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We use Geometry Expressions and the TI nSpire CAS to find the best cubic spline approximation to a 
quarter circle. 

1. Introduction 
A problem came from a user of Geometry Expressions recently, which nicely illustrates 
the power of a symbolic geometry system used in conjunction with CAS.  The user 
wanted to find the control points of a Bezier spline which approximated a circular arc of a 
given angle.  Why would he want to do such a thing?  Some software and some machine 
tools have Bezier spline curves as primitives, but do not have circular arcs.  If you want a 
circle, you need to piece an approximation together out of splines. 
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Figure 1: A cubic spline constructed in Geometry Expressions.  The spline’s parametric 

equation is computed by the software 

A Bezier spline can be readily modeled in Geometry Expressions [1] using the geometric 
version of de Casteljau’s algorithm [2].  We start with control polygon ABCD.  These 
points are constrained to have coordinates (x0,y0), (x1,y1), (x2,y2), (x3,y3).  Point E is 
constrained to be proportion t along AB.  Point F is constrained to be proportion t along 
BC, and point G is constrained to be proportion t along CD.  Points H and I are now 
added and constrained to be proportion t along segments EF and FG.  Finally, point J is 
added and constrained to be proportion t along segment HI. The spline curve is the locus 
of J as t runs from 0 to 1.  



An important property of the spline curve is that it is tangential to the control polygon at 
its ends.  That is at t=0, the spline curve is tangential to AB, and at t=1 it is tangential to 
CD. 
This property can be readily verified using the TI-nSpire CAS.  Geometry Expressions 
will automatically generate the parametric equation of the curve (figure 1), and this can 
be copied (using Copy As / TI nSpire) into a TI-nSpire CAS worksheet (figure 2). 

 
Figure 2: differentiating the spline curve at t=0 and t=1 shows that it is tangential to the 

control polygon 

The derivatives of the x coordinate and y coordinate with respect to t evaluated at t = 0 
show that the tangent aligns itself with the segment AB.  Again, the derivatives evaluated 
at t=1 show that this tangent aligns itself with the segment CD. 

2. Center Point on Circle 
In this article, we’ll use a spline to approximate a quarter circle, we’ll refer to general 
arcs briefly in the conclusion. 
We model a quarter circle of unit radius in the first quadrant.  Point A is (0,1) and point D 
is (1,0).  AB is constrained to be perpendicular to the y axis (hence the spline will be 
horizontal at A).  CD is constrained to be perpendicular to the x-axis, and hence the 
spline is vertical at D. 
It also seems reasonable that we should require our spline to be symmetric about x=y.  
We enforce this by constraining AB and BC to be the same length: k. 
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Figure 3: Spline curve with control polygon constrained to guarantee tangency with the 
unit circle at A and D and symmetry about y=x (proportional constraints are hidden for 

clarity). 

We would like to find a value for k which provides a close approximation to a quarter 
circle.  One approach would be to require the center point of the spline curve to lie on the 
circle.  The center point is the point with parametric location on the curve ½.  This can be 
easily created in Geometry Expressions by constraining a point’s parametric location on 
the curve to be ½ (figure 4). 

Geometry Expressions can supply the distance of this point from the origin.  It hardly 
needs a CAS to find a value k such that this distance is 1.  However, as we have one 
available, we’ll use it.  The resulting value of k can be copied from the TI-nSpire CAS 
back into geometry Expressions.  Comparison with a unit circle (figure 5) shows that the 
fit is quite good.  How good we will see soon. 

A B

C

D

(0,1)

(1,0)

k

k

K

L1
2

Þ
2·(4+3·k)

8

     
Figure 4: Distance of the center of the spline from the origin is measured in Geometry 

Expressions.  The CAS is used to find the value of k which makes this distance 1. 
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Figure 5: Values of k which make point L lie on the unit circle are copied from the CAS 

into Geometry Expressions allowing a visual inspection of the solution. 

2.1 Error Analysis 
To see how far away from the circle our curve lies, we change the location of L from ½ 
to a generic parametric location x (we’re using x for convenience graphing in the TI 
nSpire, but at the risk of confusion …x is not the x coordinate of L, but its parametric 
location on the curve).  Geometry Expressions generates an expression for the distance of 
this generic point from the origin (figure 6).   
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Figure 6: The distance from the origin of point at parametric location x on the spline 
curve is copied from Geometry Expressions into the TI-nSpire CAS. The expression is 

squared, differentiated and solved. 

To find the values of x for which this distance is maximal or minimal, we first copy the 
expression into our CAS.  Optimizing the distance is the same as optimizing its square, so 
our first step inside the CAS is to square the expression, thus getting rid of the square 
root, and making it more likely that the derivative will fit on the page.  Next, 
differentiate, then solve (figure 6). 
We observe that we have extrema at 0, 1/2 (guaranteed by symmetry), 1 and at two other 
values.  By construction, the curve lies on the unit circle at 0, ½ and 1, leaving two points 
of interest, which are symmetric about x = ½ and should, by the symmetry of the figure, 
lie at the same distance from the origin.  This then is the quantity we are interested in.  



We simply copy it from the CAS and paste into the Geometry Expressions, replacing x as 
the parametric location of point L (figure 7). 
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Figure 7: Maximal distance of point L is obtained by pasting the solution for x into the 
parametric location constraint for point L.  Numeric display shows the error to be less 

that 3/10,000 

 
Figure 8: Error graphed as a function of parametric location on the curve. 

An error function may be obtained by subtracting 1 (the radius of the circle) from the 
distance function measured in figure 6.  This is displayed in figure 8.  We observe that 
this spline curve always errs on the side of being too large.  For some applications this 
may be a benefit, however, we might ask ourselves whether it would be possible to 
improve our estimate if we allowed the spline to err both inside and outside the circle.  
We’ll look at one such curve in the next section. 



3. Equal Area 
One way of ensuring that the spline errs both on the inside and on the outside of the unit 
circle is to insist that the area under the spline is the same as the area under the quarter 
circle.  To measure the area under the spline in Geometry Expressions, you need to create 
first an arc LM on the spline, then draw line segments LK and KM (where K is the 
origin).  You can then select the segments and the arc and create a polygon.  As a final 
step, you will make sure L and M lie at the start and end of the curve by constraining 
their parametric locations to 0 and 1. 
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Figure 9: The area under the spline is measured in Geometry Expressions by creating an 

arc LM on the spline, connecting L and M to the origin and creating a curve-sided 
polygon KLM.  Finally, L and M are constrained to lie at parametric locations 1 and 0 
on the curve.  In our CAS, we can find the value of k which makes the area under the 

spline equal to the area under a quarter unit circle. 

Copying the area value into the CAS we can equate it with π/4 (the area under the quarter 
unit circle), and solve for k.  We have two solutions.  The first is numerically close to the 
value of k which puts the center point on the unit circle.  The second is too far removed to 
be reasonable.  Figure 10 shows what they look like: 
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Figure 10: two solutions yielding the same area under the spline.  Only one is a good 

approximation for the quarter circle! 

We can paste this value back into Geometry Expressions for k, and let the software derive 
the distance from the origin to the point on the curve at parametric location x (figure 11. 
This can in turn be copied into TI-nSpire for graphing (figure 12). 
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Figure 11: distance to the origin for point at parametric location x on the equiareal 

approximation 

Analysis of the graph shows that while we have succeeded in reducing the extent to 
which the approximate curve overshoots the circle, we have done so at a cost of 
undershooting it by almost as much at the center point. 



 
Figure 12: Radius for the equiareal approximation is copied into TI-nSpire from 

Geometry Expressions, and plotted next to the area for the central-point approximation. 

However, this suggests an approach for finding a better solution.  Can we find a value of 
k such that the error function undershoots by the same amount that it overshoots?  

4. Minimizing the maximum error 
Using Geometry Expressions, we can generate a distance function for a point at 
parametric location x, copy this into TI-nSpire CAS and differentiate to find the extrema 
(figure 13,14). 
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 Figure 13: Distance from the origin of the generic point on the spline with parameter k 

 



 
Figure 14: Extrema for the curve of figure 12 calculated in the TI-nSpire CAS 

The extrema lie at x = ½ and at two more complicated points.  We can copy and paste the 
complicated points into Geometry Expressions and let it worry about the algebra.  The 
distance value (figure 15) is surprisingly simple.   
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Figure 15: Extreme values for the distance from the origin on the spline curve with 
parameter k 



In the TI-nSpire CAS we define a variable error1 to be the distance at the midpoint 
subtracted from 1.  We define error2 to be the distance at the more complicated 
extremum minus 1.  The CAS will find, numerically, a value of k which equates these 
errors (figure 16). 

 
Figure 16: Numerical solution for k, equating the absolute values of the two errors 

A plot of the error functions (figure 17) reveals that the minimax solution reduces the 
maximal error by over 25% compared with either of the other approximations. 

 
Figure 17: Error curve for the minimax solution lies between the error curves for the 

central point solution and the equiareal solution. 

5. Conclusion 
We have looked at modeling a quarter circle.  It is also useful to be able to approximate a 
general portion of a circular arc.  The development of spline approximations for general 
arcs yields more complicated formulas, but you can use a similar process, and the CAS 



can take care of the details.  You do need to be careful with the minimax solution as the 
location of the extremum is complicated enough that computing its value can cause 
problems both for Geometry Expressions and the TI nSpire.  
A straightforward, but interesting analysis would be to investigate the improvement in 
accuracy to be obtained by approximating a quarter circle by two 45 degree spline 
approximations.  

Another question would be this:  let’s say we are approximating a full circle by splines, 
each of which approximates one quarter of the circle.  It is a little artificial to insist that 
the spline meets the circle at the axes.  Why not allow the spline to start and finish at a 
radius slightly below that of the circle being approximated.  In this way we could 
essentially translate the error curve for the center point approximation vertically down by 
half its amplitude and achieve a 50% reduction in error. 

The huge benefit of having such powerful software tools as Geometry Expressions and 
the TI nSpire CAS working together under your direction is that they allow you to 
explore many more interesting variants of a problem than you might be inclined to 
undertake working only by hand.   

The beauty of Geometry Expressions is that it assists in the mathematical modeling phase 
of problem formulation, allows you to copy the mathematics into your CAS, and then 
assists in interpreting the results, by displaying the solution.  In this way degenerate or 
nonsensical solutions can be immediately differentiated visually from sensible solutions 
Such was the case in figure 10, where a picture immediately showed us that one solution 
involved a spline with a loop. 
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