation 34
strained coordinates 186
strange attractor 453, 458, 461
stretched variable 207
stroboscopic method 449
strong Liapunov function 347
subharmonics 224, 239–251, 334, 448, 458

domain of attraction 251
Duffing equation 247, 458
entrainment 251
order 1/3 246
order 1/n 243
stability 247
van der Pol plane for 248–251

symmetry breaking 415
synchronization 241
systems see also linear systems

autonomous 5, 49
conservative 14
parameter-dependent 37–40 see also bifurcation
regular 49, 511
states of 3, 50

Taylor series 519
transit time 9, 53
time-scaling (singular perturbation) 192
time series 491
time solution 9, 62
topographic system 30, 338–340, 513–515

torus (phase space) 444
trace (of a matrix) 313
trajectory 6, see also phase path
transit time 7, 9
transcritical bifurcation 412
transpose (notation) 259
triangle inequality 268, 516
trigonometric identities 518

Ueda’s equation 257
uniqueness theorem 511

van der Pol equation 110
amplitude estimate 126, 136
asymptotic stability 299, 351, 363
equivalent linearization 140
existence of limit cycle 394, 399
frequency for limit cycle 132
harmonic balance 140
large parameter 400
Liapunov function for 363
Liénard plane 380
limit cycle 110, 126–129, 132, 400–404
Lindstedt’s method 180
multiple scale method 218
period 404
stability of limit cycle 129, 394

van der Pol equation, forced 234–242
detuning 235
entrainment 239–242
hard excitation 171
harmonic oscillations 234
response diagram 254–257
soft excitation 171
stability 234
synchronization 241
transients 234

van der Pol plane 227–230
damped pendulum equation 229
equilibrium points 227
subharmonics in 249–251

van der Pol space 454
van Dyke’s matching rule 216, 222
variational equation 306
vectors

linear dependence 275
linear independence 275
norm 268, 515
triangle inequality 268,

Volterra’s model (predator-prey) 53, 88
volume-preserving phase diagram 500

weak Liapunov function 346, 349
Wronskian 313, 500

Zubov’s method (Liapunov functions) 381
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