L

~AD=A038 876 DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE-*ETC F/G 9/2 .

6=-PRIME B-SPLINE MANIPULATION PACKAGE BASIC MATHEMATICAL SUBROU-=ETC(U)
APR 77 J M MCKEEr* R J KAZDEN
UNCLASSIFIED DTNSRDC REPORT 77-0036

. NI
BEBERECEEEDER
EEEGEHCHCaEwlE
HElENEEEEEARE
EEEHEEANEERSEE
HEEENEEEREEEE

|0 kR N

Yo
.

O
Jle&

it e

N
O,

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDAR 163 -A

Gl L T g

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)
7 REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
"f,,/\ TR 2. GOVY ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER
\ DTNSRDC Report 77-p@36 |
, [uricimasnnegy (ol T_8 PERIOD COVERED
@VE-ERIME’Q-.?LINE MANIPULATION PACKAGE gAsm/ ‘j’ Final Aﬂf? :)
g ;MATHEMATICAL SUBROUTINES,_?""" " 6. PERFORMING ORG. REPORT NUMBER ‘

7. AUTHOR(s i ®. CONTRACT OR GRANT NUMBER(s) iq
ames M./ McKee \

.:/., Richard J./Kazden

9. PERFORMING ORGANIZATION NAME AND ADDRESS 0. :=2gN.M'lo!.\k!:sr??.“’un.o.)'!'c:. TASK |
David W. Taylor Naval Ship Research = Task Area: 53532020
and Development Center WOik Unit: 1-1808-009
Bethesda, Maryland 20084 ;

11. CONTROLLING OFFICE NAME AND/ADP\R!!S 7 / | 12_BEPQRT DATE
{ ST { /] AprSEE2977
\\@m a __/] 3. NUMBER OF PAGES
e | — 93

4 T. MONITORING AGENCY NAME & ADDRESS(i! different from Controlling Office) | 18. SECURITY CL ASS. (of this report)

UNCLASSIFIED
T8a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

1 186. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

‘ C
3
17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report)
9 \gT\
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse side If necessary and identity by block number) 7
B-spline functions Lease-squares fitting
Curves Mathematical subroutine library
Intersecting curves Splines
Intersecting surfaces Surfaces

&

20. l“l“:? (Continue on reverse side |l necessary and Identify by block number)

This report describes a library of mathematical subroutines for
defining and operating on B-spline curves and surfaces. This library
contains subroutines for evaluating B-spline functions, for using B-
splines as a basis for fitting curves and surface data, and for finding
the intersections of B-spline curves and surfaces. An explanation of —» n\o,ct

(Continued on reverse side) [’-\"7

It

DD fan'7s 1473 zoiTion oF 1 NOV 6818 OBtOLRTE UNCLASSIFIED
$/N 0102-LF-014-6601

——— ‘ Q : E I sECUmTY CLASSIFICATION OF THIS PAGE (When Dete Trtoved)

UNCLASSIFIED

LLLURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

(Block 20 continued) .

Cont | —>> the general theory, a summary of important properties, and detailed
operating instructions for each subroutine are given. A program
illustrating a typical use of the basic subroutines has been included
along with computer-generated plots of B-spline surfaces and inter-

A section curves.

b Although the basic evaluation subroutines use previously
published techniques, the fitting and intersection procedures
represent effective new approaches to the treatment of these old

problems.

3 T |
b y
- 4

. {

UNCLASSIFIED

p SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)
i M At A s it i e i - e

T T

PREFACE

DINSRDC is developing a programming language for describing
structural geometry. This language, called G-PRIME, is designed to assist
scientists and engineers in translating from concepts and blueprints to
the data format required by mathematical simulation programs. G-PRIME
must be able to accurately represent many geometric forms, and to
reproduce, scale, move, truncate, combine, and find intersections of these
various forms. One feature which greatly simplifies the design of
G-PRIME, and one that probably makes it unique, is that all curve and
surface geometry is represented using just one mathematical form--
B-spline functions.

A number of projects within the Navy ®ould benefit from a unified
set of curve and surface manipulation subroutines, particularly projects
in the hull representation and data fitting areas. This possibility
prompted us to isolate G-PRIME's basic B-spline manipulation routines and
to make them available as a separate subroutine library. This report
contains a discussion of the mathematics involved in the use of B-spline
functions, a description of the subroutines contained in this library, and
a sample application which illustrates a typical use of the subroutines.

We have been pleased with the performance of these subroutines in
our applications. It should be noted, however, that only a first
increment of the intersection capability has been included at this time.
Further, we now see areas in which improvements can be made and in which
additional capability is necessary. This report concludes with a summary
of our current work in the development of this basic B-spline capability
and our recommendations for future directions.

iii

; TABLE OF CONTENTS

R R A e Ui s e R e o o R s el
PARAMETRIC B-SPLINE CURVES AND SURFACES
BACKGROUND o ¢ ¢ & s s = +
EVALUATION PROCEDURES .
PITYING PROCEDUBES .« &« « & « &« a4 s 5 » = =
INTERSECTION PROCEDURES
; PROPERTIES OF B-SPLINE FUNCTIONS
BASIC B-SPLINE SUBROUTINES
GLOBAL CONVENTIONS
EVALUATION SUBROUTINES
FITTING SUBROUTINES .
INTERSECTION SUBROUTINES
UTILITY SUBROUTINES .
- SAMPLE APPLICATION - PLOTTING B-SPLINE SURFACES

" RECOMMENDED EXTENSIONS .
f ACKNOWLEDGMENTS
; REFERENCES .
? LIST OF FIGURES
i 1 - Intersecting Parametric Curves
i i 2 - Two Curves with Two Intersection Points .
Ei 3 - An Intersection Point and a Stationary Point
¥ 4 - Surface Mesh Conventions . . .
k; 5 - Subroutine PLT3DS .
‘ 6 - Views of a B-Spline Surface Drawn by Subroutine

PLT3DS with IFS=1 and JFT=0 .

Views of a B-Spline Surface Drawn by Subroutine
PLT3DS with IFS=1 and JFT=1 .

T

~
|

i'iﬁdir iv

Page

0w O K = =

14
15
16
19
31
36
66
77
84
86
86

10
11
12
17
78

80

81

| Page
‘ 8 - B-Spline Surface Outlines Drawn by Subroutine PLT3DS

4 _ SR o OO R S M e S
; 9 - Views of Intersecting B-Spline Surfaces Drawn by

£ SubTauEine PETADS . ife vl e it e e e e e e e 83

I LIST OF TABLES

1 - Curve and Surface Type Codes 18
2 - The Main Subdivisions of COMMON Block BOPRXX 45
3 - Surface Data Area of MBOPR « ¢ v v o v « + . 45
4 - Transformation Matrix Data Area of MBOPR 52

|

i AC\. ESS1ON I for |

S white Sectlon
?; gutt sectise O
j a
umuomzn i
msnflcmul......,.............

e
cessacpaseneenTitt

| L manen s G2
TR mu. m,u « SPE AL
A S

(T8

o

RETVE

ABSTRACT

This report describes a library of mathematical
subroutines for defining and operating on B-spline
curves and surfaces. This library contains sub-
routines for evaluating B-spline functions, for 1
using B-splines as a basis for fitting curves and
surface data, and for finding the intersections of 1
B-spline curves and surfaces. An explanation of 1
the general theory, a summary of important properties,
and detailed operating instructions for each sub- | 4
routine are given. A program illustrating a typical

use of the basic subroutines has been included along
with computer-generated plots of B-spline surfaces
and intersection curves.

Although the basic evaluation subroutines use
previously published techniques, the fitting and
intersection procedures represent effective new
approaches to the treatment of these old problems.

PARAMETRIC B-SPLINE CURVES AND SURFACES

BACKGROUND
Since their introduction by I.J. Schoenberg in 1946,1 mathematical

spline techniques have become increasingly popular for smoothing and
interpolating data and for functional approximation. Much of the popu-
larity of these techniques can be attributed to the fact that mathemat-
ically smooth and aesthetically pleasing shapes are easily produced using
splines. R. Riesenfeld has proposed using spline functions for curve and

l Schoenberg, I.J., "Contributions to the Problem of Approximations of
Equidistant Data by Analytic Functions,' Quart. Appl. Math., vol. 4 (1946),
pp. 45-99; 112-141.

R S

e

surface approximation in computer-aided design in his 1973 thesis.2
The design method which he proposes is patterned after Bezier's
technique,3 but uses a well-behaved set of spline functions as the basis

Mhadz on

£ for approximation rather than the Bernstein polynomial basis usually

f associated with Bézier's method. The advantages of using these basic

; splines (or B-splines) include numerical stability, computational

I efficiency, and the ability to represent a variety of common curves and
? surfaces which are difficult to approximate using earlier techniques.

Riesenfeld's thesis provides a good introduction to both Bézier's method
and the theory of B-splines.

Bezier and Riesenfeld choose to represent curves and surfaces by
vector-valued parametric functions instead of the scalar equations which
are most often used for classical curves and surfaces. Although it is
not necessary to use parametric equations with B-splines, the parametric
form does enlarge the family of admissible shapes and makes possible
several computational short cuts.

Our objective has been to produce a library of FORTRAN subroutines
which can be used to perform most elementary operations involving B-spline
curves and surfaces. The subroutines described in this report include
(1) an implementation of the techniques described by Riesenfeld2 for
evaluating cubic B-splines having a uniform knot vector, (2) routines for
£ fitting data with B-spline curves and surfaces, and (3) routines for
51 finding the intersections of B-spline curves and surfaces.

For the reader who is not familiar with B-splines the following
examples may help to illustrate the utility of such a library.

e A designer wishes to produce a transparent plastic canopy
to enclose an instrument package. Since B-spline functions can be used
directly to generate a smooth surface, the designer needs only to supply

FEEFTIAS

Riesenfeld, R., "Application of B-Spline Approximation to Geometric
Problems of Computer-Aided Design,' University of Utah Computer Science

Report UTEC-CSC-73-126.

3 Bezier, P., Numerical Control - Mathematics and Applications (translated
by A.R. Forrest). London: John Wiley and Sons, 1972.

a rectangular mesh of points which describes the essential shape of the
canopy and its boundaries in order to produce a trial surface. The
evaluation routines can be invoked to calculate a number of points on the
B-spline surface induced by the data given in the mesh. This surface may
be graphically displayed for visual evaluation, it may be used with
numerical integration techniques to calculate the volume enclosed, or it
may be used to check clearances for the instrument package. If the design
is not satisfactory, the designer can change it by modifying the points
in the hesh. When a satisfactory design has been found, the evaluation
routines can be called upon to supply enough points on the surface to
produce a mold for manufacturing the canopy.

e An engineer is laying out detailed drawings for the
fabrication of a plenum which involves circular pipes and an oval chamber
meeting at oblique angles. He needs to know the curves of intersection
of these parts for cutting the material. Points on the curves of inter-
section can be calculated using B-spline functions in a two-step process.
First, the engineer provides data points on each of the intersecting
pieces. These points are used by the fitting routines to determine
B-spline surfaces which represent each of the original surfaces. The
intersection subroutines will determine points on the curves of inter-
section of these B-spline surfaces.

e A technician would like to have experimental data plotted
and have smooth curves drawn which interpolate the data points or pass
close to the data points. The fitting routines can be used to determine a
B-spline curve which either interpolates the data or best fits the data in
the least-squares sense. The evaluation routines can then be called to
obtain sufficient points on the curve for smooth plotting.

The remainder of this section describes the various mathematical

procedures currently available in this library.

-

e S o o
et s s s o & :

e S DRSS i S

EVALUATION PROCEDURES
The B-Spline Curve

A parametric B-spline curve, Qm[?;s], is said to be induced by the
polygon P = PI,PZ,...,Pm of m points, where each point is a vector with as
many components as the dimensionality of the space. For a given polygon
P, and parameter value s, the point on the induced B-spline curve is

given by

m
Q,[Pis] = ii N; 4P 0 <s <1 (1)

1
where Ni 4(s) is the ith normalized cubic B-spline basis function.
Ni 4(s) is computed using de Boor's recursive procedure4:
For M=1
1 for i < s-(m-1)< i+l
Ni,M(S) 10 otherwise
then for M = 2,3,4 (&3

NI,M(S) = [(z-i).Ni,M'l(S)+(m+i-z).Ni"'l,M'l(s)]/(m-l)

where z = s*(m-1)

For closed curves a periodic basis is required which can be obtained
by modifying the above procedure so that all differences and indices are
computed modulo (m-1). Whenever 0 < s < 1/(m-1) or (m-1)-1/(m-1) <s <1
the basic functions may be modified such that the end points of the
polygon P are interpolated by the B-spline curve and the slopes at the
ends of the curve are the same as the slopes of the beginning and ending
legs of the polygon. This modification is equivalent to introducing a
non-uniform knot vector in the spline definition. For closed curves,
values of s outside the interval 0 < s < 1 are replaced by s modulo 1. For
convenience, values of s outside the interval 0 < s < 1 are also permitted
for open curves. In this event basis functions are constructed to
produce a straight line extension of the corresponding leg of the inducing

-~

4
de Boor, C., "On Calculating with B-Splines," J. Approx. Theory, vol. 6

(1972), pp. 50-62.

polygon. qm[?;O] and Q“[E;ll are still referred to as the ''ends' of the
curve, however.

A Linearly Interpolated Approximation to a B-Spline Curve

Frequently it is necessary to evaluate a B-spline curve for some set
of uniformly spaced parameter values, say (51,52,...,5K), and Equation (1)
can be written in matrix form:

Q= [SIP (3)
where
G, =N 6, B [Pl,PZ,...,Pm]T, and
g = 1QiiPisgl. Q1B] 0, B8 1"

If a matrix of B-spline coefficients, [S], has been previously
computed and q“[?;si] is required where S < S; S Sy @, an approximation
to Q may suffice for certain applications. We can obtain one such
approximation by linear interpolation of the coefficients available in
[S]. If the two parameter values used in computing [S], which bracket Si

are sj and s. then

I+
QulPss;] = QulPis;1+(Q[Pss;5491-QyPss;51) - (55-55)/ (5541 -55)

Substituting Equation (1) in the last equation gives

2 m
QITI[P’sll = 521 [NE,4(SJ)+(N€,4(SJ+1) -N€,4(SJ)).(Sl-SJ)/(Srl-SJ)]pE’

or

Qm[P;si] - El &5,4(51)‘)5 4)

The B-Spline Surface
A parametric B-spline surface is said to be induced by an m by n

»

N LIEN

rectangular mesh of points [P], where each pij is a vector with as many
components as the dimensionality of the space.
A point on a cubic B-spline surface corresponding to the pair of

parameter values (s,t) is given by

n
. <
: jzl Ni,d(s)Nj,4(t)pij’ 0<s<l, 0<t<l (5)

[=}

; Qpl[P)3s,t] =
| 1

This surface is a Cartesian product generalization of a B-spline curve and
all qualifications imposed on the curve definition apply to the surface
definition as well. The curves an[[P];O,t], an[[P];l,t], an[[P];s,O],
and an[[P];s,I] are referred to as the "edges'" of the surface.

To evaluate a B-spline surface for a set of points corresponding to 3

the various combinations of the parameters {sl,sz,...,sk} and {tl’tZ""’tz}
Equation (5) can be written in matrix form:

[l = (SI{PIIT'] (6)

where Sij = Nj,4(si)’ Tij = Nj,4(ti]’ [P] is the inducing mesh of points,
and [Q' ic the mesh of points on the B-spline surface.
If vie B-spline coefficient matrices [S] and [T] are available, a
linearly interpolated approximation to the B-spline surface can be
i obtained by substituting ﬁj,4(z) of Equation (4) for Nj’4(z) in Equations
(5) and (6).

(i g

FITTING PROCEDURES

i The B-spline approximation to a curve or surface is particularly
i useful in the process of designing objects for which there are few
quantitative constraints on the final form and for which the main concerns

g?l are gross dimensions, smoothness, and aesthetic acceptability. Such an

?5 approximation is usually not satisfactory as a mathematical representation
: o

£ | of the shape of an existing object. Many of the advantages of B-spline

techniques can still be brought to bear on this problem by employing least-
squares fitting procedures using B-spline functions as the basis for
fitting the given shape.
Curve Fitting

The problem of fitting an ordered set of data points, Q, with a
B-spline curve is one of determining the inducing polygon, P, in

Q= (SIP

such that the error,

"
o

2

i is minimized where the norm [x| = £ x;”, and [S] is the B-spline
all i
coefficient matrix used in Equation (3).
If we stipulate that there are at least as many points in Q as
there are in P, we can employ standard linear least-squares fitting
¢ _ techniques and write the following expression for P:
,t P = [U]Q (7)
where |
R
) = [s' sl (8)

Surface Fitting
The generalization of a least-squares fitted curve to a surface is
more easily accomplished by introducing operator notation and zero
indexing for the sums. If the cubic B-spline approximation is expressed
as a linear operator, Qﬂ, on C[d][o,l], where d is a positive integer,
and the curve to be approximated is the function f(s), the approximation
§ can be written as

m
Qulfis] = & N; 4(s) £ (i/m)

0

The least-squares transformation [U] from Equation (8) can be used

to define a least-squares fit operator Fm’ such that

y ! m Kk
4 Eff:s] = & ¢ N, .(s)U. f(e/k) (9)
.| m i=0 £=0 i,4 1g
Cf}f If the data point Qg from Q is substituted for each f(¢/k), Equation (9)
o becomes - 1
Fm[Q;s] = iio Ni,4(s)Pi
| where
P = [U]Q

With the same notation the Cartesian product bivariate approximation

of a function f(s,t) is
m
Qu,nlfisst] = QQ [f;s,t] = iio jio Ni a(8IN; 4 (O)E(i/m,j/n) :
] -

The Cartesian product generalization of the least-squares fitted curve is
then

Fm,n[f;s’t] Fan[f;s,t] =

etk i Y (10)
TP RN, LsIN. SN N, Elefk nfE)
i=0 £=0 j=0 n=0 4 J,471En
If the data point an from [Q] is substituted for each f(¢/k,n/2),
Equation (10) becomes
m n
ss,tl = T N. N. (E)P..
where
(P = [U][Q1 W) (11)
- 0
(v) = (s's17s')
(W = (r71) 7 (12)

and [S] and [T] are the B-spline coefficient matrices used in Equation (6).

For certain surface design applications it may be desirable to use
fitting techniques for one parameter and a B-spline approximation for the
other. This can be accomplished by substituting the identity matrix for
either [U] or [W] in Fquation (11), depending on the direction in which
the approximation is desired. Once [U] and [W] have been computed for a
problem of a given size, the fitting procedure for each set of data, [Q],
involves only matrix multiplications. Some applications can exploit this
property to reduce coﬁputing time.

INTERSECTION PROCEDURES

The problem of finding points of intersection of arbitrary curves
and surfaces is essentially that of solving a system of nonlinear equations.
We have approached the task of finding points of intersection of
parametric cubic B-spline curves and surfaces by treating them as arbitrary
nonlinear functions, rather than taking advantage of the special
properties of B-splines. We have chosen this approach for two reasons:
(1) the B-spline functions used for geometric applications are usually very
well behaved and efficient numerical techniques for solving systems of

well-behaved nonlinear equations are readily available; and (2) one
solution procedure can be used for finding intersections involving curves,
surfaces, curves with surfaces, and for finding the point on a curve or
surface which is closest to a given spatial point. We feel that the
straightforward programming that can be achieved using this approach more
than offsets any computing overhead incurred by not taking advantage of
special properties.

After evaluating several iterative, nonlinear solvers we have
chosen Brown's algorithm5 for its efficiency and reliability. This
algorithm employs a nonlinear, least-squares minimization technique that
does not require explicit derivatives of the functions to be minimized.

The Intersection of Two Plane Curves

Although a procedure for finding the points of intersection of two
planar curves is not available in the current version of B-spline
subroutine library, this problem illustrates all the essential features
of the existing intersection procedures.

Consider the two parametric curves

3 xl(sl) £ 5 xz(sz)
fl(sl) b yl(sl) and ~2(52) e yz(sz) (13)

shown in Figure 1. The point of intersection may be found by finding a
pair of parameter values, (sl,sz), that makes the residual function

S lRl\ 5 [xz(sz) = % (sy)

R Y2(s5) - yy(sy)

3 ‘ = £,(5,) - (5 (14)

zero. R is the function that is to be minimized by the iterative solver.
For B-spline curves the fi(s)‘s are calculated using one of the B-spline
evaluation procedures.

[terative procedures require some initial value for each of the
independent variables. When there is only one point of intersection, as

Brown, K.M., '"Derivative Free Analogues of the Levenberg-Marquardt and
Gauss Algorithms for Nonlinear lLeast Squares Approximations,'' Numerische
Mathematik, vol. 18, pp. 289-297, 1972.

Al

iy 3 bra

Figure 1 - Intersecting Parametric Curves

in Figure 1, almost any pair of initial values, which are noc both zero,
will yield convergence to the correct solution.

If the two curves have no point of intersection within the range
defined by parameter values between zero and one and the linear
extensions of the B-spline curves do intersect (see Evaluation Procedure
section), the algorithm will quickly converge to a point outside the
range. If the extended curves do not intersect, the minimization algorithm

will choose the two closest points on the curves as the solution and will

terminate with a non-zero residual function.

Locating the Closest Foint on a Curve

If there are multiple intersection points, as in Figure 2, the user
must select between them by specifying initial parameter values which are
closest to the desired intersection point. If there are only two inter-
section points, this parameter estimate may not be an unreasonable request.
Clearly, a spatial estimate of the location of the desired intersection
would be more natural for the user. Further, spatial estimates seem to be
mandatory if this capability is to be used effectively with computer
graphics devices that have light pens or other graphical means of input.

If the user gives a spatial point, X = (xo,yo), the point on the
curve, fl(s), that is closest to the point X, can be found by determining
the parameter value, 51, that minimizes the residual function

10

- X

Figure 2 - Two Curves with Two Intersection Points

XS] - %
R = { 151 0 (15)

= y1(51) - YO‘ = f (51) = 50

| Again the iterative nonlinear minimization procedure is used to
solve for 51. If the procedure is repeated with the second curve, in order

to determine a parameter estimate, 32, the required initial parameter
values will have been obtained to begin to solve for the desired inter-
section point.

e i i

The Intersection of Three Surfaces
The procedure for finding the point of intersection of three surfaces

is the same as that described for two plane curves except that a pair of
2 parameters, (§i,€i), must be determined for each of the surface functions,
i fi(si,ti), which makes residual function

«';i xz(sz,tz) - xl(sl,tl)
. | YZ(SZ,tz) e yl(sl’tl) f (S
zz(sz,tz) - zl(sl,tl)
~ XS(SS’tS) - xz(sz,tz)
Y3(53’t3) = Yz(szttz)
z3(ss,t3) - zz(sz,tz)

2’t2)'f1(519t1)

$3 0yt Splagt)

Zero.

;'

B
E

To locate the point on a surface f (sl,tl) that is closest to a given
spatial point, Xp = (xo,yo,zo), a pair of parameters, (él,tl), must be
found which will minimize the residual function

xl(slatl) = XO v
R = Yl(Slvtl) -)’0 = fl(slvtl)')EO (1/)

~ ~

2510t - 2

Limitations of the Method for the Three-Surface Problem

It should be noted that with this method of finding points of inter-
section it is not too difficult to pose a problem that will fail. The
most obvious example can be seen in Figure 3, which contains two plane
curves which intersect at one point and come very close to intersecting at
another (stationary point). If the initial parameter values are associated
wWith points that are closer to the stationary point than the actual inter-
section, the method will usually converge to the stationary point and
terminate, indicating failure to find an intersection. Problems of this
type can be avoided by treating them as multiple intersection point
problems. Other situations are possible which can be avoided only by
subdividing the problem to restrict the region of definition.

L,

—e X

Figure 3 - An Intersection Point and a Stationary Point

12

PRET VT

s |

The Intersection of Two Surfaces

The intersection capability of the B-spline subroutine library
contains procedures for finding points on the curve of intersection of
two B-spline surfaces. These points may be used directly or a fitted
B-spline curve may be obtained using the procedures described earlier.

The two-surface intersection procedure has two major processing
steps. First, an edge analysis is performed to determine the general
location and extent of the intersection curve. The results of this
analysis are in terms of ranges of parameter values on each of the
surfaces. The second step involves traversing the curve by incrementing
a selected narameter over the range of the curve and determining a point
of intersection for each value of that parameter.

Edge Analysis

To find a curve of intersection of the two surfaces fl(sl,tl) and
fz(sz,tz) some insight into the nature of such a curve can usually be
gained by determining the points at which the boundary of one surface
pierces the other. To accomplish this a procedure similar to the one
described for finding points of intersection can be used. Determining
the existence of these piercing points requires the investigation of eight
possible combinations, each of which involves an edge of one surface and
the other surface in its entirety. The respective residual functions for
these eight combinations are as follows:

3 = 5 UhE)508.0) By = £;(51,%)-5,00.%))
% T R\hhy) ety Re = £1(51,t)-5,01,8)) %)
Tl A Rl e L ol L U Ve Tl
Ry = 51051, 1)-£5(55:8)) Ry = £1(51:ty)-£,(5,,1)

After the edge analysis, problems with two distinct edge pierce points
(and certain closed surface problems with one edge pierce point) will
be admitted for further processing. Any other outcome will cause the

procedure to terminate, indicating failure.

~—n

e ———. —————.. =

Computing Points on the Curve of Intersection

The parameter values associated with the two edge pierce points are
examined and the one with the greatest range is selected to control the
traversing of the intersection curve. If the selected parameter, 52’ has
the range a < S, < b and the user has requested that k+1 points be found
along the curve, the points are determined by submitting the following

sequence of residual functions to the iterative solver:

N L G e by i

where ¢ = a+(b-a):i/k, i = 0,1,...,k

When one or three edge pierce points is found and one of the surfaces is
a closed surface, the closed surface parameter associated with the
periodic B-spline functions is chosen to control the traversing of the curve.

Limitations of the Method for the Two-Surface Problem

Current two-surface intersection procedures admit only problems with
one or two edge pierce points. This limitation excludes any problem with
multiple curves of intersection and those problems in which a region of one
surface bulges through the other surface. These problems can usually be
treated by restricting the regions of definition or by subdividing the

problem.

PROPERTIES OF B-SPLINE FUNCTIONS

The application of B-spline techniques is quite straightforward and
extensive mathematical insight is not required for their use. Of course,
an awareness of the major properties of B-spline functions should help the
user avoid difficulties and perhaps open new avenues for their use. A
short summary of properties is given below. Most of the proofs have been
sketched by Risenfeld2 or can be obtained by inspection of the B-spline
definitions.

(1) If the evaluation procedures are applied to data points taken
from a given curve, the induced B-spline curve will approximate that given
curve with a certain degree of accuracy. As defined, B-spline functions
yield a convergent approximation; hence, the more data points used, the
better the approximation. The cubic B-spline approximation is also a

14

¢
o
»
L
o

convergent approximation for the first three derivatives of a function.

(2) In regions of high curvature, more data points will be required
to obtain a given level of approximation than in gently curving regions.

(3) A B-spline curve will either coincide with the inducing polygon
or lie on the concave side of that polygon (convex hull property).

(4) The cubic B-spline curves described here have continuous second
derivatives everywhere and continuous third derivatives everywhere with
the possible exception of the points 0, 1/(m-1), 2/(m-1),...,1. A
repeating data point in the polygon can reduce the differentiability by
one at that point. Cusps or sharp corners can be induced in a B-spline
curve by specifying the same data point three times.

(5) If three points of a polygon lie in a straight line, the induced
curve will pass through the middle point exactly.

(6) It is apparent that Q, can be considered a linear operator since

Q,[aP + bR;s] = aQ [P;s] + bQ_ [R;s)

This implies that one can apply a linear transformation to a polygon and
use that transformed polygon to induce a B-spline curve which is equivalent
to applying the linear transformation to the B-spline curve induced by the
original polygon. Relevant linear transformations include rotation,
translation, scaling, and projection.

Each of the above properties can be extended to B-spline surfaces
using the Cartesian product generalization of the curve definition.

BASIC B-SPLINE SUBROUTINES

Our implementation of the B-spline manipulation procedures is in the

form of a library of FORTRAN subroutines. The order of the previous section

has been followed to group the subroutine descriptions according to the
functions: Evaluation, Fitting, and Intersection. A fourth category,
Utility, describes subordinate routines which are used only indirectly in
the B-spline manipulation processes.

15

Although there are three primary evaluation subroutines, the main
most general one for both curves and surfaces is BSEVL1. The other
routines, BSEVL2 and BSEVL3, are somewhat more efficient under special
conditions. Applications which involve several surfaces, each defined |
by the same size mesh, and which are to be evaluated for a fixed set of |
parameter values may substitute subroutine BSEVLZ for BSEVL1 to reduce
computation. Subroutine BSEVL3 could also be substituted for BSEVL1,
but since BSEVL3 only computes approximations to B-spline functions
there are very few applications which can benefit from the use of this
subroutine. The one fitting subroutine included in the library, FITBSZ,
is capable of performing all the fitting procedures described in the

previous section for both curves and surfaces.
Only two intersection subroutines have been included at this time.

One, INT3S, finds a point of intersection of three B-spline surfaces. The 3
other, INT2S, finds points on the curve of intersection of two B-spline
| surfaces. INT3S is quite general, solves most problems of practical
interest, and handles many pathological situations as well. INT2S is
restricted to problems which have one continuous curve of intersection
that includes at least one point on one of the edges of the two intersecting
surfaces. This subroutine will handle a good range of practical problems,
and a much broader class of problems can be treated if the user is willing
to subdivide to meet the stated restrictions.
i Subroutines INT2S and INT3S can also be accessed with simplified
. calling sequences by using subroutines INT2SX and INT3SX, respectively.
o The utility subroutines may be used independently to perform their various
functions, but in general they have been programmed to be efficient for the
tasks at hand and are not necessarily the type one would find in a general

f mathematical subroutine library.

GLOBAL CONVENTIONS

All the B-spline mathematical subroutines described in this report
adhere to the following conventions:
(1) Each rectangular mesh of points, that contains data points taken from
a surface, or points used to induce a B-spline surface, must be stored in

a FORTRAN array dimensioned as follows:

16

g T

Bt e Lol o1 L ol i
> :

o

S Rl S i

P

p#
»
@

P(MD, Mi, N1) ’
where MD is the dimensionality of the space, Ml is the number of mesh
points along an edge of the mesh associated with the variation of the

first parameter, and N1 is the number of mesh points along an edge of the
mesh associated with the variation of the second parameter. The first
parameter is referred to as the ''s" parameter and the second parameter is
referreg to as the ''t'' parameter (see Figure 4).

\
¢
1 T‘ e —
; : : : : : 4
| il e e e o
1./(Ni-1) : : ; :

L} gemnnes oneens beeenen beeees deeeees pE— 3
------------- SR el o s s
L) ;

Figure 4 - Surface Mesh Conventions

(2) Each polygon of points, that contains data points taken from a curve,
or points used to induce a B-spline curve, must be stored in a FORTRAN

array dimensioned as follows:
P(MD, M)
where MD is the dimensionality of the space, and M1 is the number of points

in the polygon. Note that this polygon is equivalent to a surface mesh
with either Ml = 1 or N1 = 1.

(3) An integer code word, ITYPE, is associated with each mesh or polygon
of points used to define a B-spline curve or surface. The type of B-spline

17

e —————

curve or surface desired is indicated by setting ITYPE according to the
values in Table 1.

TABLE 1 - CURVE AND SURFACE TYPE CODES

ITYPE CURVE OR SURFACE TYPE
1 Open Curve

Closed Curve
Open Surface

2
3
4 s-Closed Surface
5 t-Closed Surface
6

s- and t-Closed Surface

(4) A polygon used to define a closed curve must have both points of
closure given, even though the second point is redundant. A mesh used to
define a closed surface must also have the points of closure repeated.
For a given direction a surface will be either open or closed. No hybrid
combinations can be represented.

(5) Any real number is valid as a parameter value; however, for non-
periodic functions a parameter value which is less than zero or greater
than one yields a point on a linear extrapolation of the function.

(6) Cubic B-spline coetficients for a given parameter value are normally

packed into a four-word array, CN, and a packing index, LFT, is associated
with those coefficients. Details of the packing algorithm are included
with the description of subroutine MKSPLN.

For most applications only a few of the library subroutines will be
4 called directly by the user. For example, in a program involving surfaces
k| the user is required to read or generate the mesh of points, [Pj, to
define each surface. He may then determine a new mesh of points which will
induce a B-spline surface that best fits his original set of points by
calling subroutine FITBS2. Surface meshes, regardless of their source, are
all used in the same way in the application portion of the progran. There,
subroutine BSEVL1 can be called to obtain the coordinates of points on the

i
f

surface and the intersection subroutines can be used to find intersection
points and curves.

18

EVALUATION SUBROUTINES

Subroutine Name

BSCMAT
BSEVL1*
BSEVL2*
BSEVL3*
MKSPLN
PLSPLN

pt Primary Access Subroutines

I

W 7N I ey e

- TA

BSCMAT - Subroutine Description

Function: To compute a cubic B-spline coefficient matrix.

Entry Point: BSCMAT

Calling Sequence: CALL BSCMAT (CS ,M1,K1, ICLOSE)

Calling Arguments:
Name (Attributes)
CS (mixed/array/output)

Ml (integer/input)
K1 (integer/input)
ICLOSE (integer/input)

COMMON Areas: None
FORTRAN Data Files: None
Required Subroutines: MKSPIN

Method: Subroutine MKSPLN is called to compute rows of the coefficient

Contents
Cubic B-spline coefficient matrix,
[S], in packed form. Dimensioned
C5(5,K1}.
Row dimension of full [S] matrix.
Column dimension of [S] matrix.
Flag word. A value of zero
indicates that a non-periodic
B-spline basis is to be used to
compute coefficients. A value of
one indicates that a periodic

basis is to be used.

matrix for the K1 parameter values 0, LGk E =1, =2 /R o e Ehie non=
zero elements of each row are stored in the first four words of each row

of CS and the associated integer packing index is stored in the fifth word

of each row.

Remarks:

(1) See ‘description of subroutine MKSPLN for matrix packing

algorithm.

e e e o

BSEVL1 - Subroutine Description 1

Function: To evaluate a parametric cubic B-spline curve or surface
function for a given set of parameter values, yielding the coordinates of
a point on the function.

Entry Point: BSEVL1

Calling Sequence: CALL BSEVL1(P,MD,M1,N1,S,T,ITYPE,6XYZ)
Calling Arguments:

Name (Attributes) Contents

P (real/array/input) Polygon or mesh defining a B-
spline curve or surface.

MD,M1,N1 (integer/input) Dimensions of array P.

S (real/input) Parameter value of point to be

evaluated on B-spline curve or
first parameter of point on a
surface.

T (real/input) Second parameter value of point %

to be evaluated on B-spline
surface.
ITYPE (integer/input) Code word indicating type of ,

B-spline curve or surface (see ;
‘ Table 1).
| XYZ (real/array/output) Coordinates of point evaluated.
“ Dimensioned XYZ(MD).
COMMON Areas: None
FORTRAN Data Files: None i
Required Subroutines: MKSPLN ' 3
if', Method: This subroutine evaluates Equation (1) if a polygon defining

et

oy

il o i

g

a B-spline curve has been given or Equation (2) if a mesh defining a B- g
spline surface has been given. Subroutine MKSPLN is called to compute the fi
B-spline coefficients, N, ,(s) and Nj 48 &f
Remarks :

(1) The dimension N1 and the parameter value T are not referenced <2

if a curve is indicated by ITYPE. -
%

2

21 "

BSEVL2 - Subroutine Description

Function: To evaluate a parametric cubic B-spline curve or surface
function using precomputed coefficient matrices, yielding the coordinates

of a point on the function.

Entry Point: BSEVLZ

Calling Sequence: CALL BSEVL2 (P,MD,M1,N1,K,L,CS,LS1,CT,LT1,

Calling Arguments:
Name (Attributes)

P (real/array/input)

MD,MI ,N1 (integer/input)
K (integer/input)

L (integer/input)

CS (mixed/array/input)

LS1 (integer/input)

CT (mixed/array/input)

LT1 (integer/input)

ITYPE,XYZ)

Contents
Polygon or mesh defining a B-
spline curve or surface.
Dimensions of array P.
Index of the parameter value s,
for which the function is to be
evaluated.
Index of the parameter value t/
for which the function is to be
evaluated.
B-spline coefficient matrix [S]
of Equations (3) and (6) in packed
form. Dimensioned CS(5,LS1).
Column dimension of [S] and the
number of uniformly spaced
parameter values s, for which the
B-spline coefficients have been
calculated.
B-spline coefficient matrix [T]
of Equation (6) in packed form.
Dimensioned CT(S,LT1).
Colum dimension of [T] and the

number of uniformly spaced parameter

values, t., for which the B-spline
coefficients have been calculated.

NP

ITYPE (integer/input)

XYZ (real/array/output)

COMMON Areas: None
FORTRAN Data Files: None
Required Subroutines: None

Code word indicating type of
B-spline curve or surface (sce
Table 1).

Coordinates of point evaluated.
Dimensioned XYZ(MD).

Method: This subroutine evaluates Equation (1) if a polygon defining
a B-spline curve has been given or Equation (5) if a mesh defining a B-

spline surface has been given. The coefficients N.1 4(sk) and Ni 4(t2) are

obtained from the arrays CS and CT respectively.

Remarks:

(1) The dimension N1, the parameter index L, the coefficient

matrix CT, and the dimension LT1 are not referenced if a curve is indicated

by ITYPE.

(2) The coefficient matrices CS and CT can be computed by

subroutine BSCMAT.

BSEVL3 - Subroutine Description

Function: To evaluate a linearly interpolated approximation to a
cubic B-spline curve or surface function, yielding the coordinates of a
point on the approximate function.

Entry Point: BSEVL3
Calling Sequence: CALL BSEVL3(P,MD,M1,N1,S,T,CS,LS1,CT,LT],

ITYPE,XYZ)
Calling Arguments:
Name (Attributes) Contents
P (real/array/input) Polygon or mesh defining a B-spline
curve or surface.
MD,M1,N1 (integer/input) Dimensions of array P.
S (real/input) Parameter value of point to be

evaluated on the approximate curve
or first parameter of point on a
surface.

T (real/input) Second parameter value of point to
be evaluated on approximate
surface.

CS (mixed/array/input) B-spline coefficient matrix [S]
of Equations (3) and (6) in packed
form. Dimensioned CS(5,LS1).

LS1 (integer/input) Column dimension of [S] and the
number of uniformly spaced
parameter values h for which the
B-spline coefficients have been
calculated.

CT (mixed/array/input) B-spline coefficient matrix [T] of

Equation (6) in packed form.
Dimensioned CT(5,LT1).
LT1 (integer/input) Column dimension of [T] and the

number of uniformly spaced parameter
values, ti’ for which the B-spline
i coefficients have been calculated.

Ladh

T T

ITYPE (integer/input) Code word indicating type of

B-spline curve or surface (sze
Table 1).
XYZ (real/array/output) Coordinates of point evaluated.

Dimensioned XYZ(MD).

COMMON Areas: None

FORTRAN Data Files: None

Required Subroutines: PLSPLN

Method: This subroutine evaluates Equation (4) if a polygon defining

a B-spline curve has been given or a variant of Equation (5) if a mesh

defining a B-spline surface has been given. Subroutine PLSPIN is called

to compute the approximate B-spline coefficients, Ni,d(s) and ﬁj’4(t).
Remarks:

(1) The dimension N1, the parameter T, the coefficient matrix CT,
and the dimension LT1 will not be referenced if a curve is indicated by
ITYPE:

(2) The coefficient matrices CS and CT can be computed by sub-
routine BSCMAT.

(3) This subroutine was designed to quickly calculate an
approximation to a B-spline function for the early stages of iterative non-
linear solution routines. In tests, it has executed at about twice the
speed of subroutine BSEVL1, which was not fast enough to be beneficial to
the overall process.

MKSPLN - Subroutine Description

Function: To compute B-spline coefficients for a given parameter

value.

Entry Point: MKSPLN
Calling Sequence: CALL MKSPLN (S,CN,M1 ,MBORD, ICLOSE,LFT)

Calling Arguments:

Name (Attributes) Contents

S (real/input) Parameter value for which
coefficients are to be computed.

CN (real/array/output) B-spline coefficients in packed
form. Dimensioned CN(MBORD) .

Ml (integer/input) Length of full (unpacked) vector
of coefficients.

MBORD (integer/input) Order of B-spline basis function
to be used to compute coefficients.

ICLOSE (integer/input) Flag word. If zero, a non-

periodic or open B-spline basis is
to be used. If one, a periodic
or closed B-spline basis is to be
used .
LFT (integer/output) A matrix packing index. See
Method for description.
COMMON Areas: None
FORTRAN Data Files: None
Required Subroutines: None
Method: Non-zero B-spline coefficients are computed using Formula (2)
and stored in the array CN. A matrix packing index, LFT, is computed for
later reconstruction of a full vector. LFT = S*FLOAT(M1-1)+1. for a
non-periodic basis. For a periodic basis the computation of LFT is made
modulo (M1-1).
Remarks:
(1) For cubic B-spline functions MBORD must be set to 4.
(2) A specific B-spline coefficient used in Formula (2) can be
obtained from the array CN using the following algorithm (note that the

Py 26

e

argument MBORD is the same as the subscript M in the formula):

a. For a non-periodic basis the coefficient Ni,M(S) is stored in
CN(IPOINT) where IPOINT = i-LFT+(MBORD+1)/2 whenever
1 <€ TPOINT < MBORD. Otherwise, Ni,M(S) = 0.

b. For a periodic basis the coefficient Ni,M(S) is stored in
CN(IPOINT) where IPOINT is computed as in the non-periodic
case, except the computation is performed modulo (Ml1-1). Note
that 1 < i € (M1-1) for a periodic basis.

If the index i is required, it may be obtained from the index IPOINT and
the parameter value using the formula:

i = IPOINT + LFT - (MBORD+1)/2
For a non-periodic basis values of i outside the interval [1,M1] must be
excluded. For a periodic basis i must be evaluated modulo (Ml1-1) when
i > (M1-1) and taken as i modulo (M1-1)+(Ml1-1) when i < 1.

(3) Modified coefficients which cause non-periodic B-spline functions
to pass through the end points of a defining polygon are calculated for
cubic B-splines (MBORD=4). An open curve, for example, to be represented
by data points associated with Ml uniformly spaced parameter values,
requires extra data near the end points for a non-periodic B-spline basis.
Specifically required are data at points associated with the parameter

Yehues S = 1./FLOAT(3.*(M1-1)) and

S =1.-1./FLOAT(3.*(M1-1)
Roughly, this represents data at one third the distance between the end
point and its adjacent point. These values are obtained by linear inter-
polation. This method produces a B-spline curve which (1) interpolates
the end points of the inducing polygon, and (2) has the same slope at the
endpoints as does the end leg of the polygon.

(4) Although we chose to use normalized B-spline functions (curves
and surfaces were defined only for parameter values between zero and one),
it is sometimes useful to have smooth continuation of a curve or surface
outside the range of definition. Subroutine MKSPLN does provide for linear
extrapolation of open B-spline forms when parameter values outside the
range zero to one are given. For parameter values which are less than zero
the coefficients are packed in array CN as they would be for a parameter

27

e

p—

ce gy

75 M|

&
i
)
b

value of zero. Similarly, for parameter values greater than one, the
coefficients are packed as they would be for a parameter value of one.
For periodic B-spline functions, the parameter value used, SS, will be

computed from a given value S by the formula:

SS = AMOD(AMOD(S,1.)+1.,1.)

PLSPIN - Subroutine Description

Function: To compute approximate B-spline coefficients for a given
parameter value by linearly interpolating from precomputed coefficients.
Entry Point: PLSPLN
Calling Sequence: CALL PLSPLN(S,CN,MI1 ,MBORD,CS,K1,ICLOSE,LFT)
Calling Arguments:

Name (Attributes) Contents

S (real/input) Parameter value for which
coefficients are to be computed.

CN (real/array/output) B-spline coefficients in packed
form. Dimensioned CN(MBORD+1).

Ml (integer/input) Length of full (unpacked) vector

of coefficients and row dimension
of [S] matrix.

MBORD (integer/input) Order of B-spline basis function
to be used to compute

coefficients.

CS (mixed/array/input) B-spline coefficient matrix, [S],
in packed form. Dimensioned
CS{5,K1) .
K1 (integer/input) Colum dimension of [S] matrix.
! ICLOSE (integer/input) Flag word. If zero, a non-

A periodic or open B-spline basis
' is to be used. If one, a periodic

wl

L or closed B-spline basis is to be

used.
| COMMON Areas: None
! FORTRAN Data Files: None
Required Subroutines: None
Method: Non-zero linearly interpolated B-spline coefficients, N, are ‘;f

computed as in Equation (4) and stored in the array CN. A matrix packing

index, LFT, is computed for later reconstruction of a full vector.

LFT = S*FLOAT(M1-1)+1, for a non-periodic basis. For a periodic basis the
} computation of LFT is made modulo (M1-1).

29

Remarks :
(1) The combination of the interpolation algorithm and the matrix

packing technique requires that K1 2 Ml.

(2) This subroutine is used in the same manner as subroutine
MKSPLN and all the '"Remarks'' which pertain to MKSPLN also apply to this
subroutine. In general, MBORD+1 non-zero interpolated coefficients are
produced by a call to PLSPLN, rather than the MBORD non-zero coefficients
computed by a call to MKSPLN. This fact must be accounted for in
subsequent calculations and prevents the direct substitution of subroutine
PLSPLN for MKSPLN.

.

Sl

sl oo

FITTING SUBROUTINES

Subroutine Name
FITBO1
FITBS2*

e o i e

T DTN W

I

R

*

! < | Primary Access Subroutine

Page
32

34

U . 2

34T P R

FITBO1 - Subroutine Description

Function: To compute a least-squares-fit transformation matrix for

B-spline curves and surfaces.

Entry Point: FITBO1

Calling Sequence: CALL FITBO1(CS,CS,M1,MORIG,U,IOPT,IFS,SCR)

Calling Arguments:
Name (Attributes)

CS (mixed/array/input)

Ml (integer/input)

{ MORIG (integer/input)

1 ‘ U (real/array/output)

IOPT (not used)
IFS (integer/input)

E SCR (array/scratch)

COMMON Areas: None
FORTRAN Data Files: None

Required Subroutines: BCKSUB, BSMULT, DECOMP

Contents
B-spline coefficient matrix in
packed form. Dimensioned
CS(5,M0RIG). The array CS is
required as the first argument
for real references and as the
second argument for integer
references.
The number of B-spline basis
functions used for fitting.
The number of data points to be
fit.
Least-squares fit transformation
matrix. Dimensioned U(M1,MORIG).

Flag word. If zero, CS contains
coefficients for a non-periodic
or open B-spline function. If
one, CS contains coefficients for
a periodic or closed B-spline
function.

A working storage area KORE words
long, where KORE=(M(MI1+1)*M1)/2.

e
b
.
E
§
;

La o R ———

Method: This subroutine computes the least-squares transformation [U]
given by Equation (8). Subroutine BSMIULT is called to compute the product
[ST][S], where the coefficient matrix [S] is given in packed form in array
CS. Subroutines DECOMP and BCKSUB are called to solve the system of
equations [STS][U] = [ST] for [U].

Remarks:

(1) A program stop ''STOP 67" will be made whenever errors occur
which cause the matrix [STS] to be singular. This should occur only when
CS, M1, and MORIG are not compatible.

R Ll o

Ko e

FITBS2 - Subroutine Description

Function: To determine a polygon or two-dimensional mesh which will
induce a B-spline curve or surface that best fits a set of curve or
surface data points in the least-squares sense.

Entry Point: FITBS2

Calling Sequence: CALL FITBS2 (Q,P,MD,MORIG,NORIG,M1 N1, ITYPE,RMS,
10PT,SCR, IFAIL)

Calling Arguments:

Name (Attributes) Contents

Q (real/array/input) Rectangular array of curve or
surface data points. Dimensioned
Q(MD,MORIG ,NORIG) .

P (real/array/output) Polygon or mesh defining a B-
spline curve or surface.
Dimensioned P(MD,M1,N1).

MD,MORIG,NORIG (integer/ Dimensions of array Q.

input)

Ml (integer/input/output) The number of B-spline basis
functions to be used to construct
the B-spline curve or the number
of basis functions to be used in
the S-direction of a B-spline
sur face.

N1 (integer/input/output) The number of B-spline basis
functions to be used in the t-
direction of a B-spline surface.

ITYPE (integer/input) Code word indicating type of B-
spline curve or surface (see
Table 1).

RMS, IOPT (not used)

SCR (array/scratch) A working storage area which is
KORE words long, where
KORE=M1*MORIG+MAXO0 (K1,K2,K3),
K1=S*MORIG+ (M1* (M1+1))/2,

34

=

¥

R A B I
et

K2=NI1*NORIG+5*NORIG+(N1*(N1+1))/2,

and
K3=N1*NORIG+MD*MI1 *NORIG.
IFAIL (integer/output) Flag word. A value of zero

indicates successful completion.
A value of 1 indicates that the
specified combination of MORIG,
NORIG, M1, N1, and ITYPE is
incompatible. A value of 2
indicates that an illegal value
of ITYPE has been encountered.

COMMON Areas: None

FORTRAN Data Files: None

Required Subroutines: BSCMAT, FITBOl, MULMAT

Method: This subroutine will evaluate Equation (7) to obtain the

polygon P from a set of curve data points Q or Equation (11) to obtain the
mesh [P] from a set of surface data points. Subroutine BSCMAT is called
to compute the B-spline coefficient matrices [S] and [T]. Next, subroutine
FITBO1 is called to compute the least-squares transformations [U] and [W]
using Equations (8) and (12). Then, subroutine MULMAT is called to
perform the final multiplications to obtain P, or [P].
Remarks :

(1) If the value of Ml is zero, it is changed to the value of
MORIG and the transformation [U] is replaced by the identity matrix.
Similarly, if N1 is zero, it is set to NORIG and [W] is replaced by the
identity matrix.

(2) The arrays Q and P may overlap for surface fitting applications
whenever Q is not required for subsequent calculations. The arrays Q and
P may not overlap for curve fitting applications.

(3) The transformation matrices [S] and [T], as computed by

subroutine BSCMAT, are based on a uniform spacing of parameter values .:;
between zero and one. A weighted least-squares fit can be obtained by ;%
providing a substitute for BSCMAT which will compute a non-uniform = |

% |
=

transformation matrix.

e —
e e —

INTERSECTION SUBROUTINES

|
|

: Subroutine Name Page
; ABC 37
‘ CHKR 38
EFF 40
GINTR 41
INT2S* 43 L : q
INT2SX* 46
INT3S* 49
INT3SX* 53
MEK 56
OUTRNG 57
RF2SS 58
RF2ST 60
| RF3S01 62
RF3S02 63
STR 64
XLOCI1 65 1

Primary Access Subroutines

P

ine

UL . |

ABC - Subroutine Description

Function: To determine where the boundary of one of the surfaces

intersects the other surface.

Entry Point: ABC

Calling Sequence: CALL ABC(I,J,K,ITOL,NGU)

Calling Arguments:
Name (Attributes)
I (integer/input)

J (integer/input)

K (integer/input)

ITOL (integer/input)

NGU (integer/input)

Contents
Surface whose boundary is to be
used.
Describes which part of boundary
(of surface which is being
considered in terms of its
boundary) is to be used.
1 = boundary for which s is constant.
2 = boundary for which t is constant.
Describes which part of boundary
(of surface which is being con-
sidered in terms of its boundary)
is to be used.
1 = parameter which is to be constant
will be made 0.0.
2 = parameter which is to be constant
will be made 1.0.
Control parameter for iterative non-
linear minimization subroutine.
Number of attempts to be made to
find intersection points along each
edge of the two surfaces during
edge analysis.

COMMON Areas: BOPRXX, STCON, BOND, SEL

FORTRAN Data Files: None

Required Subroutines: OUTRNG, GINTR, RF2SS, RF2ST, STR

Method: Use iterative solver.

R e A S iR

CHKR - Subroutine Description

Entry Point: CHKR

Calling Arguments:
Name (Attributes)
I (integer/input)

J (integer/input)

¥ K (integer/output)

IRF (integer/input)

PARAM (real/array/input/

output)
COMMON Areas: BOPRXX
FORTRAN Data Files: None

Required Subroutines: OUTRNG

Function: To evaluate the outcome of a call to the iterative solver.

Calling Sequence: CALL CHKR(I,J,K,IRF,PARAM)

Contents
Specifies which surface is of
concern for solution just
attempted.

0 = all three surfaces
i = Surface i (i=1,2, or 3)

Specifies which type of conver-
gence is considered acceptable
from solution just attempted.

0 = Accept EPS-convergence (all
residuals less than the specified
tolerance) or NSIG-convergence
(independent variables for two
consecutive iterations all

agreed to within the specified
tolerance).

1 = Accept EPS-convergence only.
Tells whether solution from
iterative solver is acceptable.

0 = Pass; 1 = Fail.

Termination parameter returned by
iterative solver which relates
what happened when it was called.
Parameters (Sl'tl’SZ’tZ’SS't3)°
Dimensioned PARAM(6) .

Method: Determine whether solution from iterative solver is

acceptable based on the values of the termination parameter (IRF) and the
surface parameters (PARAM). Periodic surface parameters will be
modified so that they fall in the range [0,1].

EFF - Function Subroutine Description

Function: To build termination code word for intersection subroutines. : ?

Entry Point: EFF
Calling Sequence: X = EFF(I,J)
Calling Arguments:
Name (Attributes)
EFF (real/function/output)
I (integer/input)

J (integer/input)

COMMON Areas: None
FORTRAN Data Files: None
Required Subroutines: None

40

|

Contents '

Termination code word. ;
Number used to indicate where in

the main subroutine a failure
occurred.

Number which relates outcome of
a call to subroutine GINTR.

g~

GINTR - Subroutine Description

Function: To iteratively minimize a set of nonlinear functions.

Entry Point: GINIR

Calling Sequence: CALL GINTR(RESFN,FAR,ITOL,PARVAL,NRES,NVAR,IFAIL)

Calling Arguments:
Name (Attributes)

Contents

RESFN (real/external function/ Function used to compute

input)
FAR (real/input)

ITOL (integer/input)

PARVAL (real/array/input/
output)

NRES (integer/input)

NVAR (integer/input)
IFAIL (integer/output)

4

residuals.

Control parameter for iterative
solver.

Control parameter for iterative
solver.

The independent variables for the
nonlinear functions.

As input: initial guesses.

As output: solution.

Dimensioned: PARVAL (NVAR)

Number of dependent variables
(nonlinear functions).

Number of independent variables.
Parameter which indicates outcome
of a call to this subroutine.

-1

iterative solver failed to

converge.

0 = iterative solver converged
with all function values less
than the specified tolerance.

1 = iterative solver converged
when the independent variables
for two consecutive iterations
all agreed to within a specified
tolerance.

7 = the working storage required

for the iterative solver was

not available. (Increase
the length of the /BOPRXX/
COMMON block.)

COMVON Areas: RESCX, BOPRXX

FORTRAN Data Files: #6 (output/formatted)

* Required Subroutines: MKMARQ

Method: Determine whether sufficient memory is available and call

on the iterative nonlinear minimization subroutine MKMARQ.

o
»
g

INT2S - Subroutine Description

Function: To find a sequence of points on the curve of intersection

of two surfaces.

Entry Point: INT2S

Calling Sequence: CALL INT2S(IRESFN,FAR,ITOL,POINTS,IMULT,IFAIL,
NPOINT, ICOORD , KPLANE , CORVAL)

Calling Arguments:
Name (Attributes)
IRESFN (unused)
FAR (real/input)

ITOL (integer/input)

POINTS (real/array/output)

IMULT (unused)
IFAIL (integer/output)

Contents

Control parameter for iterative
nonlinear minimization subroutine;
selects how two methods used are
to be mixed. In absence of any
special preference, should be set
at 1.0.

Control parameter for iterative
nonlinear minimization subroutine.
A solution is considered to have
been reached if either of the
following occurs:

(1) all functional values <10 TTOL
(2) independent variables all
agree to ITOL significant figures
in any two consecutive iterations.
Polygon of points on the curve of
intersection. Dimensioned
POINTS (3 ,NPOINT) .

Value Meaning
0 Curve of intersection

successfully found.

1000i+j No curve of intersection
has been found; see
""Remarks''.

S ———
T —

NPOINT (integer/input)

ICOORD (integer/input)

KPLANE (integer/input)

CORVAL (real/input)

Number of points for describing
curve of intersection.
Value Meaning
0 Do not substitute a coordinate
plane for the second surface.
1 Do substitute a coordinate
plane for the second surface.
Descriptor for coordinate plane
being substituted for one of the
surfaces; used only if ICOORD=1.
1
2
3
Descriptor for coordinate plane

"

Plane of constant x

Plane cf constant y
Plane of constant z

"

being substituted for one of the
surfaces; used only if ICOORD=1;
value of constant coordinate.

COMMON Areas: BOND, BOPRXX, RESCX, SEL, STCON, TIE

FORTRAN Data Files: None

Required Subroutincs: ABC, EFF, GINTR, OUTRNG, RFZSS, RF2ST

Method: Iterative nonlinear minimization scheme.

Remarks :

(1) Regarding IFAIL: If i is 1, 2, or 3, failure occurred during

attempt to lay out a curve of intersection between two points. If i = 1:
failed to converge; if i = 2, 3: point out of range on one of the surfaces;
if i = 4: problem is inadmissible. j is always 1 for i = 2, 3, or 4.

If i =1, , indicates outcome from iterative solver as follows: If j = 1:
iterative solution converged with all residuals less than a specified
tolerance; if j = 2: iterative solution converged to a stationary point;

if j = 3: iterative solution failed tc converge; and if j = 4: insufficient

memory for iterative solver.

(2) Regarding the following COMMON block: COMMON/BOPRXX/LBOPRI,

LBOPR2, LBUFF, JBUFF, BUFF(1), MBOPR(8,9), BUFFX(87)
The information described below must be entered into this

44

A ————— e o

|
|
|
i
s

block before INT2S is called. The main function of this block is to
provide a storage area for the definitions of the two surfaces. The main
subdivisions of this block are described in Table 2. Array MBOPR contains
data about the two surfaces. The surface data region is described in
Table 3. Array BUFF must contain the grid of defining points for each of
the two surfaces. These grids may be entered into BUFF consecutively.
BUFF is also a working storage area.

TABLE 2 - THE MAIN SUBDIVISIONS OF COMMON BLOCK BOPRXX

Name Description

LBOPR1, LBOPR2 Dimensions of MBOPR.

LBUFF Length of BUFF.

JBUFF Next available location in BUFF.

BUFF Dummy working storage area to permit both
MBOPR and BUFFX to be assigned dynamically.

MBOPR Data index containing: surface data

pointers, spatial guess*, and transfor-

mation matrix data pointers*.

BUFFX Working storage area; includes surface
defining points and transformation

matrices*.
e
: * This information is not required for subroutine INTZS.
TABLE 3 - SURFACE DATA AREA OF MBOPR
k ———
Location* Description o
MBOPR(2,1) Surface type; see Table 1
MBOPR(3,T) Pointer to first word of sur- -
face definition in BUFF. o3
MBOPR(4,1) ,MBOPR(5,1) Dimensions of defining mesh o3
for surface. <5

* 1 is 1, 2, or 3 and denotes which surface is being described.

(A 45

i
{
i
{
!
|
|

R T T R WY I e

Rt it o o

INT2SX - Subroutine Description

Function: To calculate the location of points on the curve of inter-

section of two B-spline surfaces.

Entry Point: INT2SX

Calling Sequence: CALL INT2SX(PL,M1,N1,ITYP1,P2Z,M2,N2,ITYP2,
P-ORVAL , POINTS ,NPOINT, ITOL,

ICOORD, KP

IMOVE, TFAIL)

Calling Arguments:
Name (Attributes)
Pi (real/array/input)

Mi,Ni (integer/input)
ITYPi (integer/input)

ICOORD (integer/input)

KPLANE (integer/input)

CORVAL (real/input)
POINTS (real/array/output)

Contents
Mesh defining the ith B-spline
surface. Dimensioned Pi(3,Mi,Ni).

Dimensions of array Pi.

Code word indicating the type of
B-spline surface stored in Pi
(see Table 1).

Flag word. If ICOORD=1, inter-
section problem will be solved
using a specified coordinate
plane for the second surface. If
ICOORD=0, an arbitrary surface 1is
assumed to be present as the
second surface.

Code word indicating orientation
of coordinate plane, if used.

If KPLANE=1, an X-plane will be

used.
If KPLANE=2, a Y-plane will be
used.
If KPLANE=3, a Z-plane will be
used.

Coordinate value for plane used.
Array of points calculated on the

curve of intersection.
Dimensioned POINTS(3,NPOINT).

BERERE S —

-

S
r
U
.33
4
T

ey

NPOINT (integer/input)

ITOL (integer/input)

IMOVE (integer/input)

IFAIL (integer/output)

COMMON Areas:
Name Function

Number of points to be calculated
on the curve of intersection.
Must be 2 2.

Convergence tolerance for
iterative solver. Procedure will
terminate when an additional
iteration does not change the ITOL
most significant decimal digits
of the solution.

Flag word. If IMOVE=1, surface
meshes will be transferred to
COMMON block /POPRXX/ prior to
solution. If IMOVE=0, only the
memory addresses of the surface
meshes will be stored in COMMON
block /BOPRXX/.

Flag word. A value of IFAIL
which is less than 1000 indicates
a successful completion of the
procedure. A value which is

1000 or greater indicates a
failure condition (see description

of subroutine INT2S for details).

BOPRXX Communication with subroutine INT2S (see description

of subroutine INT2S for structure).

FORTRAN Data Files: None

Required Subroutines: INT2S, LOCF

Method: This subroutine is a machine dependent driver for solving the

two-surface intersection problem outside of the G-PRIME environment.
Operands are moved to COMMON block /BOPRXX/ and then subroutine INT2S is

called to calculate the solution.

SR

Remarks*
(1) Subroutine LOCF, used to obtain the memory addresses of the

surface operands, is machine dependent. Use of this subroutine may be
avoided by setting IMOVE to 1 and increasing the length of COMMON block

/BOPRXX/ to accommodate copies of the surface operands.

’
NE SV

7
+
?
{
b
R~

-y

INT3S - Subroutine Description

Function: To find a point of intersection of three surfaces.

Entry Point: INT3S

Calling Sequence: CALL INT3S(IRESFN,FAR,ITOL,PARVAL,XYZ,IMULT,IFAIL)

Calling Arguments:
Name (Attributes)
IRESFN (integer/input)

FAR (real/input)

ITOL (integer/input)

PARVAL (real/array/input/
output)

Contents
Flag word. If IRESFN=1 or
IRESFN=2 solve, starting with
parameter guesses, using residual
functions RF3S01 or RF3S02,
respectively. If IRESFN=5 or
IRESFN=6 locate, then solve using
residual functions RF3S01 or
RF3S02, respectively.
Control parameter for iterative
nonlinear minimization subroutine.
Control parameter for iterative
nonlinear minimization subroutine
used for ''solve''. A solution is
considered to have been reached if
either of the following occurs:
(1) all functional values -10_ITOL
(2) independent variables all
agree to ITOL significant figures
in any two consecutive iterations.
Independent variable for nonlinear
solver. Dimensioned PARVAL(6).
Input: initial guesses for the
parameters sl’tl’SZ’tZ’SS’ and t3.
If doing ''Locate-Solve', use 0.5
for all six values. If doing
"Solve'', use best estimate of
parameter values at point of

intersection.

Output: if a solution has been
found, PARVAL will contain the
parameter values Sl’tl’SZ'tZ’SS’

and t3, associated with the point
of intersection of the three
surfaces.

XYZ (real/array/output) Coordinates of point of inter-
section of the three surfaces,
if found. Dimensioned XYZ(3).

IMULT (integer/input) Parameter which determines
whether or not the program is to
make any additional effort at
finding a solution when the first

0 try fails. (See '"Remarks'.) If

IMULT=1, make additional effort.
If IMULT>1, do not make additional
effort.

IFAIL (integer/output) If TFAIL=0, an intersection point
has been found. If IFAIL=1000i+j,

an intersection point has not

been found; see ''Remarks'.
COMMON Areas: ARB, BOPRXX, MULT, RESCX
FORTRAN Data Files: None
Required Subroutines: CHKR, EFF, GINTR, MEK, RF3501, RF3S02, XLOCI1,
XLoc1z, XLOCLS
Method: Iterative nonlinear minimization scheme.

Remarks :

(1) If initial guess is spatial (x,y,z), it must be stored in
MBOPR(3,4), MBOPR(4,4), MBOPR(5,4) in COMMON block /BOPRXX/ before calling
the subroutine. If initial guess is parametric (sl,tl.s:,tz,ss,t3), it
must be put in an array which will become PARVAL(1) through PARVAL(6) when
this subroutine is called.

(2) Regarding IMULT: When IMULT=1, the "additional effort" made
for spatial initial guesses and for parametric initial guesses is quite

50

"
£

&

B e
Voe]

different. When the initial guess is parametric, the 'additional effort"
consists of substituting various sets of parametric initial guesses

P

(sl,tl,sz,t2,53,t3) for the parametric initial guess supplied by the user.
When the initial guess is spatial, the spatial initial guess supplied by
the user remains the same; the "additional effort'" is made during the
""locate' process for one of the three surfaces and consists of trying a
new initial guess for the parameters (Si’ti) for the surface on which the |
"locate'" is being attempted. No ''additional effort' is made during

the ''solve' phase.

(3) Regarding IFAIL: Generally, i indicates the place in INT3S ;
at which failure occurred; j indicates the outcome of the most recent :
call to GINTR (which uses the iterative nonlinear minimization process).

Meaning
Failed during ''solve"
Failed during ''locate' for first surface
Failed during ''locate' for second surface

Failed during ''locate'" for third surface]

S I S S

Failed during ''solve'" of ''locate-solve' ;

Meaning
Iterative solution converged with all residuals
less than 10 11Ok, Usually indicates that the

[

solution point is outside standard surface
definition limits. _
Iterative solution converged to a stationary point. 1
Iterative solution failed to converge.
4 Insufficient memory for iterative solver.
(4) Regarding the following COMMON block: COMMON/BOPRXX/LBOPR1,
LBOPR2, LBUFF ,JBUFF,BUFF (1) ,MBOPR(8,9) ,BUFFX(87)
The information described below must be entered into this 2

block before INT3S is called. The main purpose of this block is to pro-
vide a storage area to contain the definitions of the three surfaces. The
main subdivisions of this block are described in Table 2. Array MBOPR
contains three main storage areas: -
(1) data about the three surfaces

51

(2) a spatial guess for the intersection point

, (3) data about the transformation matrices (which are

f-! required whenever the piecewise-linear approximation for the three
surfaces is used).

The surface data area is described in Table 3. The spatial guess must be

' r put into MBOPR(3,4), MBOPR(4,4), and MBOPR(5,4); however, the spatial

guess must be entered into these locations as real numbers. The trans-

formation matrix data area is described in Table 4.

TABLE 4 - TRANSFORMATION MATRIX DATA AREA OF MBOPR

Location* Description

MBOPR(3, I Pointer to first word of trans-
formation matrix in BUFF,.

MBOPR(4,1) Number of defining points.

MBOPR(S,1) Number of output points.

* I is 8 = open, 9 = closed.
Array BUFF must contain:
(1) the grid of defining points for each of the three

surfaces, and
(2) the transformation matrices.

The transformation matrices may be generated by calling subroutine BSCMAT

% as follows:

CALL BSCMAT (BUEF(I),J ,K,L)

: where [Pointer to first word of transformation matrix in BUFF, i.e.,
k- the location in BUFF where the user wants the transtormation

matrix to begin.
J Number of defining points
K Number of output points
L 0=0COpen;1-= Closed
Blocks of data should be entered into BUFF consecutively; JBUFF should be

updated each time a new block of data is entered into BUFF. INT3S requires

T

87 words of working storage in the BUFFX array.

INT3SX - Subroutine Description

Function: To calculate the location of a point of intersection of

three B-spline surfaces.

Entry Point: INT3SX
Calling Sequence:

CALL INT3SX(P1,Ml1,N1,ITYP1,P2 M2 ,N2,ITYP2,P3,

M3 ,N3,ITYP3,SPOINT ,PARVAL,XYZ, ITOL,LOCATE,

IMOVE, IFAIL)

Calling Arguments:
Name (Attributes)
Pi (real/array/input)

Mi,Ni (integer/input)
ITYPi (integer/input)

SPOINT (real/array/input)

PARVAL (real/array/input/
output)

XYZ (real/array/output)

ITOL (integer/input)

Contents
Mesh defining the ith B-spline
surface. Dimensioned Pi(3,Mi,Ni).
Dimensons of array Pi.
Code word indicating the type of
B-spline stored in Pi (see Table
iy
Coordinates of spatial point close
to the desired intersection point.
Dimensioned SPOINT(3).
On input, parametric guesses of
the location of the desired point
on each of the surfaces. If
unknown, values of .5 are a
reasonable choice. On output,
contains the parametric location
of the intersection for each of the
three surfaces. Dimensioned
PARVAL(6) .
Spatial coordinates of the inter-
section point. Dimensioned XYZ(3).
Convergence tolerance for iterative
solver. Procedure will terminate
when an additional iteration does
not change the ITOL most significant

decimal digits of the solution.

TS VRN LT SR T AN L

$2%i 5 -

e

Y

ity o

LOCATE (integer/input) Flag word. If LOCATE=1,
coordinates in array SPOINT will

be used to determine a new set of
initial parameter guesses for
iterative solving procedure. If
LOCATE=0, pnarameter values in
PARVAL will be used as initinl
guesses.

IMOVE (integer/input) Flag word. If IMOVE=1l, surface
meshes will be transferred to
COMMON block /BOPRXX/ prior to
solution. If IMOVE=0, only the
memory addresses of the surface
meshes will be stored in COMMON
block /BOPRXX/.

IFAIL (integer/output) Flag word. A zero value of IFAIL
indicates a successful completion
of the procedure. All other
values indicate a failure condition
(see description of subroutine
INT3S for details).

COMMON Areas:
Name Function
BOPRXX Communication with subroutine INT3S (see

description of subroutine INT3S for structure).

FORTRAN Data Files: None
Required Subroutines: INT3S, LOCF
Method: This subroutine is a machine dependent driver for solving the

three-surface intersection problem outside of the G-PRIME environment.
Operands are moved to COMMON block /BOPRXX/ and then subroutine INT3S is
called to calculate the solution.

Remarks :
(1) Subroutine LOCF, used to obtain the memory addresses of the

surface operands, is machine dependent. Use of this subroutine may be

54

B i

B it

e

avoided by setting IMOVE to 1 and increasing the length of COMMON
block /BOPRXX/ to accommodate copies of the surface operands.

————

MEK - Subroutine Description
Function: Select a new parameter guess for iterative solver.
Entry Point: MEK J
Calling Sequence: CALL MEK(I,J,K,L,PARAM)
Calling Arguments:
Name (Attributes) Contents
: I (integer/input/output) Indicates which parameter guess i
is currently being used. ,
J (integer/input) Maximum number of parameter
guesses allowed.
K (integer/input) Indicates which surfaces are
involved.
0 = all three surfaces
i = Surface i (i =1, 2, or 3)
L (integer/output) 0 = A new parameter guess was
made; this implies that another
solution-attempt may be made.
1 = No more parameter guesses are
available; a new parameter guess
was not made.
1 PARAM (real/array/input/ Parameters (Sl’tl’SZ’tZ’SS’tS)‘
i output) Dimensioned PARAM(2,3).
bt COMMON Areas: ARB, MULT
4 FORTRAN Data Files: None
% Required Subroutines: None

Method: Select additional parameter guesses from table.

|
!

OUTRNG - Subroutine Description

Function: To process specific values for the parameters (s,t) for a
surface as follows: (a) if parameter is ''open'', determine whether i:s
value is '"out of range'; (b) if parameter is ''closed', bring its value
back into range.

Entry Point: OUTRNG
Calling Sequence: X = OUTRNG(ITYPE,PARPAR\EPS)

Calling Arguments:
Name (Attributes) Contents
OUTRNG (logical/output) Status indicator. If .TRUE., at
least one parameter value is out
of range. If .FALSE., all
parameter values are in the range
[0,1].
ITYPE (integer/input) Entity type; see Table 1.
PARPAR (real/array/input/ Surface parameters (s,t).
output) Dimensioned PARPAR(2).
EPS (real/input) Tolerance value used in 'out-of-
range'' determination.
COMMON Areas: None]
FORTRAN Data Files: None :
! Required Subroutines: None
}, Method: Comparison using specified tolerance.
- Remarks :
ﬁ' (1) When a parameter is ''out of range', it lies outside the r

interval [0,1]. The tolerance value, EPS, is used to expand the interval

by a small amount.

57

RF2SS - Function Subroutine Description
Function: To compute the residual functions needed to solve for one
point on a curve of intersection of two surfaces.

Entry Point: RF2SS
Calling Sequence: Z = RF2SS(X,I)

PR

Calling Arguments: 1
Name (Attributes) Contents 3
RF2SS (real/function/output) Residual value. é
X (real/array/input) Parameters for the two surfaces;

dimensioned X(3); X(1) and X(2)
are the parameters (s and t) for
the surface being considered in
its entirety; X(3) is the
variable parameter (t) for the
other surface.

1 (integer/input) Indicates which of the three
residual functions is to be
computed.

Value Meaning (See Remark 3)
1 xl(sl’tl) - xz(so,tz)
. ¥1(s15%)) - ¥2(Sgst))
3 zl(sl’tl) - zz(so,tz)

COMMON Areas: SEL, STCON, RESCX, BOPRXX

FORTRAN Data Files: None

Required Subroutines: BSEVLI

Method: Compute residual functions from evaluation of spatial

coordinates.
Remarks:
(1) Regarding COMMON block STCON: COMMON/STCON/SCON, TCON
SCON must contain So-
(2) Regarding COMMON block SEL: COMMON/SEL/KA, KB
KA denotes the surface (Surface 1 or Surface 2) which is

to be considered in its entirety.

58

KB denotes the surface (Surface 1 or Surface 2) which is

R

to be considered only in terms of a curve of constant s.
‘ (3) Sy and t1 are the parameters for the surface which is being
considered in its entirety.

So (a constant) and t, are the parameters for the other

surface.
? The spatial coordinates for the surface which is being
considered in its entirety are given by

xl(sl’tl)

yl(sl’tl)
%1 (510)
The spatial coordinates for the other surface are given by
XZ(SO’tZ)
Y,(5gst,)
2(505t;)

OREA O IO

‘

=3

59

S

?\-4,.‘

RF2ST - Function Subroutine Description

Function: To compute the residual functions needed to solve for one

point on a curve of intersection of two surfaces.

Entry Point: RF2ST
Calling Sequence: Z = RF2ST(X,I)

Calling Arguments:

Name (Attributes) Contents
RF2ST (real/function/output) Residual value.
X (real/array/input) Parameters for the two surfaces;

dimensioned X(3); X(1) and ¥%(2)
are the parameters (s and t) for
the surface which is being
considered in its entirety; X(3)
is the variable parameter (s)
for the other surface.

[(integer/input) Indicates which of the three
residual functions is to be

computed.

Value Meaning (See Remark 3)
1 Xl(slytl) & Xz(szsto)
2 yl(Sl’tl) ')'z(szgtO)
3 zl(sl’tl) - ZZ(SZ’tO)

COMMON Areas: SEL, STCON, RESCX, BOPRXX
FORTRAN Data Files: None

Required Subroutines: BSEVL1
Method: Compute residual functions from evaluation of spatial

coordinates.
Remarks :
(1) Regarding COMMON block STCON: COMMON/STCON/SCON, TCON
TCON must contain t.
(2) Regarding COMMON block SEL: COMMON/SEL/KA, KB
KA denotes the surface (Surface 1 or Surface 2) which is to

be considered in its entirety.

T D R R TP T

i
i
;

KB denotes the surface (Surface 1 or Surface 2) which is
to be considered only in terms of a curve of constant t.
(3) Sy and t, are the parameters for the surface which is being

considered in its entirety.

Sy and tO (a constant) are the parameters for the other
surface.

The spatial coordinates for the surface which is being
considered in its entirety are given by

xl(sl,tl)

2 (5108
The spatial coordinates for the other surface are given by
X3(52:%p)
Y5(5,,t)
2(5250)

froaly

el

N
A
I3
£
.

RF3S01 -“Function Subroutine Description

| Function: To compute the spatial coordinates on three surfaces
corresponding to a given set of parameters and then to compute the
residual functions needed to solve for a point of intersection.
Entry Point: RF3S01
Calling Sequence: Z = RF3S01(X,I)
Calling Arguments:

Name (Attributes) Contents
RF3S01 (real/function/ Residual value.
output)
X (real/array/input) Parametric coordinates (sl,tl,sz,

tZ’SS’t3) for the three surfaces.
Dimensioned X(6).

I (integer/input) Indicates which of the six resi-
dual functions is to be computed.
Value Meaning
1 xl(sl,tl) - xz(sz,tz)
- y1(815%) - ¥(8p08)
3 Zl(sl’tl) - 25(s,,t,)
4 xz(sz,tz) - xs(ss,ts)
5 yz(sz,tz) = y3(53,t3)
6 zz(sz,tz) - :3(53,t3)

where the spatial coordinates of a point on Surface i are given by
X;(s:,t5), yi(s;,ty), and z;(s5,t5).

COMMON Areas: RESCX, BOPRXX

FORTRAN Data Files: None

Required Subroutines: BSEVL3
Method: Compute residual functions from evaluation of spatial

coordinates.

kel

o i v | Snedind e,

R

ol gt

RF3S02 - Subroutine Description

Function: To compute the spatial coordinates on three surfaces
corresponding to a given set of parameters and then to compute the
residual functions needed to solve for a point of intersection.

Entry Point: RF3S02
Calling Sequence: Z = RF3S02(X,I)

Calling Arguments:
Name (Attributes) Contents
RF3S02 (real/function/output) Residual value
. X (real/array/input) Parametric coordinates (Sl'tl's7’
3 tZ’SS’t3) for the three surfaces.
E Dimensioned X(6).
l I (integer/input) Indicates which of the six
: residual functions is to be
computed.
Value Meaning
1 xl(sl’tl) - xz(sz,tz)
2 yl(519t1) B YZ(Szytz)
r 3 ZI(Sl’tl) - zz(sz,tz)
1 4 xz(sz,tz) - x3(s3,t3)
e | * Y3(823%5) - ¥5ls5.ts)
4 " 2alSgutyl - Zglsats)

LA,

where the spatial coordinates of a point on Surface i are given by

xi(si,ti), yi(si,ti), and zi(si,ti)-

COMMON Areas: RESCX, BOPRXX

FORTRAN Data Files: None

Required Subroutines: BSEVL1

Method: Compute residual functions from evaluation of spatial

coordinates.

'
4

“‘,!N';‘-

-y

S

STR - Subroutine Description

Function: To build a file of points for which (1) the boundary of
Surface 1 intersects Surface 2, or (2) the boundary of Surface 2 inter-
sects Surface 1.

Entry Point: STR

Calling Sequence: CALL STR(BPP,EPSIL)
Calling Arguments:
Name (Attributes) Contents
BPP (real/array/input) Point for which (1) the boundary
of Surface 1 intersects Surface 2,

or (2) the boundary of Surface 2
intersects Surface 1; given in
terms of parameters (sl,tl.sz,tz).
Dimensioned BPP(2,2).
EPSIL (real/input) Tolerance value used for checking
whether a point is already in the
file; if all four parameters
agree to within the specified
tolerance value with the parameters
for a point already in the file,
no new point is entered in the file.
COMMON Areas: BOPRXX, TIE, BOND
FORTRAN Data Files: None
Required Subroutines: None

Method: Compare the newly found point to the points already in the
file. If the new point is different from all the points already in the
file, enter the new point in the file.

Remarks:

(1) Regarding COMMON block TIE: COMMON/TIE/AB(2,2,8)
Array AB contains the aforementioned file of points.

64

XLOCI1 - Function Subroutine Description

Function: To compute the residual functions needed to perform the
"locate' process (i.e., finding the point closest to the spatial gue:'s).

Entry Point: XLOCI1
Calling Sequence: Z = XLOCI1(X,I)

Calling Arguments:

Name (Attributes) Contents
XLOCI1 (real/function/output) Residual value
X (real/array/input) Parameters (s,t) for the surface

on which the ''locate' is being
attempted. Dimensioned X(2).
I (integer/input) Coordinate direction currently
being called for: 1 = x
2=y
S.= 2
COMMON Areas: BOPRXX, RESCX
FORTRAN Data Files: None
Required Subroutines: BSEVL1

Method: Compute difference (in coordinate direction specified)
between point on surface and spatial guess.
Remarks:
(1) This function has three entry points. When the "locate"
process is to be performed for Surface i, entry point XLOCIi should be
used (1 is 1, 2, or 3).

P

UTILITY SUBROUTINES

Subroutine Name

BCKSUB
BSMULT
DECOMP
MKMARQ
MULMAT
NOBSE3

Page
67
68
69
]
74
76

L —

BCKSUB - Subroutine Description

Function: To perform a vector forward backward substitution using a
Cholesky factor matrix.

Entry Point: BCKSUB
Calling Sequence: CALL BCKSUB(S,X,B,N)

Calling Arguments:

Name (Attributes) Contents

S (real/array/input) Lower triangular factor matrix, _
stored: S(1,1),5(2,1),..., é
S(N,N-1),S(N,N). Length is
(N(N+1)/2).

X (real/ array/output) Solution vector. Length N.

B (real/array/input) Right-hand side vector. Length N.

N (integer/input) Order of matrix S.

PRETAER————

COMMON Areas: None

{ FORTRAN Data Files: None

g Required Subroutines: None
Method: The equation [S][STlg = B is solved for X by first solving

[S]Y = B for Y and then solving [ST]X =

triangular Cholesky factor matrix.

Y for X, where [S] is a lower

Remarks :
\ (1) This subroutine is used with subroutine DECOMP to solve the

equation [A]X = B. See description of subroutine DECOMP for details.
(2) The arrays B and X may overlap whenever B is not required for

subsequent calculations.

BSMULT - Subroutine Description

Function: To compute the matrix product [ST][S], storing only the
lower triangular portion of the result. [S] must be a B-spline
coefficient matrix stored in packed form.

Entry Point: BSMULT :
Calling Sequence: CALL BSMULT(CS,CS,MI1,MORIG,IFS,STSLTR)

Calling Arguments:

Name (Attributes) Contents
CS (mixed/array/input) B-spline coefficient matrix in

packed form. Dimensioned CS(5,MORIG).
The array CS is required as the
first argument for real references

E and as the second argument for
integer references.
Ml (integer/input) Row length of full (S] matrix.
b | MORIG (integer/input) Column length of full [S] matrix.
IFS (integer/input) Flag word. If zero, CS contains

coefficients for a non-periodic
or open B-spline function. If

E | one, CS contains coefficients for
‘ a periodic or closed B-spline
e function.

i | : STSLTR (real/array/output) The product matrix stored in
lower triangular form.

COMMON Areas: None

FORTRAN Data Files: None

Required Subroutines: None

:‘ ' Method: FEach row of CS is unpacked and its contributions to the

3 product are accumulated in the array STSLTR.

_ Remarks :

3 (1) The form of the product array STSLTR is compatible with the

requirements of the Cholesky decomposition subroutine, DECOMP.

e

-

e

B e e i i e Sl o
-

e

T T T

DECOMP - Subroutine Description

Function: To perform Cholesky decomposition of a real, symmetr:c
matrix when diagonal and lower triangle of matrix are given.
Entry Point: DECOMP
Calling Sequence: CALL DECOMP(A,S,N,I0K)
Calling Arguments:
Name (Attributes) Contents
A (real/array/input) Lower triangle of matrix to be
decomposed; stored A(1,1),A(2,1),
A(2,2),A(3,1),...,A(N,N-1) ,A(N,N).
Length of array is ((N+1)N)/2Z.

S (real/array/output) Lower triangle of Cholesky factor
matrix; same order of storage and
length as A.

N (integer/input) Order of matrix A.

IOK (integer/output) Flag word. A value of -1

indicates that decomposition was
terminated because the matrix A
was singular.
COMMON Areas: None
FORTRAN Data Files: None
Required Subroutines: None
Method: Single precision Cholesky matrix decomposition is performed,
yielding the lower triangular factor matrix [S] in the equation:
[A] = [S1[S'].
Remarks :

(1) This subroutine can be used with subroutine BCKSUB to solve
the equation [A]X = B. DECOMP is called to factor [A] which permits the
problem to be rewritten [S][ST]X = B. BCKSUB is called to solve [S]Y = B
for Y and then to solve [STIX = Y for X.

(2) [A] must be a real, symmetric matrix. I
(3) The arrays A and S may overlap whenever A is not required for ;,'
subsequent calculations. S
69 %

(4) The form of the factor matrix [S] is compatible with the

requirements of subroutine BCKSUB.

8

F

Pos |
'
|
Wy

MKMARQ - Subroutine Description

Function: To find the minimum of the sum of squares of M functions

of N variables.

Entry Point: MKMARQ

Calling Sequence: CALL MKMARQ(F,EPS,NSIG,M,N,C,X,FX,ITMAX,WA, IER)

Calling Arguments:
Name (Attributes)

F (real/functior./external)

EPS (real/input)

NSIG (integer/input)

M (integer/input)
N (integer/input)

C (real/input)

X (real/array/input/output)

Contents
Function to compute functions to
be minimized, which will be called
with two arguments, F(X,I), where
X is the vector of N variables and
I is an index to select one of the
M functions.
First stopping criterion for
iterative method. If F(X,I)<EPS
for all I, convergence is assumed.
Second stopping criterion for
iterative method. If for two
successive iterations the vector
of variables X is the same to NSIG
significant digits, convergence is
assumed.
Number of functions to be evaluated.
Number of independent variables in
vector X.
Algorithm modifying parameter;
usually set to 1.0. See Brown5
for details.
Vector of variables; length N.
Initial values for starting
iteration must be stored in this

- A

array by calling routine. Contains
values of variables which mini-

Pl WS

mize functions on output.

T WY Ty e

a

DA i i o o i S

Kol g

Sl

?’k

* 2

Iwe

LA ban.]

FX (real/array/output) Vector containing the values of ,
the M functions evaluated for the :

final set of variables in X.
ITMAX (integer/input/output) Third stopping criterion and

iteration counter. If more than

ITMAX iterations are required for

convergence, the subroutine

assumes that convergence can not
be achieved. On output, ITMAX
contains the number of iterations
actually performed.

WA (array/scratch) A working storage area KORE words
long, where
KORE = N(N+1)+ON+N*M+3M,

IER (integer/output) Flag word. A value of zero
indicates that subroutine has
stopped by meeting first stopping
criterion. A value of cne
indicates that second stopping
criterion has been met. If
greater than one, subroutine has
failed.

COMMON Areas: None

FORTRAN Data Files: None

Required Subroutines: DECOMP, BCKSUB

Method: This is an implementation of Brown's AlgorithmS which has
been tailored for use with the B-spline intersection subroutines.

Remarks :
(1) Poor results have been observed when this routine has been

initiated with zero or near zero independent variable vector.

(2) This implementation has evolved from a similar program called
ZXMARQ which was marketed at one time by International Mathematical and
Statistical Libraries, Inc. of Houston, Texas (IMSL). In its present fomm
MKMARQ differs from the IMSL program in a number of ways and although the

72

e ————————— S St S e eaiaascn. R R G Y R A s s

calling sequences appear to be the same, the programs can not be inter-

)

~
.
>~
—
PR
|9
(7]
b
o
o
m
=
&)

p— — : ¥
o e e T AT T T P 4 . Al'l“: _ .:.ro...hw. -
i S e S i B st et & e e LB ag s ok bl Sl o et ddy . Staln S Cotes Lot Vaaiis aa St * Y =

MULMAT - Subroutine Description

Function: To compute the matrix product C = A x B for matrices

which may have multidimensional elements.

Entry Point: MULMAT
f | Calling Sequence: CALL MULMAT (A, B,C, IAT, IBT,KAD,KAR,KAC, IAD,KBD,
3 KBR,KBC, IBD,KCD,KCR,KCC, ICD)

Calling Arguments:

e

o -
LN NLY e
et -

M aad, . i

T ———— .

Name (Attributes)
A (real/array/input)

Contents
First matrix factor. Dimensioned

A(KAD,KAR,KAC) .

B (real/array/input) Second matrix factor. Dimensioned
B(KBD,KBR,KBC) .

C (real/array/output) Product matrix. Dimensioned C(KCD,KCR,
KCC) .

IAT (integer/input)

[BT (integer/input)

KAD,KAR,KAC (integer/
input)
IAD (integer/input)

KBD,KBR,KBC (integer/
input)
IBD (integer/input)

KCD,KCR,KCC (integer/
input)

ICD (integer/input)

Flag word. A non-zero value indicates
the matrix A is to be transposed prior
to multiplication.

Flag word. A non-zero value indicates
that the matrix B is to be transposed
prior to multiplication.

Dimensions of the array A.

Index to select the component of the
multidimensional elements of array A.

Dimensions of the array B.

Index to select the component of the
multidimensional elements of the
array B.

Dimensions of the array C.

Index indicating the component of the

multidimensional elements of the array
Cs

74

COMMON Areas: None
FORTRAN Data Files: #6 (output/formatted)
Required Subroutines: None

Method: Use formula, c.. = aikbkj’ selecting components and
all k

transposing as indicated.
Remarks:
(1) Subroutine will stop program with message if matrices are

not conformable.

B e ——

-t e i,
el 2ot B P

75

NOBSE3 - Subroutine Description

Function: Dummy subroutine to satisfy unused external references in
subroutine INT3S and to prevent loading of subroutine BSEVL3 and function
subroutine RF3S01.

Entry Point: NOBSEl

Calling Sequence: CALL NOBSEl
Calling Arguments: None

Entry Point: RF3501
Calling Sequence: CALL RF3S01
Calling Arguments: None

Entry Point: BSEVL3
Calling Sequence: CALL BSEVL3
Calling Arguments: None

Entry Point: RF3503
Calling Sequence: CALL RF3503
Calling Arguments: None
Entry Point: CALL RF3S04
Calling Sequence: CALL RF3S04
Calling Arguments: None
COMMON Areas: None
FORTRAN Data Files: #6 (output/formatted)

Subroutines Required: None

Method: When this subroutine is explicitly loaded with subroutine
INT3SX, the library loading of the unused subroutines BSEVL3 and RF3S01
will not be performed--conserving memory.

Remarks:

(1) Subroutine will stop program with message if entry points
BSEVL3 and RF3S01 are actually called.

SAMPLE APPLICATION
PLOTTING B-SPLINE SURFACES

Although we, as the developers, feel that subroutines included in the
G-PRIME Basic B-Spline Library are easy to use, an example of a typical
application of this capability may be helpful in establishing a frame of
reference for the potential user. The subroutine PLT3DS, listed in
Figure 5, draws a plot of a B-spline surface. This subroutine is from
the program BHULL, written for ship hull design, which is described in a
forthcoming report. (BHULL also contains examples of data fitting and
simple surface and volume integration using B-spline functions.)

PLT3DS graphically represents a B-spline surface giving the user the
option of (1) having the boundary curves displayed (values of zero and one
for the parameters s and t), (2) having curves of constant values of
either parameter displayed, or (3) having curves of constant values of one
parameter displayed and then having curves of constant values of the other
parameter displayed as well.

The calling sequence for PLT3DS is:

CALL PLT3DS(A,B,C,MD,Ml,N1,ISPERD, ITPERD,IFS,JFT,ICLEAR)
where the calling arguments are defined as follows:

Name (Attributes) Contents

A (real/array/input) Mesh defining a B-spline surface.
Dimensioned A(MD M1 ,N1).

B (array/scratch) Working storage for PLT3DS. Dimensioned
B(MD,KORE) where KORE=MAXO0(M1,N1).

C (array/scratch) Working storage for subroutine CVPLT.
Dimensioned C(2,KORE+1).

MD,M1,N1 (integer/input) Dimensions of array A.

ITYPE (integer/input) Code word indicating type of B-spline

surface (see Table 1).
IFS (integer/input) Flag word. If set to one, curves are
drawn by varying the parameter s for a

uniformly spaced sequence of values of

the parameter t. If set to zero,

T T

s S AR

AR B .

PTTI

c
c
c
¢
c
c
c
c
c
s
1c
11
15
20
22
c
c
¢
c
25
30
50
¢
c
¢
¢
E
i 60
|
i 70
100
c

SUBROUTINE PLY3DSUA,B,C,MD,M1 N1y ITYPE,IFS, uFT,ICLEAR)

PLOT A 3-0 SURFACE ...

SURFACE QUTLINES ARE ALWAYS PLOTTEOD. IFS AND UFT COMTROL

THE PLOTTING OF T ANO S JURVES RESPECTIVELY.
DIMENSION ACMO,ML1,NL}, 8(MDy1), C(2,1)

WILP = 6
XLIN = 0.
XSCL = 1.

PLOT BOUMDARIES...

IF (M1 JLT. 1 .OR. N1 .LT."1) GO TO 100
MPT = MULP & MY

DELM = 1. / FLOAY(NMPT)

MPT = MPT ¢ |

NPY = MULP * N1

DELN = 1. / FLO&T(NPT)

NPT = NPT & 1

JCLEAR = ICLEAR

IF (M1 .EQ. 1) NPT = 3

IF (N1 .EG. 1) NPT = 1

IF (M1 .EQ. 1) GO TO SO

1IF (Nt .EQ. 1) GO TO 22

IF (IFS .EQ. 1) GO TO 11

00 10 K=1,2

S = -DELM

D0 5 I=1,MPT

S = S + DELM

CALL BSEVLL (A,MD,M1,N1,S,FLOAT(K=1),ITYPE,BL1,])
CALL CVPLT (B,MD ,MPT,C)

JCLEAR = 0

IF (JFT .EQ. 1} GO 10 22

00 20 K=1,2

T = -DELN

00 15 I=1,NPTY

T = T # DELN

CALL BSEVLL (AyMDyM1,N1,FLOAT(K=1),T,ITYPE,B(1,1)
CALL CVYPLT (B,MD,NPT,C)

JCLEAR = 0

IF (IFS .EQ. G} GO T0 50

PLOT T-CURVES ..

ISkP = 0

T = -DELN

00 30 K={,NPT

T =T ¢ DELN

IF (ISKP .NE. 00 GO YO 30
S = -0€ELM

00 25 I=1,MPT

S = S ¢ DELM

CALL BSEVLL (A MDyM1,N1,S,T, ITYPE,B(1,I))
CALL CVWPLT (B,MD MPT,C)
JCLEAR = 0

ISKP = MOD(ISKP+1,3)

IF (JFT .EQ. 0) GO YO 100
IF (M1 .EQ. 1} GO TO 100

PLOT S=CURVES...

ISKP = 0

S = -DALNM

D0 70 K=1,MPT

S = S ¢ DELM

IF (ISKP .ME. 0Y GO YO 70
T = -DELN

00 60 I=1,NPT

T =71 ¢« DALN

CALL BSEVLL (A, MO, Mi4N1,S,T, ITYPE,B(1,1))
CALL CVPLT (B MD NPT,C)
JCLEAR = C

ISKP = MOD(ISKPs 1, 1)
CONTINUE

RE TURN

END

Figure 5 - Subroutine PLT3DS

78

Name (Attributes) Contents
only the curves t=0 and t=1 are drawn.

JFT (integer/input) Flag word. If set to one, curve: are

drawn by varying the parameter t for

a uniformly spaced sequence of values

for the parameter s. If set to zero,

only the curves s=0 and s=1 are drawn.

ICLEAR (not used)

Curves are drawn as polygons with 6*Ml+1 or 6*N1+1 points which lie
on the given B-spline surface. The four major processing steps of this
subroutine are:

(1) The 'DO 10 loop' draws curves for t=0 and t=1.
(2) The '"DO 20 loop' draws curves for s=0 and s=1.
(3) The "DO 30 loop'' draws curves for t=1./(6*N1+1),
S (G ENTE R0
| (4) The '"DO 70 loop'' draws curves for s=1./(6*M1+1),
‘ 3./(6™M1+1),...,1.

Within each of the above steps, the evaluation subroutine BSEVL1 is

called repeatedly to build the ''curve polygon'' that is to be plotted. That

polygon, stored in the array B, is then passed to subroutine CVPLT for

z display.

Figure 6 shows three views of a B-spline surface as drawn by PLT3DS

with IFS=1 and JFT=0; Figure 7 shows the same surface drawn with IFS=1
- and JFT=1; and in Figures 8 and 9 the outlines of the surfaces have been
A drawn by PLT3DS with IFS=0 and JFT=0. The intersection curves and various

symbols have been added by other subroutines.

Figure 6 - Views of a B-Spline Surface Drawn by
Subroutine PLT3DS with IFS=1 and JFT=0

3 Ok

Figure 7 - Views of a B-Spline Surface Drawn by
Subroutine PLT3DS with IFS=1 and JFT=1

Figure 8 - B-Spline Surface Ouflines Drawn by
Subroutine PLT3DS with IFS=0 and JFT=0

Ty

SUE1Td durinoigng £q umel(sadejang ourdg-g Furidasiolu] Jo SMITA

- 6 2and1y

AWANTARLTE

Ve LGNSR s
ki RS S i N i il i e " s PR T B .

R R RpTR—

83

W CRTE

o

o R
R]
Rl S

T

AR i T

B dlsie e - dadlages e il

—e

RECOMMENDED EXTENSIONS

This report represents one step toward the creation of a library of
B-spline mathematical subroutines that will satisfy our requirements and
the needs of the naval scientific community. Our work in this field is
continually uncovering improved methods and new approaches to the
problems we have been dealing with and there is always a list of modifi-
cations and additions to be made. Also, for lack of time, we have passed
over some of the more general capabilities for which we have no current
applications. This section lists possible additions to a future edition
of the library.

Additional evaluation capabilities should include:

e C(Calculation of derivatives of the B-spline functions. This
would permit the use of more efficient numerical integration and nonlinear
minimization algorithms.

e Addition of a BSEVL2-like subroutine which will return a set of
points along a curve rather than just one point per call. This type of
subroutine could reduce the computation time required to display curves
and surfaces.

e An alternate surface definition using a mesh of triangles as
well as the current rectangular mesh definition. Local surface changes
are more easily accomplished with a surface defined by a triangular mesh.

Additional fitting capabilities should include:

e A fitting capability which admits constraints on selected
points or derivatives. This feature appears to be necessary for fitting
data with cusps and for fitting data that must mesh exactly along certain
boundaries.

* An option to use a uniform B-spline basis for the fitting of
open curves and surfaces. The current practice for open curves and
surfaces involves the use of a uniform basis which is modified to force
the B-spline function to interpolate the ends of the defining polygon and
the corners of a surface mesh. This practice also constrains the B-spline
function to have zero curvature at those extremes. The uniform basis,
without modification, will permit arbitrary curvature at the ends, which

84

oy g s

may be more appropriate for fitting certain data.

e An option to save the least-squares transformation matrices
from one fitting application so that they would not have tc be recalculated
for a subsequent application. Although it is evident from Equations (7)
and (11) that the matrices [U] and [W] need to be computed only once for
all problems of the same size, the current implementation does not take

T TR T T TG T PR T T

advantage of this property.
* An option to have the fitting subroutines compute the RMS
error in the fit of a B-spline function to a given set of data.
Additional intersection capabilities should include:
e C(alculation of the points of intersection of two curves, and

the intersection of a curve and a surface. These calculations are

\ et Vel o i L e o TR 2 ‘TV'W'TW»W~“S"- %

specializations of the procedures used for finding the point of inter-
section of three surfaces.

e Enhancement of the procedures for finding the curve of inter-
section of two surfaces. The current two-surface intersection capability

BN v Lot il il ik Ul U e~ iy

| is not as comprehensive as we require. We hope to remove most of the
restrictions currently imposed and to allow the user to select among
multiple curves of intersection when they occur.

e A separate locating capability. The intersection subroutines
now contain code which com; _s the location of the point on a B-spline
curve or surface that is closest to a given spatial point. This locating
capability should be made directly accessible to the user.

e Modification of the nonlinear solver to use derivatives of the
B-spline functions which have been calculated by the evaluation subroutines.
This should improve the overall efficiency of the nonlinear solution
process, since greater accuracy can be obtained with no increase in the
amount of computation.

¢ Include curve and surface operands as calling arguments of the
intersection subroutines rather than using COMMON block /BOPRXX/ for the
passing of operands. This practice, which is a hold-over from earlier
iterative solution procedures, is sometimes confusing to the programmer

and can now be eliminated,

25

2
-t

an
'

ine

e

ACKNOWLEDGMENTS

The authors wish to thank Dr. Feodor Theilheimer for many helpful
conversations and his independent verification of the basic evaluation
subroutines. We also wish to thank Donald A. Gignac who wrote the
Cholesky decomposition subroutines DECOMP and BCKSUB and Suzanne Wybraniec
who has been the program librarian for this project.

REFERENCES
1. Schoenberg, I.J., "Contributions to the Problem of Approximation of

Equidistant Data by Analytic Functions,' Quart. Appl. Math., vol. 4
(1946), pp. 45-99; 112-141.

2. Riesenfeld, R., "Application of B-Spline Approximation to Geometric
Problems of Computer-Aided Design,' University of Utah Computer Science
Report UTEC-CSC-73-126.

3. Bezier, P., Numerical Control - Mathematics and Applications (trans-
lated by A.R. Forrest). London: John Wiley and Sons, 1972.

4. de Boor, C., '"On Calculating with B-Splines,'" J. Approx. Theory,
vol. 6 (1972),; pp. 50-62.

5. Brown, K.M., '"Derivative Free Analogues of the Levenberg-Marquardt
and Gauss Algorithms for Nonlinear Least Squares Approximations,"
Numerische Mathematik, vol. 18 (1972), pp. 289-297.

86

Copies

bt

N

Bt b ek bl e ek e

INITIAL DISTRIBUTION

Copies

HARRY DIAMOND LABS
1 DRXDO-TI
1 DRXDO-NP

USA ABERDEEN PROVING GROUND
1 E. QUIGLEY

USA PICATINNY ARSENAL
1 W. BOLTE

NRL
1 R. PERLUT

DNL

USNA
1 DEPT MATH
1 LIB

NAVPGSCOL LIB
NROTC & NAVADMINU, MIT
NAVWARCOL

NSWC WHITE OAK
1 R.J. EDWARDS

NUSC NPTLAB
1 R. MESSIER

NUSC NLONLAB
1 A. CARLSON

NAVAIR
1 H. ANDREWS
1 G. HAND

9

b2

NAVSHIPYD
NAVSHIPYD
NAVSHIPYD
NAVSHIPYD
NAVSHIPYD
NAVSHIPYD
NAVSHIPYD

BREM/LIB

CHASN/LIB
MARE/LIB

NORVA/LIB
PEARL/LIB
PHILA/LIB
PTSMH/LIB

NAVSEC
1 R. KELTIE
1 J. CLAFFEY
1 A.L. FULLER
1 M. AUGHEY
1 W.E. DIETRICH
1 R.S. JOHNSON
1 P.M. PALERMO
1 D. BILLINGSLEY
1 R.G. KEANE, JR.
DDC

AFWL KIRTLAND AFB
1 CAPT J. HANSEN

AFFDL
1 L. BERNIER
1 P. POURIER
J. JOHNSON
J. FOLCK

|
1
NASA GODDARD SFC
1 J. MASON
1 L.A. SCHMID

BOSTON UNIV
Computing Center
111 Cummington Street
Boston, MASS 02215
ATTN: Caroline Wardle

BATTELLE COLUMBUS LABS
505 King Avenue
Columbus, Ohio
ATTN: Gene Hulbert

GOODYEAR TIRE & RUBBER CO
Dept. 100A
1144 East Market Street
Akron, Ohio 44316
ATTN: David Twellman

JOHN DEERE, INC
Dubuque Works, Dept. 614
Dubuque, IOWA 52001
ATTN: Jose Nazario

43201

-

Copies

e [e e

ok Gk et

PDA, INC
1740 Garry Ave., Suite 201
Santa Ana, CA 92705

ATTN:

E.L. Stanton

SPERRY SUPPORT SERVICES
716 Arcadia Circle
Huntsville, ALA 35801

ATTN:

R. Schmitz

US STEEL RES CEN
125 Jamison Lane
Monroeville, PA 15146

ATTN:

Code
1153
1170
1182
1524
1542
1552

1556
1568
1572
1576
1606
1630
1700

1720
1720.
1720.

1730

1730.
1750,
1730.

1740.

1800

1802.
1802.

1805

[F2 0 5]

[S

G.J. Hutchins

CENTER DISTRIBUTION

Copies
O'NEILL, W.C. 1
STEVENS,
WACHNIK,
LIN, W.C.
YoM OB
GROVES, N.C.
VON KERCZEK, C.
WHITE, N.
NORTON, R.
€OX, G.C.
OCHI, M.D.
SMITH, W.E.
DE LOS SANTOS, S.
FORD, A.G.
MURRAY, W.W.
HOM, K.
ROTH, P.
ROCKWELL, R.D.
STAVOVY, A.B.
CHIU, R.H.
NAPPI, N.
ADAMCHAK, J.C.
MEYER, P.
WHANG, B.
GLEISSNER, G.H.
FRENKIEL, F.N.
THETLHEIMER, F.
CUTHILL, E.H.

o=
=

PO = =

(28]

v

w
L B S e e e i S i T T S e B e)

Code
1809.
1820
1823
1824
1840
1843

1844

1844
1844
1850
1853
1858
189.1
1892.
1892.
1903
1962
1965
1966
2723
2740
5214.
322.1
522.2

o

HARRIS, D.
CAMARA, A.W.
CHEN, R.
BERKOWITZ, S.
LUGT, H.J.
SCHOT, J.W.
HAAS, M.
DHIR, S.K.
ZARDA, R.
MCKEE, J.M.
KAZDEN, R.
CORIN, T.
THOMSON, B.
SMITH, B.
TAYLOR, N.
STRICKLAND, J.
SOMMER, D
BROOKS, J.
ZALOUMIS, A.
FEIT, D.
CASPAR, J.
COBLENZ, R.
WANG, Y.F.
REPORTS DISTRIBUTION
LIBRARY (C)
LIBRARY (A)

